EXPLORE POSTGRADUATE STUDY OPTIONS

www.wgtn.ac.nz/postgraduate
“Dynamic is probably the best way to describe Wellington. The learning environment isn’t just the classroom; it extends from the national field trips to the powerful political decisions being made just down the road.”

Raiatea Barlow Kameta
Master of Science in Physical Geography
Cover: PhD candidate Alberto Rovellini observes the Doubtful Sound landscape during a research study gathering information to help predict how global climate change might impact New Zealand’s Fiordland ecosystems. Image: Dr Joe Marlow

Inside cover: A group of University PhD students spent 10 days aboard the Department of Conservation (DOC) vessel Southern Winds, exploring the waters of the Fiordland (Te Moana o Atawhenua) Marine Area, including Dusky, Doubtful, and Breaksea Sounds. Using state-of-the-art underwater equipment, the group was able to focus on marine life living 40 to 150 metres deep. This trip was the first time DOC has funded a Te Herenga Waka—Victoria University of Wellington-led team to conduct fieldwork in Fiordland. Image: Dr Joe Marlow

Te Herenga Waka—Victoria University of Wellington has been awarded five stars plus overall in the QS Stars university ratings system. In addition, the University received five stars in all eight categories on which it was evaluated.

IMPORTANT NOTICE: Te Herenga Waka—Victoria University of Wellington uses all reasonable skill and care to ensure the information contained in this document is accurate at the time of being made available. However, matters covered by this document are subject to change due to a continuous process of review, and to unanticipated circumstances. The University therefore reserves the right to make any changes without notice. So far as the law permits, the University accepts no responsibility for any loss suffered by any person due to reliance (either whole or in part) on the information contained in this document, whether direct or indirect, and whether foreseeable or not.
Welcome to the Wellington Faculty of Science at Te Herenga Waka—Victoria University of Wellington. Postgraduate study is an opportunity for you to extend your undergraduate experience, become an expert in your chosen field, and take the next step in your career. It will challenge your ideas and satisfy your search for new knowledge.

The Wellington Faculty of Science is home to a large community of postgraduate students who come from all around the world. We’re also one of New Zealand’s top research institutions, and our academics are some of the most respected in the world. This commitment to research is reflected in the most recent Performance-Based Research Fund rankings, which rated the University first for research quality in New Zealand; the 2020 QS World University Rankings by Subject, which ranked Earth and Marine Sciences, Geography, Geology, and Psychology in the world’s top 100; and the awarding of the 2019 Prime Minister’s Science Prize, New Zealand’s most valuable science award, to our Antarctic Research Centre.

Postgraduate students are a key part of our research community. Carrying out work that leads to scientific breakthroughs, students regularly present at international conferences and publish in peer-reviewed international journals.

Wellington is home to the highest concentration of scientific research organisations in New Zealand. These organisations contribute to our programmes and enhance the experience we provide to our students by ensuring the content of our courses is industry relevant and at the cutting edge of knowledge, and through opportunities for research placements and future employment opportunities.

We hope you will be excited at the prospect of undertaking your postgraduate study here and being part of our mission to educate the next generation of scientists. We wish you every success in your future study.
LEADING RESEARCH

Te Herenga Waka—Victoria University of Wellington is ranked number one in New Zealand for intensity of high-quality research* and ranked in the top 2 percent of universities worldwide in the 2020 QS World Rankings.

Our students and staff engage in key research projects that often lead to scientific breakthroughs. Read about how our researchers are creating new knowledge:

- Secret lives of rats—Master’s student Henry Mackenzie with supervisor Associate Professor Stephen Hartley, page 26
- Improving mental health in rainbow communities—PhD student Gloria Fraser, page 30
- Making memories with nanotechnology—Associate Professor Ben Ruck and Dr Franck Natali, page 28.

*Performance-Based Research Fund 2019.

OUR NATURAL LABORATORY

Situated at the southernmost point of the North Island, Wellington is a beautiful city that makes the most of its natural setting. Wellington is home to conservation island Matiu/Somes Island, a gateway to the rugged beauty of the South Island, and is located on two major highways that provide easy access to North Island regions, including Egmont, Tongariro, and Whanganui National Parks. In just minutes, you can escape our compact city life to explore our varied biodiversity.
INTERNATIONAL COMMUNITY
Students come to study here from all over the world—each year, students from more than 100 different countries make up the student population, with more than 120 university partners worldwide. There are many international communities in Wellington—Chinese, Indonesian, Japanese, and Malaysian among others—that help to make international students feel at home in their new learning environment. The programmes and research within the Wellington Faculty of Science draw on examples and findings worldwide but have a special focus on New Zealand and the Asia-Pacific region.

THE BUSTLING CAPITAL LIFESTYLE
Wellington has an excellent public transport system, vibrant nightlife centred on Cuba Street and Courtenay Place, and something for everyone with great shopping, beaches, bush walks, reserves, mountain-bike trails, museums, restaurants, festivals, and live shows every night of the week. You can swim, kayak, surf, windsurf, and sail within 15 minutes’ travel from the centre of the city.

SCIENCE CAPITAL OF NEW ZEALAND
Wellington has the highest concentration of science organisations in the country.
Our location means Te Herenga Waka—Victoria University of Wellington is at the heart of scientific discovery. Our postgraduate students have opportunities for research collaboration with many organisations, including Callaghan Innovation, the Department of Conservation, GNS Science, NIWA, and Zealandia eco-sanctuary.

CAREER OPPORTUNITIES
The opportunity to make lasting connections in the science capital of New Zealand opens doors for our graduates. Our students have gone on to work in exciting careers as policy analysts, marine biologists, environmental scientists, data scientists, and much more. Many of our students also move into academia. Read more about our recent graduates:

- Kyle Clem—PhD in Physical Geography, page 27
QUALIFICATIONS AVAILABLE

To explore the available subjects in the following qualifications, see page 8.

GRADUATE CERTIFICATE
The Graduate Certificate in Science (GCertSc) is designed to help you upskill or learn a new subject and is a convenient qualification for students who wish to undertake a limited amount of study in an area of interest.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>One trimester full time or up to two years part time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITES</td>
<td>Bachelor’s degree in any discipline</td>
</tr>
</tbody>
</table>

GRADUATE DIPLOMA
The Graduate Diploma in Science (GDipSc) enables you to transition to postgraduate study in a new area, or to learn about new developments in your original discipline.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>One year full time or up to four years part time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITES</td>
<td>Bachelor’s degree in any discipline</td>
</tr>
</tbody>
</table>

POSTGRADUATE CERTIFICATES
Postgraduate certificates are designed to deepen your knowledge in an area of expertise or in a new branch of science. Many interesting courses are offered, and a research project is not required.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>Six months full time or up to two years part time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITES</td>
<td>Bachelor’s degree in a relevant subject area*</td>
</tr>
</tbody>
</table>

POSTGRADUATE DIPLOMAS
Postgraduate diplomas provide an alternative to Honours for graduates who wish to extend their subject expertise. They do not require a research project, although a project may be included in some programmes.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>One year full time or two years part time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITES</td>
<td>Bachelor’s degree in a relevant subject area*</td>
</tr>
</tbody>
</table>

*Students may also qualify for entry if they have appropriate experience, as approved by the associate dean (students).

BACHELOR’S DEGREE WITH HONOURS
An Honours degree is a one-year full-time programme of coursework. A research project is an important part of the work and provides practical training in research methods. An Honours degree can lead directly to PhD study.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>One year full time or two years part time (with permission from the head of school)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITES</td>
<td>Bachelor’s degree in a relevant subject area</td>
</tr>
</tbody>
</table>

MASTER’S BY COURSEWORK AND THESIS
In a Master’s by coursework and thesis, you’ll complete one year of coursework, followed by a 120-point thesis where you’ll work under the supervision of an academic staff member. If you already have a postgraduate diploma or an Honours degree in a relevant subject area, you may be permitted to advance to the thesis year without completing the coursework.

A Master’s by thesis is a way of advancing your understanding and skill in your undergraduate major or, in some cases, to undertake study in a new professional area. This Master’s degree is evidence of the ability to work independently, critically evaluate research, and interpret and communicate with a high level of skill.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>Two years full time or equivalent part time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITES</td>
<td>Bachelor’s degree in a relevant subject area</td>
</tr>
</tbody>
</table>

MASTER’S BY COURSEWORK
With a 180-point Master’s by coursework, you’ll gain an internationally recognised qualification in one year of full-time study, or you can study part time.

You’ll take some core courses and choose from a range of elective courses, so you can tailor your programme to your interests and career aspirations.

With small class sizes you’ll learn through seminar-style discussions with leading researchers and academics.

You’ll also have the opportunity to undertake a trimester-long research project, or practical placement, where you’ll apply what you’ve learnt.

Admission to these programmes is at the discretion of the programme coordinators.

To explore your options in the Master’s by coursework programmes, see pages 10–12.
MASTER’S BY THESIS

Develop your technical, laboratory, and academic writing skills to prepare for a career in science. The MSc by thesis will take you between 12 and 15 months to complete. You will carry out in-depth supervised research and write a thesis. During your studies you might also author publications for peer-reviewed journals.

To do an MSc by thesis you will need an Honours degree or postgraduate diploma in an appropriate field, with an average grade of B+ or higher in your subject area.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>12 to 15 months full time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITES</td>
<td>Honours degree or Postgraduate Diploma in a relevant subject area</td>
</tr>
</tbody>
</table>

DOCTOR OF PHILOSOPHY

The Doctor of Philosophy (PhD) programme requires a major piece of original research that makes a significant contribution to the knowledge or understanding of a field of study.

Although coursework does not form an integral part of a PhD, you may be required or encouraged to undertake a limited amount of coursework.

On completion, each thesis is assessed by three examiners, one of whom is from an overseas university. This assessment is followed by an oral examination.

Supervision for PhD research is available in almost all subject areas offered by the Wellington Faculty of Science.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>The PhD programme normally requires at least three years of full-time study. A PhD may also be undertaken part time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITES</td>
<td>You will need a First Class or Second Class Honours degree or a Master’s degree to apply for a PhD. However, meeting this requirement does not guarantee a place, as you also need to be accepted by the School and assigned a supervisor.</td>
</tr>
<tr>
<td>ENROLMENT</td>
<td>The Wellington Faculty of Graduate Research provides a first point of contact for all students enrolling in a PhD, including international students. Application is available online. There are three application deadlines each year—1 March, 1 July, and 1 November. For any enquiries about PhD admission and enrolment, contact pg-research@vuw.ac.nz</td>
</tr>
</tbody>
</table>

Broken line indicates pathways that are possible in some programmes.

* Some postgraduate diploma courses can lead to Master’s study.
 For details, contact the postgraduate liaison officer at postgrad-enquiries@vuw.ac.nz

** Some Bachelor’s degrees offer pathways straight into a Master’s programme.
Programme Overview

Biological Sciences

<table>
<thead>
<tr>
<th>GDipSc</th>
<th>PGCert</th>
<th>PGDip</th>
<th>HONOURS</th>
<th>Master's by Coursework</th>
<th>Master's by Thesis</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell and Molecular Bioscience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Immunology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecological Restoration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecology and Biodiversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Conservation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Microbiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical and Physical Sciences

<table>
<thead>
<tr>
<th>GDipSc</th>
<th>PGCert</th>
<th>PGDip</th>
<th>HONOURS</th>
<th>Master's by Coursework</th>
<th>Master's by Thesis</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Discovery and Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geography, Environment and Earth Sciences

<table>
<thead>
<tr>
<th>GDipSc</th>
<th>PGCert</th>
<th>PGDip</th>
<th>HONOURS</th>
<th>Master's by Coursework</th>
<th>Master's by Thesis</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Change Science and Policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographic Information Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteorology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATHEMATICS AND STATISTICS

<table>
<thead>
<tr>
<th>Course</th>
<th>GDipSc</th>
<th>PGCert</th>
<th>PGDip</th>
<th>HONOURS</th>
<th>MASTER’S BY COURSEWORK</th>
<th>MASTER’S BY THESIS</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLIED STATISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA SCIENCE</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATHEMATICS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATISTICS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOCHASTIC PROCESSES IN FINANCE AND INSURANCE</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSYCHOLOGY

<table>
<thead>
<tr>
<th>Course</th>
<th>GDipSc</th>
<th>PGCert</th>
<th>PGDip</th>
<th>HONOURS</th>
<th>MASTER’S BY COURSEWORK</th>
<th>MASTER’S BY THESIS</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLINICAL PSYCHOLOGY</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGNITIVE AND BEHAVIOURAL NEUROSCIENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROSS-CULTURAL PSYCHOLOGY</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORENSIC PSYCHOLOGY</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYCHOLOGY</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCIENCE IN SOCIETY

<table>
<thead>
<tr>
<th>Course</th>
<th>GDipSc</th>
<th>PGCert</th>
<th>PGDip</th>
<th>HONOURS</th>
<th>MASTER’S BY COURSEWORK</th>
<th>MASTER’S BY THESIS</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCE COMMUNICATION</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCE IN SOCIETY</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENGINEERING AND COMPUTER SCIENCE*

<table>
<thead>
<tr>
<th>Course</th>
<th>GDipSc</th>
<th>PGCert</th>
<th>PGDip</th>
<th>HONOURS</th>
<th>MASTER’S BY COURSEWORK</th>
<th>MASTER’S BY THESIS</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTIFICIAL INTELLIGENCE</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTER GRAPHICS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTER SCIENCE</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRONIC AND COMPUTER SYSTEMS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*See 2021 Wellington Faculty of Engineering Postgraduate Handbook for more information or visit www.wgtn.ac.nz/engineering
Stand out, get ahead, or change career with a 180-point Master’s degree from the Wellington Faculty of Science. Each degree focuses on a distinct area within its field and allows you to gain an internationally recognised Master’s qualification in just one year of full-time study. Part-time study is also available.

BIOTECHNOLOGY
Every year, millions of people are affected by disease and health conditions for which there are no treatments. Learn alongside world-leading experts to understand how immunology can be leveraged to keep us healthy, or how to identify and develop drugs and vaccines for untreated medical conditions. Study in this area will put you at the forefront of the global health industry.

Master of Clinical Immunology
Clinical immunology sits at the centre of all aspects of human health and is one of the most exciting and active areas of biological discovery. This Master’s will equip you with the skills required to assess, analyse, and undertake clinical research in immunology. You will be trained in clinical trial design, biostatistics, and advanced immunological theory and techniques. In addition to coursework, you will have the opportunity to do a research project or take part in work experience in clinical research.

We have close ties to the Malaghan Institute of Medical Research, the Medical Research Institute of New Zealand, Wellington Regional Hospital, and the Wellington School of Medicine, University of Otago. Clinicians and researchers from these organisations contribute to this programme by delivering lectures, sharing their expertise, and leading research.

To apply for this programme, you’ll need a Biomedical Science degree majoring in Molecular Pathology or an equivalent qualification.

www.wgtn.ac.nz/master-clinical-immunology

Master of Drug Discovery and Development
Drug discovery and development operates at the interface of chemistry and biology. As we learn more about diseases and how they work, we can use this knowledge to develop therapies for prevention and cure. Discover the research processes used to identify drug targets, develop new therapeutics, and help improve human or animal health through creating new or more effective drugs and medicines. You will also learn about protecting intellectual property, assessing the financial viability of drugs, and the pre-clinical and clinical trial processes.

This Master’s-level programme is taught by the Ferrier Research Institute, which has an established track record of bringing new drugs to market, the School of Chemical and Physical Sciences, the Centre for Biodiscovery, and the School of Biological Science. The expertise of the researchers in these groups is highly sought after by companies around the world to overcome difficult synthetic and analytical problems.

To apply for this programme, you’ll need an undergraduate degree in a relevant subject area with an average grade of B+ or higher.

www.wgtn.ac.nz/master-drug-discovery

CLIMATE AND THE ENVIRONMENT
The impact of climate change and environmental degradation are two of the most pressing challenges we face. Gain the skills you need to become a leader in protecting the natural world. With headlines dominated by stories of polluted oceans, rising sea levels, and biodiversity loss, the time to act is now.

Master of Climate Change Science and Policy
See page 12.

Master of Conservation Biology
With 13 national parks, a diverse dramatic coastline, and breath-taking native bush, New Zealand’s natural living space is a biological scientist’s dream. Study Conservation Biology to make a valuable contribution to the preservation of native species in their natural environments in New Zealand and abroad.

In this programme, you’ll take three core courses, including a three-week field course to key conservation sites throughout New Zealand, and choose further relevant electives that suit your interests. You’ll learn from internationally respected scientists whose work informs the management of New Zealand’s unique biota and conservation.

You’ll need an undergraduate degree in a relevant subject area, or to be accepted by the programme coordinator.

www.wgtn.ac.nz/conservation-biology
Master of Environmental Science

Environmental science is about how humans connect with, and change, the natural environment and is taught through a range of scientific disciplines such as biology, chemistry, geography, mathematics, and physics.

Wellington is the ideal place for students to see how environmental science ranges from the field to policymaking. The region has active city and regional councils as well as the Zealandia eco-sanctuary, GNS Science, and NIWA, all of which are involved in the programme.

You’ll need an undergraduate degree in Biology, Chemistry, Earth Sciences, Environmental Science, Mathematics, Physical Geography, or Physics with a B average.

www.wgtn.ac.nz/master-environmental-science

Master of Marine Conservation

With the increasing pressures on the marine environment, experts in the conservation and management of marine organisms and ecosystems are in demand.

In this programme, you’ll examine marine conservation issues and practices using examples from New Zealand, Australia, the South Pacific, and the wider Indo–Pacific region. Two of the three core courses are field-based, and you’ll visit several world-renowned marine conservation sites in New Zealand and overseas.

You’ll be prepared for a career in a range of marine conservation areas worldwide, including the conservation and management of marine organisms and ecosystems.

To apply for this programme, you’ll need an undergraduate degree in a relevant subject area with a B+ average.

www.wgtn.ac.nz/master-marine-conservation

Master of Meteorology

Be part of New Zealand’s only Master’s degree in Meteorology and become an expert in studying and predicting weather and climate, and the relationship they have with other environmental processes and humanity.

The programme is recognised throughout the world and complies with the World Meteorological Organization standards. It is taught in partnership with New Zealand’s official weather forecaster, MetService, which will provide you with practical work experience. This practical work is formally recognised as part of the qualification, preparing you for a role in industry.

To apply for this programme, you will need an undergraduate degree in Mathematics or Physics—other majors will be considered providing you have completed relevant maths and physics courses during your undergraduate degree.

www.wgtn.ac.nz/master-meteorology
DATA AND STATISTICS
Learn how to leverage data to solve problems, uncover insights, and inform decision-making. Our programmes focus on real-world applications, giving you a mix of theoretical and practical skills ideal for starting your career.

Master of Applied Statistics
Statisticians are in demand. The huge variety and quantity of data generated today means more people are needed who can analyse and make sense of it.

This programme is designed to train you in a range of advanced techniques and to provide you with an appreciation of the variety of work undertaken by professional statisticians and consultants. It is made up of both coursework and practical training, allowing you to develop skills in research and consultancy. You’ll then apply these skills in a work placement in a relevant government department or business.

For this programme, you’ll need an undergraduate degree in a relevant subject area with a B+ average.

www.wgtn.ac.nz/applied-statistics

Master of Geographic Information Science
Geographic information science (GIS) relates to the concepts behind the creation and use of computer-based systems that allow you to explore, store, manipulate, analyse, and visualise data with a spatial or geographic component. These skills are in high demand.

In this programme, you’ll learn to harness data to enable a better understanding of what happens on Earth for both the physical environment and human populations. Postgraduate certificate and diploma options are also available.

Wellington is a key employment market for GIS professionals, and we have close ties to government agencies at both central and local levels, Crown research institutes, and private companies.

You’ll need an undergraduate degree with a B average and two undergraduate GIS courses or extensive relevant industry experience.

www.wgtn.ac.nz/master-geographical-information-science

POLICY AND ENGAGEMENT
Science is an important part of our society, and scientific knowledge belongs outside the lab. Policy and decision-making informed by science and a scientifically literate population are vital if we are going to successfully address the challenges we face.

Master of Climate Change Science and Policy
Globally, we are already seeing some of the consequences of climate change.

How we go about reducing our emissions and how we adapt to changes that have already happened require scientists and policymakers with a broad understanding of both the physical science and human systems that are involved.

This programme will give you the necessary combination of policy and science knowledge to address the real-world problems of climate change. It is taught by world-renowned experts in climate change, and we have close relationships with government bodies, research institutes, and other key agencies in Wellington and in New Zealand.

To apply for this programme, you’ll need an undergraduate degree with a B average (or equivalent) or extensive and relevant practical, professional, or scholarly experience.

www.wgtn.ac.nz/master-climate-change-science-policy

Master of Communication
Science Communication Specialisation
As part of the Master of Communication programme, you can choose to focus on science communication. If you specialise in this area, you’ll be provided with an introduction to the theory and practice of science communication, and develop skills and outputs related to specific areas of scientific research or societal concern. It also explores the connections between science, the arts, and humanities in the contemporary world.

To apply for this programme, you’ll need a Bachelor’s degree with at least a B average (or equivalent) in a relevant subject.

www.wgtn.ac.nz/mc

Master of Science in Society
This programme is perfect for those with science qualifications or relevant expertise who are interested in developing skills or careers in public engagement around scientific issues, science policy or advocacy, or research in the social aspects of scientific knowledge.

Taught by award-winning teachers, researchers, and practitioners, you’ll develop critical thinking and communication skills. You’ll look at the theory and practice of science communication, gain an understanding of contemporary scientific issues in their social context, and explore perspectives on science from across different cultures and disciplines.

To apply for this programme, you’ll need an undergraduate degree with a B+ average (or equivalent) or extensive and relevant practical, professional, or scholarly experience.

www.wgtn.ac.nz/master-of-science-in-society
NEW IN 2021

POSTGRADUATE DATA SCIENCE

Expand your expertise by studying postgraduate data science and apply a fusion of mathematics, computer science, statistics, artificial intelligence, and machine learning to solve real-world problems.

Fifteen years ago, the role of data scientist was unheard of. Today, it’s an established role in business and government departments around the world. The nature of the role is constantly shifting as data sources, software tools, and techniques change. Equip yourself with the skills and knowledge to move and adapt to these changes.

Our graduates will leave with an advanced understanding of techniques in data science, including machine learning and statistical methods, and their uses in the world of big data. They will be able to critically analyse the data requirements and sources relevant in a variety of areas of application from the sciences, humanities, social sciences, business, or government.

QUALIFICATIONS AVAILABLE

- Bachelor of Science with Honours
- Postgraduate Certificate in Science
- Postgraduate Diploma in Science
- Master of Data Science
- Master of Science

ENTRY REQUIREMENTS

To be accepted into this programme, you’ll need a Bachelor’s degree with a major in Data Science, Computer Science, or Statistics with an average grade of B+.

“Data scientists are finding homes in all kinds of organisations as the realisation grows that the ability to analyse data is a very important skill.”

Richard Arnold
Programme Director, Data Science

www.wgtn.ac.nz/master-data-science
BIOLOGICAL SCIENCES

Biology is studied in two main areas: Ecology and Marine Biology, and Cell and Molecular Bioscience. Our topics include biotechnology, cell biology, conservation biology, drug discovery and development, ecological restoration, marine biology, and microbiology.

OUR STRENGTHS
Te Herenga Waka—Victoria University of Wellington ranked in the top three universities nationally for Ecology, Evolution and Behaviour, and Molecular, Cellular and Whole Organism Biology in the most recent Performance-Based Research Fund quality evaluation. Our academics are considered some of the best researchers in New Zealand. As a postgraduate in our School, you will have the chance to work on problems as diverse as discovering novel treatments for multiple sclerosis, battling kauri dieback disease, and mitigating the effects of climate change on coral reefs.

RESEARCH LINKS
We have close ties to the Biological Heritage National Science Challenge, Capital and Coast District Health Board, Cawthron Institute, Department of Conservation, Ferrier Research Institute, Malaghan Institute of Medical Research, Maurice Wilkins Centre of Research Excellence, Zealandia, and NIWA.

OUR STUDY ENVIRONMENT
Our award-winning science building, Te Toki a Rata, has state-of-the-art research and teaching laboratories and equipment covering a range of biological disciplines, and our coastal ecology lab, overlooking the Taputeranga Marine Reserve, is purpose-built with two seagoing research vessels and two wet-lab facilities.

An interdisciplinary approach is celebrated within the School. We often conduct research at the intersections of biology and chemistry, psychology, or earth sciences.
YOUR STUDY OPTIONS
If you are interested in a one-year postgraduate programme, consider a Master’s by coursework in Clinical Immunology, Conservation Biology, Drug Discovery and Development, or Marine Conservation. Find out more on pages 10–12.
Alternatively, if you want to complete a research thesis, or pursue another area of biology, check out your options in the postgraduate diploma, Honours, Master’s by thesis, and Doctoral programmes on pages 8–9.

PROGRAMME COORDINATORS
If you have a question or are interested in one of our programmes, contact biosci@vuw.ac.nz or the appropriate coordinator.

