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Abstract

It is shown that the space of optimising portfolios for increasing risk averse utility functions
forms a one dimensional manifold, which is the envelope of the ordered mean difference utility
generators. The manifold also yields the set of second order stochastic dominant porfolios. The
optimising portfolio for any utility function can be obtained by solving the simpler problem for a
representative utility generator, which has just two linear segments. This can be done by using linear
programming, which in turn can be iterated to trace out the entire efficient set, giving a
computationally undemanding way of obtaining the stochastic dominance efficient set. The general
efficiency frontier shares the one dimensional property with the mean variance efficient frontier, but
unlike the latter, the associated portfolios do not form a convex set, so the two fund theorem of mean
variance portfolio analysis does not hold in general.
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I Introduction
The limitations of mean variance as a portfolio selection principle are well known, indeed have

been the subject of a literature over the past thirty years. It is difficult to render it consistent with
Von Neumann Morgenstern choice theory under risk. The conventional wisdom is that it will be so
if either the utility function is quadratic or the distribution of returns is normal. Objectors have
pointed out that quadratic utility functions are necessarily diminishing past a certain point (the
limited range problem); that subjective attitudes to low returns should surely be asymmetric with
those to high returns; and that quadratic preferences imply that absolute risk aversion is increasing in
wealth. Likewise, although the normality requirement was later weakened a little by Chamberlain
(1983), the chronic non normality of observed asset returns makes normal returns a shaky
foundation. Bigelow (1993) provides a good summary of this literature, as well as an attempt to
characterise preferences in a form consistent with the principle.Yet mean variance survives and even
flourishes among the practitioners. The problem is that as a practical portfolio solution, there is not
much to replace it, even though considerable progress has been made in recent years in developing
the stochastic dominance efficient portfolio set as a possible alternative (Bawa et al (1985), Yaari
(1987), Levy (1992, 1998), Shalit and Yitzhaki (1994), Post (2001)). Mean variance is readily
interpreted, and interpretable to the client. The mean variance efficient set is easily calculated, and
indeed in the ‘standard’ form (short sales allowed), has a convenient one dimensional property,
namely that all points along the efficient frontier are one dimensional, in terms of the shadow risk
free rate as parameter.

In the present paper it is shown that an almost equally simple expected utility maximising
portfolio solution process exists for any risk averse agent, with no limiting assumptions as to return
distributions or the nature of preferences. As with mean variance, the solution space is one
dimensional, and is easy to calculate - it can be done by standard linear programming with just two
linear segments.The developmental tool used to obtain and interpret the solution set is the ordered
mean difference (OMD), which can be regarded as casting portfolio theory and empirics in terms of
non parametric regression theory, unlike classical stochastic dominance, which considers only the
marginal distributions.Originally developed as a fund performance measure (Bowden 2000), OMD
theory has been shown to have a number of other potential applications. