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lower bound to the standard value at risk and considers portfolio optimisation 
problems in the presence of both constraints. For normal distributions the censored 
mean is synonymous with the statistical hazard function, but this is not true for fat-
tailed distributions. The latter turn out to imply much tighter bounds for the 
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variance that yields a simple portfolio choice rule. The choice theory in GVaR is in 
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1 Introduction 
Value at risk was originally conceived as a portfolio diagnostic, such that the 

probability of portfolio value falling below the designated value at risk corresponds to 

a chosen significance level (e.g. JPMorgan 1994 et seq., Butler 1998, Best 1999, 

Jorion 2002). Following its adoption by bank regulators in such contexts as the 

European directive and related Basle options, the methodology spread to other sectors 

such as funds or trustee managers and even non financial corporations. Objects of 

concern encompassed further domains like cash flow or earnings at risk, or even 

‘drawdown at risk’ (referring to deposit outflows from fund managers).  

A natural adaptation was to optimal portfolio design, with the idea that 

portfolio managers should maximise some welfare metric, e.g. the portfolio return, 

subject to a given value at risk. In addition to constraints or criteria based on the value 

at risk, some recent authors have proposed that an additional or alternative 

requirement be imposed, namely that the expected shortfall, given that the value at 

risk limit has been breached, should be bounded by a user-chosen number. The 

reasoning is that fat tailed return distributions can have a lot of sting remaining in the 

left hand tail, even if the probability of a return or value in that region is limited to 

5%, say. The conditional value at risk (CVaR) is the expected portfolio value or 

return, given that it lies within the VaR critical region. By limiting this value, the 

manager can choose portfolios to minimise the damage remaining in the left hand tail. 

For contributions along these lines see e.g Andersson et al (1999) or Rockafellar and 

Uryasev (2000). In what follows, by ‘generalised value at risk’ is meant either or both 

VaR and CVaR, and any related methodologies (abbreviated GVaR, to coin yet 

another acronym!). 

The general idea of setting VaR and CVaR as portfolio choice parameters 

certainly has appeal. The concepts are widely understood and therefore agreement can 

be obtained the more readily regarding what acceptable values might be. This would 

solve an under-recognised conceptual problem in risk management, namely that of 

securing common ground among the stakeholders, whether the latter are shareholders 

or financial regulators. One could indeed conceive of a risk management directive that 

simply says ‘maximise the expected return, subject to given bounds for the VaR and 

the CVaR’. In other words, the entire burden of risk aversion would be devolved to 
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the generalised value at risk parameters. Once these are satisfied, the manager can 

effectively think in risk-neutral terms, ‘constrained risk neutrality’. 

However there is a prior problem with risk management rules of this kind: do they 

work, and are they soundly based in the theory of choice under risk? Existing  

contributions have tended to concentrate on computing methods or particular 

applications,  without going too deeply into the underlying conceptual issues. A 

problem is that the VaR and CVaR constraints, even though compatible in the 

programming sense of the existence of solutions, may nevertheless be economically 

inconsistent.  The present paper is directed at a range of issues of the latter kind. A 

checklist of such concerns, together with some findings of the paper, is as follows: 

(a) Conditions under which CVar and VaR might be mutually redundant. In 

optimisation terms, this would mean that likely solutions would see one 

constraint binding but not the other. It is shown that there is nothing logically 

inconsistent with both, so that a non empty feasible or legal set does exist, so 

that constraint qualification is not a problem. However, in most situations, one 

or other constraint is unlikely to be binding, and it is likely to be the VaR 

constraint. As it stands, it is the CVaR constraint that is the tough one: we 

shall suggest it is too demanding and needs reformulation. 

(b) The paper explores the relationship of generalised value at risk to choice 

theory under risk, and in particular whether it is consistent with the Von 

Neumann – Morgenstern utility function for money, which forms the 

foundation of choice under risk. The effective utility of money is introduced, 

as a construct backed out of the saddle point property of the optimised 

Lagrangean, in the concave programming problem that underpins the 

generalised value at risk approach to portfolio selection. While the VaR 

constraint is perfectly consistent with this theory, CVaR is not. The problem 

arises because the two constraints are economically inconsistent if set 

independently of one another. They can be made consistent with a 

modification to the CVaR constraint. When this is done, one ends up with a 

nice separation of their respective roles. The GVaR-equivalent Von Neumann 

Morgenstern utility function can then be used to illuminate issues such as the 

optimal choice of portfolio hedge. 

(c) What is the relation ship of generalised value at risk with more familiar ideas 

from statistics and reliability theory?  VaR itself is simply a basic statistical 
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construct derived from hypothesis testing and confidence levels. However, 

CVaR is a bit more than this, and the present paper links the idea of CVaR 

with hazard functions, implicitly exploring the use of the hazard function as a 

welfare indicator. This idea works for the normal distribution but not for more 

fat tailed distributions. 

(d) Would a constrained risk neutral approach to risk management, along the lines 

earlier suggested, result in a unique solution or even any solution at all? In 

some situations, such as normally distributed security returns, it can. However, 

such a solution is likely to be characterised by a redundancy of the VaR 

constraint. It effectively amounts to maximising the portfolio variance along 

the mean variance efficient frontier, subject to the bound placed by the CVaR 

limit. The latter is in fact a fixed number for the logistic density of returns, 

which is leptokurtotic (fat tailed).  

(e) A variety of other issues are examined, more or less as consequences of the 

preceding. One is the value of hedging. Hedge effectiveness is usually 

measured in terms of the conditional expectation of the hedge instrument 

return, given the return to be hedge. The associated empirical methodology is 

OLS or variants. However, once CVaR is introduced, hedge effectiveness 

become a matter also of the censored mean difference, which is identical with 

the ordered mean difference (Bowden, 2000). Hazard theory is a good 

framework for thinking about such problems. Another issue is whether GVaR 

can be reconciled with mean variance analysis.  ‘Delta-normal’ VaR proceeds 

by first computing the means and covariance of factor exposures, so there is 

natural link. As indicated under item (c) above, the relationship can be 

developed further. 

The scheme of the paper is as follows. Section II sets out the various forms of the 

GVaR portfolio optimisations. The CVaR constraint is identical with the censored 

mean evaluated at the VaR critical point, which enables a first look at portfolio 

choice. The resulting admissible set is explored for two representative cases in section 

III, namely the normal and logistic distributions, the latter chosen as a representative 

fat-tailed density. The binding nature of the constraints is analysed within this 

framework, as is the existence of bounds, including the logistic upper limit for the 

variance, and the relationship with statistical hazard theory. Section IV backs out the 

effective utility function and analyses compatibility with the Von Neumann-
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Morgenstern theory of choice under risk. Section V suggests an effective utility 

function that overcomes some of the difficulties.  It is also noted that that GVaR type 

problems necessitate an alternative empirical hedge methodology for identifying 

effective hedges and other enhancements. Section VI offers some conclusions.  

 

2.  GVaR decision problems 
The generalised value at risk optimisation problems that have appeared in the 

literature have taken a number of forms, some mathematically dual to others, and with 

a variety of objective functions. The original formulations were usually cast in terms 

of portfolio values, as this is natural context for bank management. However, a 

reasonably embracing formulation could be written in terms of portfolio returns, R, 

and in what follows, we shall lose little generality by assuming that the objective 

function is simply E[R]. Alternative versions of the objective function involve 

minimising the value at risk or the conditional value at risk, and these will also be 

discussed.  

2.1. The basic optimisation  

The manager sets a lower critical point R = rL (usually negative) together with a 

significance level α and requires that the probability of a return less than rL is no more 

than α. In other words, if F (•) denotes the distribution function of portfolio returns, 

we require α≤)( LrF .   In addition, the CVaR constraint looks at the conditional 

expectation ][ LrRRE ≤  and requires that this be at least a given value v, say. The 

problem is to choose decision parameters z ( e.g. portfolio proportions) to maximise 

the objective function subject to the GVaR constraints. Thus the optimisation problem 

can be written as follows: 

Given a preset value at risk rL , a significance level α, and a return number v < 

rL :  

(1) 

vrRREii
rFi

tosubject

RE

L

LR

z

≥≤

≤

][)(
)()(

][max

α
 

and possibly other constraints ( e.g. proportions add up to 1). The latter can remain 

implicit in what follows, though the issue is revisited in section III. To avoid 
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proliferation of subscripts, FR(r) will often be written just as F(r), when the context is 

clear. The corresponding density, assuming it exists, is written as fR(r) or just f(r). 

Alternative decision problems 

Other versions might proceed to minimise the value at risk subject to 

achieving a minimal expected return, or alternatively maximise the conditional value 

at risk. For instance, one could have 

(2a) 

vrRREiii
mREii

rFi
tosubject

r

L

LR

Lrz L

≥≤

≥
=

][)(
][)(

)()(

min ,

α  

where m is some pre-set ‘satisficing’ level of expected return. Or the objective could 

be cast as maximising the conditional value at risk: 

(2b) 

mREii
rFi

tosubject
rRRE

LR

Lz

≥
≤

≤

][)(
)()(

][max

α
 

 In certain cases, the minimisation problem (2a) may emerge as a dual (Rockafellar 

(1968)) to the primal (1).  In general, however, this is not true for more or less 

arbitrary user-defined values of the constants m or v, and duality will not be assumed 

in what follows. 

The original version (1) corresponds to the way that most asset portfolio users 

would define the decision context. The basic objective of the firm is to maximise 

portfolio value.  Constraints like VaR and CVaR are seen as administrative, 

regulatory, or ‘legal’ constraints, and admissible portfolios are those that satisfy them. 

Subject to these constraints, the manager seeks to maximise some welfare function 

that for present purposes will be taken as the expected return. Much the same ideas 

will apply even if the manager is risk averse, so that instead of maximising the 

expected return E[R], he or she wishes to maximises the expectation of some concave 

utility function E[U(R)].  However, there is independent virtue in simply assuming 

expected return as the utility function, because we can check out an idea earlier 

mentioned, namely that the burden of risk management could be entirely set via the 

GVaR constraints, leaving the agent free (within the admissible set) to otherwise act 

as risk neutral.  
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2.2. The CVaR as the censored mean 

The function 

(3) ][)( rRREr ≤=γ  

is the censored mean of the distribution of R. Equivalently, it is the unconditional 

mean of the truncated distribution whose density is given by 

rR
rF
RfRfc ≤= ;

)(
)()( . 

Thus 

(4) dRRRf
rF

r
r

∫
∞−

= )(
)(

1)(γ .  

For a pre-set number r = rL, long left hand tail distributions such that the density 

declines only slowly to the left of R = rL will have a numerically larger value of γ(rL) 

and hence be more damaging.  

An equivalent formulation runs in terms of the cumulated distribution function 

familiar from second order stochastic dominance theory, namely: 

∫
∞−

=Φ
r

dRRFr )()( .  

For suitably regular distributions, we have  

(5) 
)(
)()(

rF
rrr Φ

−=γ .  

In particular, if F(rL) =α then comparing two alternative return distributions with the 

same value at risk, A will have larger value of the censored mean than B  if 

)()( LBLA rr Φ<Φ . Thus if B stochastically dominated A, then the hazard associated 

with B would be less for any value at risk. However in what follows we do not 

assume stochastic dominance or work further in such terms. 

The function γ(r) is a monotonically rising function of r tending 

asymptotically to the unconditional mean E[R] = µR , and tangential to the 45% 

degree line as R→ - ∞ . It is sketched in figure 1 as globally concave, which is usually 

the case. 
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Figure 1: The censored mean function 

 

2.3. How the constraints work 

 Figure 2 illustrates the censored mean functions for three alternative portfolios 

zA , zB , zC generating portfolio returns RA , RB , RC ,  respectively. Portfolio C has the 

highest mean return, marked in as µC = E[RC] . But its conditional or censored mean 

diminishes very quickly for low return values. In particular, the value of γC(r) at the 

VaR point r = rL is less than the preset magnitude v, so it is not ‘legal’. Portfolios A 

and B are legal, in this sense, but A is to be preferred of the two, as its unconditional 

mean is higher. Appendix I is a corresponding illustration for the ‘dual’ version 

problem (2a) above.  
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Figure 2: Portfolio comparison 

 

3.  The admissible set and its implications 
 The admissible set, or ‘legal set’, will refer to the portfolios that satisfy both the VaR 

and CVaR constraints. It is not quite the same as the feasible set, which refers to the 

portfolio proportions z leading to admissible portfolios and in addition satisfying any 

further constraints e.g. ∑
i

iz =1. The purpose of this section is to explore general 

considerations that might serve to bound the admissible set, how this might depend 

upon the nature of the returns distribution, the relationship with hazard theory; and 

further issues such as whether the CVaR and VaR constraints can both be binding at 

the same time.  

For this purpose, it is convenient to use two-parameter distributions, such as 

the normal and logistic, choosing the parameters as the mean µR and standard 

deviation, σR . Both these distributions admit a standardisation of the form 
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(6) 
β
µRR

Y
−

= , 

where β is a variance- related constant. For the normal distribution, β = σR and the 

distribution of Y has mean zero and variance unity. The following lemma will be 

useful in what follows. 

Lemma 1 

Let γs refer to the censored mean or hazard function of the standardised distribution. 

If  
β
µRr

y
−

= , then in the original units, the censored mean is given by 

(7) )()( yr sR βγµγ +=  

 

[Proof: Follows from the definition (4) and transformation of variables]. 

3.1. The normal distribution 

The following result summarises the properties of interest for the current discussion. 

Proposition 1:  

Suppose R is N(µR , σR
2 ) , let 

R

RRY
σ
µ−

= ,  and write the standard normal 

distribution and density as N(Y), n(Y) respectively. Then the censored mean at R = r 

is given by )()( yr sRR γσµγ +=  

where   
R

Rry
σ
µ−

=     and 
)(
)()(

yN
ynys −=γ . 

Proof: 

Consider first the censored mean for the standard normal distribution, which is 

given by 

∫
∞−

=
y

s dYYYn
yN

y )(
)(

1)(γ . 

As )()(' YYnYn −= , it follows that 
)(
)()(

yN
ynys −=γ .  

The desired result follows from Lemma 1. 

 



 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3STD

m
ea

n Admissible region

CVaR

VaR

α = 0.05 rL = -0.1 v = -0.15

Given a VaR point rL , let 
R

RL
L

ry
σ
µ−

= be the corresponding standardisation. Also 

let α
Ly be the unit normal lower one tailed critical point for significance level α, e.g. 

(–1.65) for α =5%.   

One can now proceed to locate admissible regions in the (µR , σR ) plane, with 

σR taken along the horizontal axis. Using conditions (1)(i), (ii) and Proposition 1, the 

admissable regions taken for each constraint separately are located as follows: 

(8a) VaR: ασµ LRRR yr −≥  

(8b) CVaR: 
R

RL
L

L

L
RR

ry
yN
ynv

σ
µ

σµ
−

=+≥ ;
)(
)(  

It will be noted that the CVaR region is implicit in µR . Its boundary can be found by 

replacing the above equality with an equality and solving for µR in terms of σR. It is a 

convex rising function of σR. 

Figure 3 locates the feasible region for the stated parameters as the intersection 

of the two feasible regions for each constraint, for the given user parameters. 

 

 

 

 

 

 

 

 

 

Figure 3: Admissible region for the normal distribution 
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Figure 4 combines this with the locus of (µR ,σR) combinations that might be 

possible with different  portfolio proportions.  The hatched locus corresponds to the 

efficient frontier in standard mean-variance analysis. Given the objective to maximise 

the mean, the optimal GVaR portfolio point is indicated as the point A. This 

corresponds to maximising the STD of the portfolio subject to the CVaR constraint. In 

this example the VaR constraint will not be binding at the optimum.  

 

 

 

 

 

 

Figure 4: Combining with mean variance analysis 

 

3.2. Relationship with hazard theory 

The function 
)(1

)()(
yN

ynyH n −
= is the normal hazard function of statistical 

survival and reliability theory (e.g. Mann et al 1974).  Hence in proposition 1, the 

function )(
)(
)()( yH

yN
ynyh nn −== , which can be regarded as the hazard function for 

(-y), i.e. going in the reverse direction. Once could perhaps call hn the ‘reverse hazard 

function’. Thus for the normal distribution, the censored mean is the negative of the 
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reverse hazard function. One could imagine that the probability of the institution 

going bankrupt increases as y diminishes, or the hazard or marginal probability of 

‘death’ associated with any given value increases. Figure 5 plots the standard normal 

hazard function in the required reverse form )(yhn . In this sense, CVaR can be said 

to capture the ‘hazard’ of the situation, at least for the normal distribution. But as we 

shall later see, there are severe limitations to the implicit identification of the hazard 

function with economic welfare for more general distributions. 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5: Standard normal reverse hazard function 

 

The normal distribution has the convenient property of being preserved (or 

‘stable’) under linear combinations. This meant that in figure 4 we were able to 

consider the admissible region in conjunction with the mean-variance set traced out 

by alternative portfolios. The next distribution, namely the logistic, does not have the 

preservation property, so the admissible set is not a global one for all possible 

portfolios. However, it does reveal what happens for fatter tail distributions, namely 

that the variance bound becomes extreme. 

3.3. The logistic distribution 

The logistic distribution function is defined by 

3/;
]

)(
exp[1

1)( βπσ

β
µ

=
−

−+
= R

RR
RF . 
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σα σmax σR

µ

Logistic admissible set

A convenient standardisation is  

β
µRRY −

= with Ys
e

YF
−+

=
1

1)( .  

The logistic density is symmetric, but has fatter tails than the normal: a kurtosis 

coefficient of 4.2, versus 3 (Johnson and Kotz 1970).  This makes it useful for present 

purposes, as CVaR has in effect been designed for such contingencies. 

For the logistic distribution, the censored mean function at R = r is given by 

(9) )](1log(
)(

)( rF
rF

rr −+=
βγ . 

Appendix II proves the above result and also establishes the admissible set, which is 

depicted in figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Existence of the  logistic admissible set 

 

Perhaps the most interesting feature is the existence of a firm upper bound for 

the variance, given by: 

 (10) )(814.1
3

)(
vr

vr
L

L
R −≈

−
≤
π

σ . 
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Thus for 15.0,10.0 −=−= vrL , the limiting STD = 0.09. 

Comparing this with the same settings for the normal distribution as in figure 

3, the boundary effect is very restrictive. Figure 6 suggests that the portfolio solution 

may have quite a simple first approximation: fix the STD at the logistic upper bound 

)(814.1max vrL −=σ and maximise the portfolio mean. The resulting portfolio may 

not be admissible, but it might well be close. 

It is a reasonable conjecture that similar properties hold for other fat-tailed 

distributions. If there is any reason to suspect that security returns are not going to be 

normally distributed, it may be quite unsafe to adopt high variance portfolios even 

though they might satisfy the admissible set for the normal distribution. A 

conservative approach might simply be to adopt the logistic upper bound as 

representative of other fat-tailed distributions, and limit the portfolios to those that 

satisfy the logistic STD bound. 

The logistic hazard function 

The hazard function for the standardised logistic is  

)(
)(1

)(
)( yF

yF
yf

yH s
s

s
s =

−
= , 

so that the reverse hazard function is )(1
)(
)(

)( yF
yF
yf

yh s
s

s
s −== . Unlike the normal 

distribution, this is not equal to the negative of the censored mean. The relationship is 

)(1
))(log(

)(
yh
yh

yy
s

s
s −

+=γ . 

Figure 7 compares hs(y) with -γs(y) for the logistic. Evidently the censored 

mean is a much more demanding loss function than is the hazard function. We can 

now see the general problem with the hazard function as a measure of welfare loss. 

Because of the long left hand tail, the logistic ‘survival’ always remains significant, 

whereas with a shorter tail, the normal death probability becomes overwhelming, and 

the hazard correspondingly explodes. The problem is that economic survival does not 

coincide with statistical survival. Thus the bank or fund whose returns follow a 

logistic distribution may be bankrupt long before it is flagged as a concern by the 

statistical hazard rate. This is why the censored mean is a better indication of potential 

loss than the statistical hazard function. 
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Figure 7: Logistic reverse hazard and censored mean compared 

It can be concluded from the above that the CVaR constraint is much more 

demanding in the case of the logistic distribution. The VaR constraint  is likely to be 

redundant at the optimum, and there is also a fixed upper bound on the portfolio 

variance. 

 

4. Effective utility functions 
Optimisation problems such as those in mean variance analysis can always be 

regarded as maximising an expected utility function subject to any portfolio 

constraints. The effective utility function (up to inessential additive and slope 

constants) is of the form  2)( cRRRU −= for some constant c.  This well known form 

can be backed out of the standard Lagrangean for the optimisation problem using the 

methods described below. It is of interest to identify the corresponding effective 

utility function for the GVaR optimisation problem. 

  The GVaR decision problem (1) (section 2) may be written in the equivalent  

form: 
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(11) 

)()(][)(
)()(

][max

LRLRL

LR

z

rvFrFrRREii
rFi

tosubject

RE

≥≤

≤α
 

Multiplying constraint (ii) in version (1) by )( LR rF to get version (11) will make no 

difference to the solution for the optimal portfolio proportions. The associated 

Lagrange multipliers will have to be reinterpreted, but will remain unchanged in sign. 

In addition we may, if so wished, assume portfolio proportion constraints such as 

1=∑
i

iz or 0≥iz .  

The Kuhn-Tucker Lagrangean for the optimisation problem (11) may be 

written as: 

(12)

])1([))((])[)((][),;( ∑∑ +−+−+≤−−=
i

ii
i

iLRLLR zzrFrRREvrFREzL θραλµλµ

where the further terms in square brackets may be added or deleted as appropriate. 

The Lagrange multipliers λ, µ are those of primary interest here, so we suppress the 

others (ρ, θ).  At the optimum solution, we must have: 

(13) 
0))((;0

0])[)((;0
=−≥

=≤−≥

LR

LLR
rF

rRREvrF
αλλ

µµ
 

the complementary slackness conditions. According to the saddle point property, the 

optimum solution may be regarded as solving  

),;(minmax , λµλµ zLaz , 

subject to any further constraints on the zi . 

The effective utility function 

Introduce the unit step function 

 

.00
05.0

01)(

<⇔=
=⇔=

>⇔=

x
x

xxSF
 

It follows that  

(14) )()]([ LRL rFRrSFE =− . 

Also from equation (4) section 2, we have  
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(15) 
)(

)]([
)]([
)]([][

LR

L

L

L
L rF

RrSFRE
RrSFE
RrSFRErRRE −

=
−
−

=≤ . 

Substituting (14) and (15) into (12), the Lagrangean can be written 

))](()()([),;( RrSFRrSFRvREzL LL −−+−−−= αλµλµ    

       ])1([ ∑∑ +−+
i

ii
i

i zz θρ .

 Thus the original decision problem (1) is effectively the same as maximising 

the expected value E[U(R)] of a utility function U(R) which can itself be written 

(16) ))(()()()( RrSFRrSFRvrRRU LLL −−+−−−−= αλµ , 

where the additional constant rL has been introduced for later convenience. In this 

maximisation it can be assumed that the Lagrange multipliers µ, λ have been fixed at 

their optimal values. If this is the case, then maximising the expected value of the 

effective utility function (16) will yield the same solution as the full decision 

problems (1) or (11). 

 

4.1 Analysis of the effective utility function 

The zonal behaviour of U (R) as a function of R is as follows: 

(a) R > rL  

(17a) αλ+−= LrRRU )(  ; 

(b) R = rL  

(17b) παλ
2
1)( −=RU  ; 

(17c)  R < rL  

(17c) παλµ −+−+= ))(1()( LrRRU , 

where )( vrL −−= µλπ . 

Figure 8a sketches the resulting function on the assumption that π > 0, i.e. 

that λµ <− )( vrL  .The effective utility function is basically equivalent to R above the 

VaR point rL . At that point it drops down sharply, and as R falls further, the function 

regresses at a faster rate than R. The drop )( vrL −−= µλπ  at the VaR could be 

interpreted as a lump sum penalty where the VaR constraint is breached.  The rate at 

which U(R) falls thereafter depends upon the dual Lagrange multiplier µ, and the 

slope (1+µ) is numerically larger than in the upper branch. Effectively this is telling 

the user to penalise return distributions that have a long left hand tail, just as one  
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would expect from the CVaR constraint. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8a: The effective utility function with π > 0 

 

However, one can also have π < 0, i.e. λµ >− )( vrL . Figure 8b sketches the 

resulting effective utility function. In this case perverse behaviour appears just to the 

left of the VaR point, according to which the effective utility of money actually 

increases before resuming its downward path, at the penalty slope 1+µ. In this case, 

an equivalent Von Neumann-Morgenstern utility function does not exist. 

The various possibilities are as follows: 

(a) VaR is alone binding at the optimum. In this case π = αλ > 0.  The effect is 

that of a pure lump sum penalty once the VaR point is reached, and there is no 

further slope penalty.  

(b) CVaR is alone binding at the optimum. In this case π = -µ(rL-v) < 0. This is 

the perverse behaviour noted as for figure 6b. 

(c) Both VaR and CVaR are binding at the optimum. In this case π could be of 

either sign and a proper Von Neumann- Morgenstern utility function may or 

may not exist. 