<table>
<thead>
<tr>
<th>Programmes</th>
<th>Coordinators</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY</td>
<td>Professor Ken Ryan</td>
</tr>
<tr>
<td></td>
<td>ken.ryan@vuw.ac.nz</td>
</tr>
<tr>
<td>BIOMEDICAL SCIENCE</td>
<td>Associate Professor Peter Pfeffer</td>
</tr>
<tr>
<td></td>
<td>peter.pfeffer@vuw.ac.nz</td>
</tr>
<tr>
<td>BIOTECHNOLOGY</td>
<td>Professor David Ackerley</td>
</tr>
<tr>
<td></td>
<td>david.ackerley@vuw.ac.nz</td>
</tr>
<tr>
<td>CELL AND MOLECULAR BIOSCIENCE</td>
<td>Associate Professor Peter Pfeffer</td>
</tr>
<tr>
<td></td>
<td>peter.pfeffer@vuw.ac.nz</td>
</tr>
<tr>
<td>CLINICAL IMMUNOLOGY</td>
<td>Professor Anne La Flamme</td>
</tr>
<tr>
<td></td>
<td>anne.laflamme@vuw.ac.nz</td>
</tr>
<tr>
<td>CLINICAL RESEARCH</td>
<td>Professor Elaine Dennison</td>
</tr>
<tr>
<td></td>
<td>elaine.dennison@vuw.ac.nz</td>
</tr>
<tr>
<td>CONSERVATION BIOLOGY</td>
<td>Professor Nicola Nelson</td>
</tr>
<tr>
<td></td>
<td>nicola.nelson@vuw.ac.nz</td>
</tr>
<tr>
<td>DRUG DISCOVERY AND DEVELOPMENT</td>
<td>Associate Professor Simon Hinkley</td>
</tr>
<tr>
<td></td>
<td>simon.hinkley@vuw.ac.nz</td>
</tr>
<tr>
<td>ECOLOGICAL RESTORATION</td>
<td>Dr Julie Deslippe</td>
</tr>
<tr>
<td></td>
<td>julie.deslippe@vuw.ac.nz</td>
</tr>
<tr>
<td>ECOLOGY AND BIODIVERSITY</td>
<td>Professor Ken Ryan</td>
</tr>
<tr>
<td></td>
<td>ken.ryan@vuw.ac.nz</td>
</tr>
<tr>
<td>MARINE BIOLOGY</td>
<td>Professor James Bell</td>
</tr>
<tr>
<td></td>
<td>james.bell@vuw.ac.nz</td>
</tr>
<tr>
<td>MARINE CONSERVATION</td>
<td>Professor James Bell</td>
</tr>
<tr>
<td></td>
<td>james.bell@vuw.ac.nz</td>
</tr>
<tr>
<td>MOLECULAR MICROBIOLOGY</td>
<td>Dr Joanna Mackichan</td>
</tr>
<tr>
<td></td>
<td>joanna.mackichan@vuw.ac.nz</td>
</tr>
</tbody>
</table>

CAREER OPPORTUNITIES
Our graduates work in biosecurity, biotechnological innovation, environmental consultancy and monitoring, field ecology, genetic counselling, immunology, laboratory management, marine biology, policy analysis, research science, teaching, and much more.

RESEARCH CENTRES
Centre for Biodiscovery
Research in the Centre for Biodiscovery sits at the intersection of biology and chemistry, and at the interface of molecular science and mātauranga Māori.
Members of the Centre are affiliated with the School of Biological Sciences, the School of Chemical and Physical Sciences, the Ferrier Research Institute, and the Malaghan Institute of Medical Research. Our major strengths are natural products chemistry, vaccine design, protein engineering and directed evolution, synthetic biology, and mātauranga-guided biodiscovery.

Centre for Biodiversity and Restoration Ecology
Research in the Centre for Biodiversity and Restoration Ecology explores a range of topics under the areas of reservation, restoration, and reconciliation ecology. Our specialist topics include mammalian pest management, invasive plant and insect species, ecology, translocation, and meta-population management and monitoring.
The Centre works in collaboration with local, city, and regional government, and non-governmental agencies, including Zealandia.

Career Opportunities
Our graduates work in biosecurity, biotechnological innovation, environmental consultancy and monitoring, field ecology, genetic counselling, immunology, laboratory management, marine biology, policy analysis, research science, teaching, and much more.
Physics and chemistry are the disciplines that form the basis of our technological society. If your intellectually curious and innovative mind is seeking challenge and inspiration, join us at the cutting edge of science in New Zealand.

OUR STRENGTHS
The calibre of scientists in the School attracts significant external and internal funding.

Our alumni and faculty members are often awarded prestigious national and international science awards. Notably, in 2000, alumnus Professor Alan MacDiarmid was awarded the Nobel Prize in Chemistry.

RESEARCH LINKS
The School interacts closely with the nation’s leading research institutes such as Callaghan Innovation, Ferrier Research Institute, GNS Science, NIWA, and the Robinson Research Institute.

In addition, we have excellent links with the School of Biological Sciences, the Centre for Biodiscovery, and the Malaghan Institute of Medical Research, with joint programmes in the discovery and evaluation of new bioactive compounds for the treatment of disease.

OUR STUDY ENVIRONMENT
You’ll have access to state-of-the-art research equipment, including nuclear magnetic-resonance and Raman spectrometers, X-ray-diffraction and ultra-fast laser facilities, an electron microscope suite, and a clean-room facility.

Our postgraduate student workshop series is a popular ongoing event and will allow you to better your communication and research skills.
An interdisciplinary approach is celebrated within the School. We often conduct research at the intersections of biology and chemistry, psychology, or earth sciences.

YOUR STUDY OPTIONS
The nature of our disciplines provides a learning environment in which chemists and physicists enable each other to find solutions to things that matter. You might look at renewable energy, marine natural products, astrophysics, or computational modelling.

Alternatively, if you are passionate about the intersection of biology and chemistry, then consider the Master of Drug Discovery and Development. Find out more on page 10.

PROGRAMME COORDINATORS
Contact a programme coordinator to discuss your potential research projects or study options.

Chemistry

<table>
<thead>
<tr>
<th>HONOURS</th>
<th>Associate Professor Joanne Harvey joanne.harvey@vuw.ac.nz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER'S AND PhD</td>
<td>Associate Professor Mattie Timmer mattie.timmer@vuw.ac.nz</td>
</tr>
</tbody>
</table>

Drug Discovery and Development

| PGCert, PGDip, AND MASTER'S | Dr Simon Hinkley simon.hinkley@vuw.ac.nz |

Physics

<table>
<thead>
<tr>
<th>HONOURS</th>
<th>Professor Michele Governale michele.governale@vuw.ac.nz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER'S AND PhD</td>
<td>Professor Uli Zuelicke uli.zuelicke@vuw.ac.nz</td>
</tr>
</tbody>
</table>

CAREER OPPORTUNITIES
Your chemistry skills will be in demand in industries ranging from food and wine production to cosmetics companies and Crown research institutes. Our graduates are employed in analytics and production monitoring, biotechnology, the energy sector, environmental protection, government departments, and pharmaceutical industries.

The principles of physics are essential in many applied disciplines and, with a postgraduate degree, you’ll have a diverse range of career options, from fundamental physics research to analyst and consultant roles. Our graduates work for technology companies, government laboratories, hospitals, traffic and aviation engineering, and in related fields such as environmental and earth science.

RESEARCH CONNECTIONS
Centre for Biodiscovery
Find out more on page 15.

Ferrier Research Institute
The Ferrier Research Institute consists of a team of internationally recognised carbohydrate chemistry experts and analysts working to bring better drugs, materials, and technology to the world. Their work includes a broad range of applied research projects and commercial work for clients.

MacDiarmid Institute for Advanced Materials and Nanotechnology
The MacDiarmid Institute for Advanced Materials and Nanotechnology is a national network of leading scientists who create high-tech solutions to problems such as climate change.

The Institute creates materials and devices from atoms and molecules through developing and applying cutting-edge techniques in physics, chemistry, and engineering.

Robinson Research Institute
The multidisciplinary Robinson Research Institute melds innovative engineering and applied physics to build advanced technologies for businesses worldwide. Master's and PhD students can apply to study with the Robinson Research Institute.
To become an expert in your field, you must consider multiple disciplinary takes on a subject. The School covers the spectrum of earth and environmental studies from fundamental sciences to present-day processes and issues, and the impact these have on people. We are one of New Zealand’s leading voices in the race to understand and address climate change and environmental hazards such as earthquakes and volcanoes.

OUR STRENGTHS
Earth Sciences at Te Herenga Waka—Victoria University of Wellington was ranked first among New Zealand universities for research quality in the most recent Performance-Based Research Fund quality evaluation.

Earth and Marine Sciences, Geography, and Geology at the University were all ranked in the top 100 in the most recent QS rankings.

In 2017, our collaboration with GNS Science was ranked ninth worldwide in the prestigious annual Nature Index.

RESEARCH LINKS
The School has strong, longstanding links with key national science organisations such as GNS Science, MetService, and NIWA, and with governmental and non-governmental organisations, including the Ministry for the Environment, the Ministry of Foreign Affairs and Trade, NZAID, and the Earthquake Commission.
OUR STUDY ENVIRONMENT

We are situated within easy access of the volcanic plateau to the north, glaciated landscapes to the south, and many other unique geological and geographic features throughout New Zealand. Your research could even take you across the globe, to the Pacific, Latin America, Antarctica, and beyond.

The School has state-of-the-art laboratories and facilities and you’ll experience first-hand a fascinating range of urban, rural, and remote environments through field work, which is at the core of our teaching.

Our students often have two supervisors, one from the University and another from an external science organisation. These relationships provide opportunities to work on large-scale projects.

YOUR STUDY OPTIONS

If you are interested in a one-year postgraduate programme, consider a Master’s by coursework in Climate Change Science and Policy, Environmental Science, Geographic Information Science, or Meteorology. Find out more on pages 10–11.

Alternatively, if you want to complete a research thesis, or pursue another area in the School, check out your options in the postgraduate diploma, Honours, Master’s by thesis, and Doctoral programmes on pages 8–9.

PROGRAMME COORDINATORS

Contact a programme coordinator to discuss your potential research projects or study options.

<table>
<thead>
<tr>
<th>Programme</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Change Science and Policy</td>
<td>Dr Alex Lo</td>
</tr>
<tr>
<td></td>
<td>alex.lo@vuw.ac.nz</td>
</tr>
<tr>
<td>Development Studies</td>
<td>Professor John Overton</td>
</tr>
<tr>
<td></td>
<td>john.overton@vuw.ac.nz</td>
</tr>
<tr>
<td>Earth Sciences*</td>
<td>Professor Colin Wilson</td>
</tr>
<tr>
<td></td>
<td>colin.wilson@vuw.ac.nz</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>Dr Lynda Petherick</td>
</tr>
<tr>
<td></td>
<td>lynda.petherick@vuw.ac.nz</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>Associate Professor Ralph Chapman</td>
</tr>
<tr>
<td></td>
<td>ralph.chapman@vuw.ac.nz</td>
</tr>
<tr>
<td>Geographic Information Science</td>
<td>Professor David O’Sullivan</td>
</tr>
<tr>
<td></td>
<td>david.osullivan@vuw.ac.nz</td>
</tr>
<tr>
<td>Geography</td>
<td>Associate Professor Sara Kindon</td>
</tr>
<tr>
<td></td>
<td>sara.kindon@vuw.ac.nz</td>
</tr>
<tr>
<td>Physical Geography</td>
<td>Associate Professor Bethanna Jackson</td>
</tr>
<tr>
<td></td>
<td>bethanna.jackson@vuw.ac.nz</td>
</tr>
</tbody>
</table>

*Geology, Geophysics, and Meteorology

CAREER OPPORTUNITIES

Our graduates work in a wide range of roles that have a focus on the environment or society using the skills they have learned. Students with a focus on human geography may work as community liaison officers, volunteer coordinators, development officers, refugee support coordinators, immigration advisers, logistics coordinators, emergency management officers, or programme coordinators.

Physical geography students may work in these areas as well as in more scientific, technical, or analytical focused roles such as environmental specialists, cartographers, supply chain analysts, compliance officers, land advisers, resource consent planners, transport analysts, urban planners, or modelling or statistical analysts.

RESEARCH CENTRES

Antarctic Research Centre

The Antarctic Research Centre seeks to improve understanding of Antarctic climate history and processes and their influence on the global climate system. This field provides exciting opportunities and challenges for postgraduate researchers, and they will gain insight that is the basis for international debate and policy development on global climate change issues.

Our recent research has had a particular focus on paleoclimate reconstructions, glaciology, and glacier and climate modelling.

Institute of Geophysics

The Institute of Geophysics coordinates research in geophysics, meteorology, and tectonics, including studies of earthquakes and earth structure, within the School of Geography, Environment and Earth Sciences, and in collaboration with other schools within the Wellington Faculty of Science.

New Zealand Climate Change Research Institute

The New Zealand Climate Change Research Institute develops interdisciplinary climate change research, with emphasis on work that spans the natural and social sciences. Our aim is to produce high-quality and decision-relevant climate change research for private and public sector decision makers. To do this, we draw on the skills and experience of our staff and postgraduate students to produce leading collaborative research that is relevant to policymakers.
Mathematics is renowned for its precision, subtlety, and beauty, while at the same time providing the powerful tools that underpin technological advances in the physical and life sciences, engineering, computing, and the social sciences.

OUR STRENGTHS

We have leading international and early-career researchers who are forging new directions in a range of theoretical and applied disciplines.

We ranked in the top three universities nationally in Pure and Applied Mathematics in the most recent Performance-Based Research Fund quality evaluation.

RESEARCH LINKS

We have active partnerships with a range of government, business, and public and private research organisations, including Accident Compensation Corporation, Contact Energy, Department of Conservation, Ministry of Business, Innovation and Employment, Ministry of Health, NIWA, GNS Science, and Statistics New Zealand.

OUR STUDY ENVIRONMENT

A degree in Mathematics or Statistics will help you develop skills in finding patterns, drawing conclusions, dealing with abstract concepts, analysing large quantities of data, and approaching problems in an analytical and rigorous way.

You might research the sustainability of fisheries, the analysis of native birdsong, fundamental advances in the theory of computation, the structure of matroids, or high-dimensional statistical analysis.

Our approachable staff undertake research at an international level. When you study with us, you’ll experience a collegial learning environment.
YOUR STUDY OPTIONS
In the Master of Applied Statistics, you’ll develop skills in research and consultancy and then apply these skills in a practical work placement with a relevant government department or business. Find out more about this programme on page 12.

If you choose to take a Master of Science or PhD, you’ll undertake research on academic or externally funded projects with our academic supervisors. While your thesis topic might be linked to broader academic research, these topics are flexible with room for you to set your own course.

PROGRAMME COORDINATORS
Contact a programme coordinator to discuss your potential research projects or study options.

| APPLIED STATISTICS | Dr Yuichi Hirose
yuichi.hirose@vuw.ac.nz
Associate Professor Ivy Liu
ivy.liu@vuw.ac.nz |
|--------------------------|-------------------|
| DATA SCIENCE | Professor Richard Arnold
richard.arnold@vuw.ac.nz |
| MATHEMATICS | Professor Noam Greenberg
noam.greenberg@vuw.ac.nz
Professor Astrid An Huef
astrid.anhuef@vuw.ac.nz |
| STATISTICS | Dr Nokuthaba Sibanda
nokuthaba.sibanda@vuw.ac.nz |
| STOCHASTIC PROCESSES IN FINANCE AND INSURANCE | Dr Yuichi Hirose
yuichi.hirose@vuw.ac.nz |

RESEARCH
The demand from industry for applicants with postgraduate qualifications in statistics, data science, and applied mathematics is high. Our researchers and thesis supervisors are highly knowledgeable across a range of mathematics and statistics disciplines and areas including applied mathematics, data science, geometry and analysis, logic and algebra, and probability and statistics.

CAREER OPPORTUNITIES
There is a growing demand for mathematical and statistical expertise due to the increasing volume of data worldwide, and an appreciation of how this can inform better decision-making. Graduates with degrees in Mathematics and Statistics are recognised as earning the third-best salaries in the United Kingdom, according to a recent study by QS Digital Solutions, and mathematics-related occupations have been ranked among the top 10 careers over several years in an annual survey run by the United States company CareerCast.

The scope for careers in mathematics and statistics is constantly expanding as new research and ideas are discovered.

Our recent graduates work in research, analysis, policy and management in education, finance, government, IT, and science sectors. More specifically, graduates have taken on roles as actuaries, meteorologists, risk analysts, and statisticians, in computer-generated imagery development, fisheries management, digital games, and a range of creative and research organisations.
The human mind presents some of science’s greatest challenges, and an understanding of behaviour is the key to solving some of humanity’s most pressing problems. As a postgraduate student in Psychology, you will have the opportunity to deepen your understanding of the human condition and collaborate with active scholars across all fields of psychology.

OUR STRENGTHS
Psychology at the University was ranked in the top 100 in the most recent QS rankings.
We offer a range of Psychology programmes, including New Zealand’s only programme in forensic psychology and one of the only programmes in cross-cultural psychology worldwide.

RESEARCH LINKS
We have links with Capital and Coast District Health Board, the Department of Conservation, the Department of Corrections, Ministry of Justice, Oranga Tamariki, and the New Zealand Police, among others.