 19

v rL R

U  (R )

s lo p e  =  1

P en a lty  s lo p e  =  (1 +µ ) .

π
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Possibility (b) identifies the source of the trouble with the CVaR constraint. In effect, 

it is telling us that the latter is not properly integrated with the VaR constraint, so that 

one should not really be setting the parameter v, α independently of one another. As 

earlier remarked, case (b) is likely to hold for fat-tailed distributions. This means that 

the implied optimisation cannot be easily reconciled with the Von Neumann 

Morgenstern choice theory under risk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8b: The effective utility function with π < 0 

 

4.2 Other versions of the decision problem 

It is of interest to note that the version (2c) of the section II optimisation problem, 

which seeks to maximise the conditional value at risk, can result in a sensible Von 

Neumann - Morgenstern utility function. The decision problem may be written: 

(2a) 

)(;][)(
)(;)()(

][max

θ
λα

mREii
rFi

tosubject
rRRE

LR

Lz

≥
≤

≤

 

where we have indicated relevant semipositive Lagrange multipliers, alongside each 

constraint. Following through the same procedure as above, the equivalent utility 

function may be written  

θλαλθ )()()())](([)( LLLLL rmRrSFrrRRrSFRU −−+−−−−−+= . 
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Features are: 

(a) The step down Lr−= λπ  at the VaR point R = rL  is likely to have the right 

sign, especially if  rL < 0, as one should normally expect. 

(b) To the left of the VaR point R= rL, the slope is (1+θ) compared with θ  to the 

right of this point, again indicating a slope penalty.  

In this version, the rewards for exceeding the VaR point will be non zero only if the 

mean constraint (ii) is binding, i.e. if E[R]=m, the required minimum, in the optimal 

solution. This can therefore be regarded as a defensive portfolio strategy. There is  no 

primary utility interest in exceeding the required minimum portfolio mean. This 

version does not correspond to the usual portfolio objective, which is to maximise 

some functional of returns, subject to administrative or regularity constraints. 

 

5. GVaR-mimicking utility functions 

In view of the problematic features noted above, one could initially adopt the more 

informal approach of a user-defined Von Neumann- Morgenstern utility function that 

captures the more essential features of the GVaR penalties. Once this form is decided, 

one could identify a set of constraints that captured correctly the desired behaviour.  

Suppose that instead of the original version with user-defined numerical 

constraints (e.g. v), the manager elected to pre- set the penalty elements according to 

some preferred balance between the penalty for reaching the VaR limit and that for 

exceeding it (i.e. the CVaR element). The implicit utility function would then become 

explicit, of the form: 

(18) )())]((1[)( RrSRrRRrSFRU LLL −−−−+= πµ . 

In expression (18), the user would set a VaR- type lump sum penalty π and the CVaR-

type slope penalty 1+µ. The precise calibration depends on issues such as the 

existence of a regulatory penalty (higher value of π) or apprehensions about the 

potential length of the left hand distributional tail (higher µ). Figure 9 illustrates. 
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Figure 9: GVaR - mimicking utility function 

 

5.1 Conformation with programming versions 

The form (18) can be made to conform with mathematical programming versions by 

means of an alteration that points up the essential problems with the original. The 

GVaR mimicking utility function (18) can trivially be recast as  

])([]))(([)( απδµ −−−+−−+−= RrSFrRRrSFrRRU LLLL , 

where δ and α are positive constants, the latter corresponding to the VaR significance 

level. Maximising E[U(R)] would then correspond to the following programming 

problem: 

(19) 

)(
][)(

)()(
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LR
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LR
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δ
α

−≥≤

≤  

Referring back to the original problem (1), the CVaR constraint v is no longer a 

constant but is variable, of the form 
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)( LR
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rv δ
−= . 

In the revised version (19ii), the conditional expectation requirement is relaxed if the 

significance level attained at rL is smaller. This is telling us that in the original 

version, keeping the CVaR constraint v as a constant is simply too tough a 

requirement for the inherent probability of the situation. A candidate solution that 

attains a low probability of being in the critical VaR region should not be penalised 

with an unreasonably high CVaR setting.  

Or to put it in a nutshell, the VaR and CVaR settings should not be imposed in 

isolation from one another. Imposing the CVaR constraint in the form (19ii) leads to a 

much clearer separation of the roles of the two constraints. 

(i) The shadow price (expected optimal return increment) of the value at risk 

constraint leads to the lump sum penalty π for violating it; 

(ii) The shadow price of the revised CVaR constraint leads to the slope penalty 

once the VaR constraint has been violated.  

In what follows, it is assumed that the economically consistent form of the CVaR 

constraint is utilised. This means that the effective utility function is of the GVaR-

mimicking form (18).  

 

5.2 The marginal value of hedging 

Generalised value at risk attitudes towards risk imply that traditional empirical hedge 

theory needs to be supplemented with a cumulative element, reflecting the important 

placed on the left hand tail area. GVaR-mimicking utility functions provide a simple 

framework for evaluating a proposed portfolio hedge or enhancement in such terms. 

The same framework can cover issues of portfolio choice, e.g. whether a new security 

or asset will add any additional value to the portfolio. 