OUR STUDY ENVIRONMENT
We address a range of questions about human behaviour. You might look at why only some drug users develop addiction, why some people are violent and how we can prevent this, how we can treat, and prevent, depression, how culture influences business negotiations, or how to change human attitudes to climate change.
We have state-of-the-art laboratories with eye-tracking equipment, a brain stimulation lab, an EEG-recording suite, and an infant observation lab.
YOUR STUDY OPTIONS
If you want to independently design your own programme and explore several areas of psychology, then consider a postgraduate degree in Psychology. Alternatively, if you are interested in one specific area of psychology, you might choose to undertake one of our specialised degrees.

Clinical Psychology
Clinical psychology involves the assessment, understanding, and treatment of psychological disorders. The School offers the highly regarded Postgraduate Diploma in Clinical Psychology that is studied alongside a research degree. Students will graduate as qualified clinical psychologists.

Cognitive and Behavioural Neuroscience
Cognitive and behavioural neuroscientists study neural mechanisms that determine how we think, feel, and act. The postgraduate programme provides students with a strong foundation in relevant theory, and the opportunity to conduct research in animal and human participants using a range of technologies.

Cross-cultural Psychology
Cross-cultural psychology is the study of the relationship between culture and human behaviour. Our programme assists students to develop the skills needed to critically assess and engage in research that spans indigenous, culture-specific, and culture-general perspectives.

Forensic Psychology
Forensic psychology is the study of human behaviour applied to the legal and criminal justice system. The postgraduate programme aims to equip students with a sound understanding of antisocial and offending behaviour and its effects on victims, and the necessary skills to produce and apply psychological evidence to a variety of legal and criminal justice issues.

RESEARCH CENTRES
Centre for Applied Cross-Cultural Research
The Centre links cross-cultural and social scientists who are interested in culture, including disciplines such as cultural anthropology, developmental studies, international business, linguistics, and sociology. The Centre has links to community groups, government, and international associations.

Psychology Clinic
Our Psychology Clinic provides a training-based facility for the School’s Clinical Psychology programme. It offers a range of psychological services to members of the public who work with trainees in the programme and their supervisors.

PROGRAMME COORDINATORS
If you have further questions, contact the relevant programme coordinator to discuss your research plans.

| CLINICAL PSYCHOLOGY | Professor Karen Salmon
karen.salmon@vuw.ac.nz
Helen Lloyd, programme administrator
helen.lloyd@vuw.ac.nz |
|---------------------|-----------------------|
| COGNITIVE AND BEHAVIOURAL PSYCHOLOGY | Dr Tirta Susilo
tirta.susilo@vuw.ac.nz |
| CROSS-CULTURAL PSYCHOLOGY | Dr Rita McNamara
rita.mcnamara@vuw.ac.nz |
| FORENSIC PSYCHOLOGY | Associate Professor Louise Dixon
louise.dixon@vuw.ac.nz |
| PSYCHOLOGY (HONOURS AND GRADUATE DIPLOMA) | Professor Lou Moses,
head of school
psychology@vuw.ac.nz |
| PSYCHOLOGY (MASTER’S AND PhD) | Dr Matt Crawford
matt.crawford@vuw.ac.nz |

CAREER OPPORTUNITIES
Graduates from our postgraduate programmes have skills suited to a range of careers. The value of research-based degrees is growing in industry and government positions, as is the need for graduates who can measure, analyse, and change human behaviour.

Our graduates work in research roles, counselling and therapy, education, government policy, healthcare, human resources, information technology, law, police, and corrections and social services.
Many of the most pressing issues facing society today—including climate change, loss of biodiversity, and how to respond to new technologies—cannot be solved using scientific methods alone. The Centre for Science in Society looks at the relationships between science, technology, environment, and society and explores the way we think and talk about science.

OUR STRENGTHS

The Centre is a leader in the field of science communication, public engagement with science, and the interconnections between the natural and social sciences, the humanities, and the arts.

Our research looks at science in its wider social context and investigates contemporary and historical issues in science, technology, and the environment.

We offer the only qualifications in Science in Society in New Zealand.

RESEARCH LINKS

We have strong and active connections with a range of practitioners and institutions, including the Science Communicators Association of New Zealand, the Science Media Centre, and Te Pūnaha Matatini, which facilitate placements and funding.

OUR STUDY ENVIRONMENT

You’ll be taught and supervised by award-winning teachers, researchers, and practitioners.

Wellington is the centre of media, government, and policymaking in New Zealand, and has thriving scientific and cultural communities, making it an ideal city in which to learn about science in society.
YOUR STUDY OPTIONS
If you would like to develop practical skills in communication and critical thinking and develop a broader understanding of science in its social context, then the one-year Master of Science in Society might be for you. Find out more about this programme on page 12.

If you want to focus more closely on communication, you might be interested in the science communication specialisation in the Master of Communication. Find out more about this programme on page 12.

Alternatively, if you’re interested in the intersection between science and society and would like to explore this from a practical, creative, and academic perspective, then consider a Master of Science or a PhD at the Centre for Science in Society.

CAREER OPPORTUNITIES
You might work as a policy analyst, researcher, or science communicator at a government agency, a non-governmental organisation, or a Crown research institute such as GNS Science or NIWA.

Alternatively, you might use your knowledge of scientific concepts and processes to support your career in areas such as journalism, communications, and public relations. We also offer further research study for those interested in an academic career in Science in Society.
SECRET LIVES OF RATS

Most of us would go out of our way to avoid rats, but Master’s student Henry Mackenzie is closely tracking urban rats as they move around Wellington. “Rats are a particularly damaging invasive species in New Zealand,” Henry says. “Understanding them better, including how they move through an urban environment and what their habitat preferences are, will give insight into how to more effectively eradicate them and protect native flora and fauna, especially as there’s currently very little known about the ecology of urban ship rats.”

Henry and his supervisor, Associate Professor Stephen Hartley from the School of Biological Sciences, along with vet Craig Pritchard from Wellington Zoo, spent three months trapping rats in the suburbs of Brooklyn, Roseneath, and Kelburn.

“We’ve been safely trapping a number of rats in these areas and attaching radio tracking collars to the rats,” Henry says. “While attaching the collar, we also record data such as sex, body and tail length, species, and weight. We then release the rat at the site where they were trapped, and I then go out at different times during the day and night and attempt to triangulate their location using a directional antenna.

“We’ve noticed that the ship rats we’re tracking are using multiple nesting sites,” Henry says. “Most movements have been within 20–30 metres, although we have seen one home range of at least 80 metres across. We’ve also noticed that most rats have overlapping home ranges.”

The record Henry has created of this rat behaviour will be useful for predator management strategies—understanding how and where rats move, as well as identifying areas where rats are concentrating and the differences between ship rats and Norway rats, will all help create more effective methods of predator eradication to protect native flora and fauna. Henry’s project is building on a nationwide study called People, Cities, and Nature, which is carrying out research to assist with ecological urban restoration.

“Predator Free Wellington is currently in the process of eradicating all rats, weasels, and stoats from the Miramar Peninsula,” Henry says. “If this is successful, it plans to roll its strategy out over the rest of Wellington. The information I’m collecting will help Predator Free Wellington and organisations in other cities fine-tune their methods, especially when it comes to distributing rat traps and bait stations.”
After completing a Master’s degree in Geography at Ohio University, Kyle Clem wanted to improve his understanding of Southern Hemisphere atmospheric circulation and its connection to Antarctic climate change. He made the decision to move to New Zealand and begin a PhD at Te Herenga Waka—Victoria University of Wellington, where research in the earth sciences and physical geography are world renowned.

“My research focused on understanding how changes in sea surface temperature and precipitation patterns in the tropics, such as those associated with El Niño, were connected to Antarctic climate trends.”

The results of the research showed that different regions and timescales of tropical variability affected different aspects of the Southern Hemisphere atmospheric circulation and Antarctic climate.

During his time as a PhD student, Kyle worked closely with his supervisors, Professor James Renwick and Dr Jim McGregor, who provided important advice and guidance for the duration of his research.

“My supervisors were knowledgeable, friendly, and approachable. They knew when to push me to think more deeply and critically about my research. James is a world-leading expert on Southern Hemisphere atmospheric circulation.”

Kyle also took the opportunity to extend his learning around the world by attending conferences, workshops, and events related to his research.

“My supervisors were knowledgeable, friendly, and approachable, and knew when to push me to think deeper and more critically about my research.”

“I attended a workshop on Antarctic climate change in San Diego, conferences in Chile and Kuala Lumpur, and received a grant from the Antarctic Research Centre Endowed Development Fund to attend the American Meteorological Society’s polar climate conference in Seattle.”

On completion of his PhD, Kyle accepted a postdoctoral position at Rutgers University in the United States. There he learnt how to perform climate model experiments to further investigate and test if and how changes in tropical variability influence Antarctic climate. Since then, Kyle has moved back to Wellington and is now working as a research fellow in Climate Science at the University.

“I was incredibly fortunate to get the opportunity to return to Wellington to serve in my current role as a research fellow. My responsibilities include a range of teaching, supervising, and research. I teach two undergraduate geography courses, and guest lecture in the Master of Meteorology programme. I have co-supervised three Master’s students, and am collaborating with a Master’s student from the School of Geography, Environment and Earth Sciences looking at the causes of ice shelf collapse on the Antarctic Peninsula.”
Innovative research underway at the University’s School of Chemical and Physical Sciences could provide the breakthrough needed to develop next-generation ‘green’ supercomputers—and data centres—that use less power and operate at ultra-low temperatures.

Associate Professor Ben Ruck and Dr Franck Natali are working with Wellington UniVentures, the University’s business development arm, on the commercialisation of the project.

“Today’s powerful supercomputers perform massive, rapid calculations to solve all sorts of scientific and industrial problems—from better weather forecasting to safer cars and planes,” says Dr Natali, one of the lead scientists in the University’s Advanced Materials Lab. “The problem is, today’s silicon-based supercomputers also consume large amounts of electrical power, almost all of which converts into heat. This immense power consumption puts a strain on the world’s energy resources and contributes to greenhouse gases.

“Our technology ticks all the boxes,” says Dr Natali. “It potentially uses less energy and creates less heat yet increases data processing and storage speeds. There are a lot of people working on this problem around the world, but we think our material has the best chance of success.”

Wellington UniVentures agrees with this assessment and has already patented the group’s nanotechnology process—which works below minus 250 degrees Celsius—that could ultimately see supercomputers reduced from the size of a building to the size of a car.

The team has formed a collaboration with a United States-based company that develops and manufactures superconducting logic devices, to ensure that its proof-of-concept meets industry needs.

Dr Natali says commercialisation has many benefits outside generating revenue.

“The computer industry is urgently looking for new materials to make memory storage that’s compatible with the way new low-power, low-temperature superconducting computer systems are being developed.”

The team’s research shows that thin films of rare-earth nitrides (RENs) have the right properties to make magnetic memory elements that are compatible with superconducting computing logic architecture.

“Our technology ticks all the boxes,” says Dr Natali. “It potentially uses less energy and creates less heat yet increases data processing and storage speeds. There are a lot of people working on this problem around the world, but we think our material has the best chance of success.”

Wellington UniVentures agrees with this assessment and has already patented the group’s nanotechnology process—which works below minus 250 degrees Celsius—that could ultimately see supercomputers reduced from the size of a building to the size of a car.

The team has formed a collaboration with a United States-based company that develops and manufactures superconducting logic devices, to ensure that its proof-of-concept meets industry needs.

Dr Natali says commercialisation has many benefits outside generating revenue.

“The computer industry is urgently looking for new materials to make memory storage that’s compatible with the way new low-power, low-temperature superconducting computer systems are being developed.”

The team’s research shows that thin films of rare-earth nitrides (RENs) have the right properties to make magnetic memory elements that are compatible with superconducting computing logic architecture.

“Our technology ticks all the boxes,” says Dr Natali. “It potentially uses less energy and creates less heat yet increases data processing and storage speeds. There are a lot of people working on this problem around the world, but we think our material has the best chance of success.”

Wellington UniVentures agrees with this assessment and has already patented the group’s nanotechnology process—which works below minus 250 degrees Celsius—that could ultimately see supercomputers reduced from the size of a building to the size of a car.

The team has formed a collaboration with a United States-based company that develops and manufactures superconducting logic devices, to ensure that its proof-of-concept meets industry needs.

Dr Natali says commercialisation has many benefits outside generating revenue.

“The computer industry is urgently looking for new materials to make memory storage that’s compatible with the way new low-power, low-temperature superconducting computer systems are being developed.”

The team’s research shows that thin films of rare-earth nitrides (RENs) have the right properties to make magnetic memory elements that are compatible with superconducting computing logic architecture.

“Our technology ticks all the boxes,” says Dr Natali. “It potentially uses less energy and creates less heat yet increases data processing and storage speeds. There are a lot of people working on this problem around the world, but we think our material has the best chance of success.”

Wellington UniVentures agrees with this assessment and has already patented the group’s nanotechnology process—which works below minus 250 degrees Celsius—that could ultimately see supercomputers reduced from the size of a building to the size of a car.

The team has formed a collaboration with a United States-based company that develops and manufactures superconducting logic devices, to ensure that its proof-of-concept meets industry needs.

Dr Natali says commercialisation has many benefits outside generating revenue.

“The computer industry is urgently looking for new materials to make memory storage that’s compatible with the way new low-power, low-temperature superconducting computer systems are being developed.”

The team’s research shows that thin films of rare-earth nitrides (RENs) have the right properties to make magnetic memory elements that are compatible with superconducting computing logic architecture.

“Our technology ticks all the boxes,” says Dr Natali. “It potentially uses less energy and creates less heat yet increases data processing and storage speeds. There are a lot of people working on this problem around the world, but we think our material has the best chance of success.”

Wellington UniVentures agrees with this assessment and has already patented the group’s nanotechnology process—which works below minus 250 degrees Celsius—that could ultimately see supercomputers reduced from the size of a building to the size of a car.

The team has formed a collaboration with a United States-based company that develops and manufactures superconducting logic devices, to ensure that its proof-of-concept meets industry needs.

Dr Natali says commercialisation has many benefits outside generating revenue.

“The computer industry is urgently looking for new materials to make memory storage that’s compatible with the way new low-power, low-temperature superconducting computer systems are being developed.”

The team’s research shows that thin films of rare-earth nitrides (RENs) have the right properties to make magnetic memory elements that are compatible with superconducting computing logic architecture.

“Our technology ticks all the boxes,” says Dr Natali. “It potentially uses less energy and creates less heat yet increases data processing and storage speeds. There are a lot of people working on this problem around the world, but we think our material has the best chance of success.”

Wellington UniVentures agrees with this assessment and has already patented the group’s nanotechnology process—which works below minus 250 degrees Celsius—that could ultimately see supercomputers reduced from the size of a building to the size of a car.

The team has formed a collaboration with a United States-based company that develops and manufactures superconducting logic devices, to ensure that its proof-of-concept meets industry needs.

Dr Natali says commercialisation has many benefits outside generating revenue.

“The computer industry is urgently looking for new materials to make memory storage that’s compatible with the way new low-power, low-temperature superconducting computer systems are being developed.”

The team’s research shows that thin films of rare-earth nitrides (RENs) have the right properties to make magnetic memory elements that are compatible with superconducting computing logic architecture.
After spending several years working in the public and private sectors, Hayley Stirling’s passion for the world of statistics and data science inspired her to enrol in a Master of Applied Statistics in 2019. The programme helped her advance her skills in data wrangling, statistical modelling, and data visualisation, and gain valuable experience using different programming languages such as R.

Hayley’s research investigated the factors that have an impact on opportunities and barriers to success in the New Zealand music industry. She played a critical role in developing the methodology behind the research as well as collecting the data and visualising the results.

“The research provided a detailed profile of New Zealand songwriters for the first time. It also found particular sub-groups of artists were, statistically, significantly more likely than others to feel satisfied with their music careers and identified common barriers to working in the industry.”

Hayley’s supervisor, Professor Richard Arnold, was an important aspect of her research, providing her with meaningful advice without interfering with the overall vision of her investigation.

“Despite not having a background in economics, my Master’s qualification and previous experience working with data provided me with skills that were transferable to a new sector.”

“Richard has a wealth of experience and was always willing to share his knowledge or act as a sounding board for my research.”

Since completing her Master’s degree, Hayley has taken an adviser position in the data and statistics team at the Reserve Bank of New Zealand. She leads a team responsible for the collection, governance, analysis, and dissemination of financial sector statistics. Hayley is applying some of the skills she has learnt in her Master’s study to her role at the bank.

“I have already started exploring the use of predictive models on some of our survey data, which directly relates to knowledge acquired in some of my Master’s courses.”
"There is a great deal of evidence that rainbow people—people of diverse sexualities, genders, and sex characteristics—experience mental health difficulties at a much higher rate than the general population, mainly due to societal stigma and discrimination," says PhD student Gloria Fraser from Te Herenga Waka—Victoria University of Wellington’s School of Psychology, who is leading the research.

"Many mental health professionals also feel they don’t have the knowledge or skills to best support their rainbow clients, and there is a real lack of New Zealand-based resources to help with this."