Let Rb be the return on a base or benchmark portfolio and Ra denote the return 

on a proposed portfolio enhancement or hedge. The latter may or may not call for 

capital to be allocated. Forwards or swaps typically do not, while options do.  If there 

is capital to be allocated, then the appropriate return contribution is the difference Ra – 

Rb meaning that one funds the proposed addition by down-weighting (going short in) 

Rb . In the zero capital framework, replace the difference by just Ra; for a further 

discussion see Bowden (2003).  
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Assume provisionally that capital is to be allocated. In that case, the marginal 

value of the enhancement is given by the equivalent variation 

(20) 
)]('[

)](')[(
/

b

bba
ba RUE

RURRE −
=τ  . 

The metric τ forms the basis of ordered mean difference portfolio technology (e.g. 

Bowden (2000, 2005). It has a returns dimension, and measures the amount that the 

portfolio manager would have to be compensated to give up the opportunity of being 

able to invest a dollar in asset of return Ra. The numerator could also be interpreted in 

terms of the directional derivative:  

0

))](([

=
⎥⎦

⎤
∂

−+∂

θθ
θ bab RRRUE

 

The denominator normalises the directional derivative so that it assumes the desired 

returns dimension.  

If asset Ra is to add anything to the base portfolio, then τa/b is non zero; 

positive means to go long or longer, and negative, go short. It is zero if asset Ra is 

already an optimised part of the base portfolio, so τa/b =0 indicates a portfolio 

equilibrium. The following result gives an explicit formula for the equivalent 

variation- it is interpreted below. 

Proposition 2 

Define the reverse hazard function2 
)(
)(

)(
rF
rf

rh
b

b
b = where Fb(r) is the distribution 

function of Rb evaluated at Rb = r and fb(r) is the corresponding density function 

evaluated at the same point. Then 

(21)
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Interpretation  

The numerator of (21) contains all the important elements for assessing the 

effectiveness of the proposed enhancement:  

(i)  The first term is simply the mean difference relative to the existing portfolio.  

                                                 
2 Technically this will be the reverse hazard function only if the density is symmetric. However it is 
useful to refer to it in such terms, even where this is not the case. 
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(ii) The second term, namely 

])[( Lbba rRRRE ≤−  

is the mean difference censored by the base portfolio value at its VaR point. The 

sample version is the ordered mean difference of Ra with respect to Rb, evaluated at 

the VaR point rL .  

(iii) The third term,   

)(])[( bLbLa rhrRrRE =−  

represents the improvement precisely at the VaR critical point, weighted by the 

reverse hazard function for the base portfolio evaluated at that point. This is computed 

as the fitted value in the regression of Ra - rL  on Rb, evaluated at the VaR point. 

Terms (ii) and (iii) are themselves weighted by the probability that the 

benchmark return falls into the critical area }{ Lb rR ≤ . The second term is of special 

interest because traditional least squares hedging theory deals only with the 

conditional expectation, in present terms an item like (iii).  If there is a CVaR element 

involved then the truncated or censored mean becomes of relevance, taken over the 

whole critical area. Empirically, this can be computed using the ordered mean 

difference sample estimator. Other things being equal, one should hedge with a 

security whose OMD over the current benchmark is as large as possible in the critical 

region.  

The preceding analysis is easily adapted to the case where Ra uses no capital, 

as in a forward purchase or sale. The corresponding equivalent margin is given by 

)]()[(1
)}(])[(])[(){(][

/
LLb

LLbaLbaba
ba rhrF

rhrRRErRRErFRE
πµ

πµ
τ

++

=+≤+
= . 

In this version, Ra is a pure zero-capital enhancement, but similar terms and 

interpretations apply.  

 

6. Conclusions 
By linking the generalised value at risk constraints to statistical constructs such as the 

censored mean and hazard functions, some of the issues raised in section 1 can be 

explored.  

In general, both the VaR and CVaR constraints play a role, so that there is no 

automatic dominance of one by the other, over all types of distribution. For fat- tailed 
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situations for which conditional value at risk is considered appropriate, it is likely that 

the value at risk constraint as such is likely to be non binding. This does not mean that 

the VaR constraint is strictly redundant, as it may nevertheless remain as a useful 

guide for iterative solution paths. However, another useful feature is the existence of a 

firm upper limit for the portfolio variance in such cases. This was derived in the case 

of a logistic distribution, but it seems a reasonable  conjecture that a similar property 

holds for other fat tailed distributions. Indeed, one could think of a ‘near enough’ 

procedure of simply setting a variance bound at the logistic upper limit and 

proceeding to maximising the mean. It would be of interest to explore the robustness 

of this simple rule, compared with a full GVaR maximisation procedure. 

Hazard functions fall short as a candidate for possible loss functions or 

constraints. For normal distributions they are identical with the CVaR constraint. This 

is not true for fat tailed distributions, wherein statistical hazard severely understates 

the true economic hazard.  

Taken together, the above observations indicate that to assume normal 

distributions (as in the delta normal VaR methodology) may be dangerously 

misleading as to the binding status of constraints and their economic effect. This 

means that in any situation where fat tailed distributions are envisaged, an adequate 

GVaR analysis will require much more attention to distributional properties and 

implications. A simple check might be to compute the logistic upper limit and 

compare this with the variance that actually emerges from a delta normal based 

portfolio optimisation. 