Gloria’s research investigated the specific problems rainbow people face when accessing mental health services in New Zealand.

"The aim of our study was to gain an in-depth understanding of the experiences and needs of rainbow people when accessing mental health services in New Zealand and highlight potential areas of improvement," Gloria says. "We wanted to give voice to the stories of community members, which doesn’t always happen in research studies."

In partnership with Gender Minorities Aotearoa, InsideOUT, and RainbowYOUTH, Gloria conducted 34 detailed interviews and surveyed more than 1,500 members of the community to gather data on their experiences with mental health care.

The results show that rainbow people face issues such as a lack of access due to location or waiting times—a problem faced by many people seeking mental health support—as well as a lack of safe and supportive therapy spaces and a lack of understanding and education around rainbow identities.

To address this lack of understanding, Gloria has worked with Gender Minorities Aotearoa, InsideOUT, and RainbowYOUTH to create an education resource for mental health professionals.

“This resource gives information on the right language to use, the history of rainbow rights in New Zealand, common therapy topics, and what accessing mental health services is like for rainbow people,” says Gloria. “The final resource is informed by the experiences, feedback, and thoughts of almost 1,700 people from the rainbow community and the mental health sector.”

Tabby Besley, managing director for InsideOUT, says, “Rainbow people in Aotearoa are more likely to experience bullying, depression, anxiety, suicidality, and substance abuse, but a lot of mental health professionals aren’t competent or confident working with us. This resource is going to be a huge asset for the mental health sector on its journey to providing inclusive services to rainbow communities.”
Understanding the different histories and values in science is essential for meaningful scientific progression. Naomi Puketapu-Waite enrolled in a Master of Science in Society to deconstruct her understanding of science and rebuild it with a societal lens.

“Through my Master’s study, I have gained a better understanding of the way people interact with, and rely on, science. The ability to listen, rather than pre-empt the needs of groups and individuals, is critical if scientific progress is to have a wider impact on people.”

Through a mix of coursework and research, Naomi focused on the relationships and collaborations Māori rōpū (organisations) have with science entities, and how mātauranga Māori is seen and handled in Western science. She analysed data from the Science Media Centre to produce a report that examined the coverage of Māori scientists in national science media in Aotearoa.

Naomi found her supervisor, Dr Pauline Harris, extremely helpful and supportive throughout the year.

“To be guided by someone so deeply embedded in both pūtaiao and te ao Māori was an amazing opportunity. Having Pauline’s support and insight led me to excel in my studies, growing my research into something that extended beyond study and is now benefiting my community.”

“The Science in Society programme exceeded my expectations. Each individual course provides you not only with the knowledge and tools, but also the capability to use them to operate in contemporary, real-world contexts.”

Part of Naomi’s Master’s programme included a period of work placement as an administration specialist at the Science Media Centre. She was able to be a part of science media coverage in New Zealand, providing background support during the eruption of Whakaari, the initial stages of COVID-19, the Australian bushfires, and many other pivotal events throughout the year.

Naomi now works as a research aim lead with MetOcean Solutions, a consultancy within MetService that specialises in oceanography. She also works on a Smart Ideas funded machine-learning storm surge project, which involves consulting with coastal iwi and other user groups to understand the hazard warnings and information needed to successfully prepare for coastal flooding hazards.
WHO TO CONTACT

FACULTY STUDENT AND ACADEMIC SERVICES OFFICE
Your faculty office is your first point of contact for support with anything from enrolment to graduation. Get help choosing your degree, planning your courses, or changing your degree programme.
Room CO144, Cotton Building, Kelburn Campus

Phone: 04 463 5101
Email: science-faculty@vuw.ac.nz
Website: www.wgtn.ac.nz/science

ACCOMMODATION
Contact University Accommodation Wellington for advice on applying for halls of residence, renting, and other accommodation options.

Phone: 04 463 5896
Website: www.wgtn.ac.nz/accommodation

ADMISSION AND ENROLMENT
Prospective and current students can visit the Enrolment Office for admission and enrolment information, advice, and support.

Website: www.wgtn.ac.nz/apply
www.wgtn.ac.nz/re-enrol

CAREERS AND EMPLOYMENT
The Careers and Employment team connects you with employers and the community, and prepares you for future employment. We can help you explore your work options, apply for jobs, and establish a career path by providing advice for ongoing career development.

We have services at both the Kelburn and Pipitea campuses where you can attend one-to-one appointments, help-desk sessions, and workshops on a range of career topics, including networking and interview preparation.

Room HU120, Hunter Building, Kelburn Campus

Phone: 04 463 5393
Email: careers-service@vuw.ac.nz
Website: www.wgtn.ac.nz/careers

CareerHub
You also have access to our online career centre with comprehensive resources, tools, and employability modules.
CareerHub has everything you need to keep your career on track:
- search for a range of jobs, from internships, voluntary, and part-time work to graduate positions
- be the first to hear about careers expos, employer information sessions, and seminars
- find resources to assist with your job search, CV, and interview preparation
- book for career advice appointments, workshops, and events.

Develop your skills and experience and launch your career with confidence.
Website: www.wgtn.ac.nz/careerhub

COURSE ADVICE
If you are a prospective or new student, visit our website or contact us for course advice and to get your admission questions answered.
Website: www.wgtn.ac.nz/study

FEES AND FINANCIAL ADVICE
Get information and advice about fees, payments, student levies, and dealing with StudyLink. Meet with a student finance adviser for all money matters and how to apply for the Hardship Fund.
Website: www.wgtn.ac.nz/money

MĀORI STUDENTS
Āwhina is the support team for Māori students. Our kaupapa (goal) is to provide academic and holistic support for Māori students enrolled in any degree or course on any of our campuses. Our experienced staff offer one-on-one advising and mentoring sessions, study tutorials and wānanga, and a range of workshops to help you achieve your study and work goals. Our culturally inclusive environment includes whānau rooms with computer facilities, study areas, free tea and coffee, kitchenettes to prepare food, and space to meet with peers or tuākana (senior students). We can help you transition successfully from secondary education or work into tertiary education.

Nau mai, haere mai—come and visit us at the Kelburn, Pipitea, and Te Aro campus spaces listed on our webpage.

Phone: 04 463 5987
Email: awhina@vuw.ac.nz
Website: www.wgtn.ac.nz/awhina
PASIFIKA STUDENTS
Pasifika engagement advisers and mentoring coordinators foster Pasifika learning and teaching communities in an environment that is welcoming, safe, and focused on academic excellence, personal growth, and wellbeing, with Pasifika culture at the core. Our students have access to a mentoring programme for 100-level to 300-level courses, course-specific study sessions, exam-oriented preparation, and workshops that support learning and development as well as meeting cultural needs. Our team is here to help you navigate the crossing into tertiary study and looks forward to welcoming you on board. We have Pasifika spaces at the Kelburn, Pipitea, and Te Aro campuses.

Pasifika Haos
15 Mount Street, Kelburn Campus
📞 04 463 6015
✉️ pasifika@vuw.ac.nz
🌐 www.wgtn.ac.nz/pasifika

POSTGRADUATE STUDENTS
The Postgraduate Students’ Association (PGSA) represents all postgraduate students at the University.
🌐 www.vuwpgsa.ac.nz

RAINBOW STUDENTS
We offer a range of services and resources for students who identify with diverse sexual orientations and sex and gender identities.
🌐 www.wgtn.ac.nz/rainbow

SCHOLARSHIPS
Te Herenga Waka—Victoria University of Wellington is committed to supporting and encouraging students who embody and display the key attributes of excellence, leadership, and commitment to community, and helping remove the barriers to university study that exist for students facing hardship or disadvantage.

We offer a range of scholarships for all levels of study, from awards for school leavers and undergraduates, to postgraduate and doctoral scholarships to support you in your studies.
🌐 www.wgtn.ac.nz/scholarships

WELLINGTON PLUS PROGRAMME
All current students can participate in the Wellington Plus service and leadership programme offering the chance to give back to the community and gain skills that will impress employers.
🌐 www.wgtn.ac.nz/wellington-plus

WELLINGTON UNIVERSITY INTERNATIONAL
Wellington University International provides support and services to international students, from enrolment and orientation through to graduation. Our international advisers can provide personal, academic, and cultural information and advice, and they work closely with the University’s student services, faculties, and academic staff to provide you with the support you need to succeed.

Wellington University International can assist you to renew your student visa and make insurance claims through the University’s preferred insurer, Studentsafe.
Level 2, Easterfield Building, Kelburn Campus
📞 04 463 5350
✉️ international@vuw.ac.nz
🌐 www.wgtn.ac.nz/international-support