The existence is noted of determinate GVAR-constrained portfolio solutions 

even where the objective is simply to maximise the expected return.  This suggests 

that GVaR optimisation might enable the burden or risk management to be devolved, 

as it were, to the GVaR constraints. The manager could proceed to act as thought he 

or she was risk neutral constrained within those bounds. 

It is difficult to make the GVaR choice as it stands outcome fully consistent 

with the classic Von- Neumann ~ Morgenstern  choice theory under risk. The problem 

arises because the effective or implied GVaR utility function is not monotonically 

increasing. It is open to the user to construct an explicit utility function in way that 

captures essential features of the GVaR constraints in the form of user-assigned 

numerical penalties for their violation. However, it is possible to modify the original 
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CVaR constraint to make it compatible with classical utility theory. In that case the 

programming problem itself will allocate the penalty values. 

Finally the imposition of GVaR constraints, or the equivalent utility function, 

raises issues about the optimal choice of portfolio hedges or other enhancements. 

Standard statistical hedging theory is based on least squares regression. However, a 

CVaR constraint implies the advisability of considering also the ordered mean 

difference of the proposed hedge against the base. The latter is a cumulative sample 

construct that harmonises with the censored mean that forms the statistical basis of the 

conditional value at risk. The shape and position of the hedge OMD against the 

portfolio to be hedged will indicate the value of the hedge, or which of several 

alternative proposed hedges are likely to be more effective. 
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Appendix I 
Illustrating the ‘dual’ optimisation problem  

(Section 2.3 refers) 

Reproducing problem (2b):  

vrRREiii
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min ,

α  

Figure 10 illustrates with three portfolios A, B. Consider the constraints: 

Portfolio A satisfies (i)-(iii); 

Portfolio B satisfies (i)&(ii) but not (iii); 

Portfolio C satisfies (i)-(iii). 

So the choice reduces to A and C, of which A is preferred because it has the smaller 

value at risk rL . 
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Figure 10: Minimising the value at risk 

 

Appendix II 
(Section III refers). 

The logistic distribution admissible set 

Proposition: 

If R has a logistic distribution, the censored mean function at R = r is given by 

)](1log(
)(

)( rF
rF

rr −+=
βγ . 

Proof: 

It is convenient to first establish the same result for the standardised 

distribution. Using the logistic property ))(1)(()( YFYFYf sss −= , 



 29

))(1log(
)(1

)(
)()( yFdY

YF
Yf

dYYFy s

y

s

s
y

ss −−=
−

==Φ ∫∫
∞−∞−

. 

Hence from equation (5) of the text,  
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Reverting to the original scale via 
β
µRr

y
−

= it follows from Lemma 1 that  
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and the desired result is a consequence. 

 

To explore  the admissible set, it is convenient to work in terms of 
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Recasting Proposition 2, the admissible set can be defined as follows: 

CVaR: 

(A22a) xe
x

vrL

−≤

−
−

1

)(
β  

VaR: 

(A22b) α≤x  . 

For the CVaR condition to hold at all we must have some point of intersection 

between the two functions in (A22a).  

Figure 11 sketches the various possibilities. Fix the significance level α and 

consider the effect of varying the variance-related parameter β.  For the given value of 

α there is some value βα  and associated STD σα  such that equality holds in (A22a). 

For this value the VaR and CVaR constraint hold simultaneously, i.e. both are 

binding. For β < βα, the VaR constraint will binding, but not the CVaR. For β > βα, 

things are reversed - the CVaR constraint is binding but the VaR is not. For β >βmax , 

there is no solution that satisfies both constraints.  

The critical value is given by .max vrL −=β  This gives us an upper bound for 

the allowable portfolio standard deviation as  
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which is expression (10) of the text. 

The VaR constraint (A22b) translates to the (µR ,σR ) plane as the linear 

constraint: 
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Figure 11: Existence of the logistic admissible set 

 

Appendix III 
(Section V refers). 

Proof of Proposition 2 of the text. 

Define the reverse hazard function 
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b
b = where Fb(r) is the distribution 

function of Rb evaluated at Rb = r,  and fb(r) is the corresponding density function 

evaluated at the same point. Then 
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Proof: 

The shortest demonstration is by using the generalised calculus associated with step 

and Dirac delta  functions ( see e.g. Lighthill 1959). We have for any variable R,  
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L rR
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−
δ , 

where δ(x) is the Dirac delta function. Thus 

(A23) )()]([)(1)(' LLbbLb rRrRRrSFRU −−−+−+= δµπµ . 

For any measurable smooth function g(x) (see Lighthill 1959), we have 
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∞

∞−

δ  , the ‘filtering property’. It follows that 
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which gives the denominator of (21). 

 From expression (A23),  

(A24)
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Now 
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Similarly, writing the joint density )()(),( bbbaba RfRRfRRf =  and using the 

filtering property of the Dirac delta, we get  

(A26) )(])[()]()[( LbLbLaLbba rfrRrRErRRRE =−=−− δ . 

Substituting (A25), (A26) into (20) of the text gives the numerator of the required 

result (21).  

 


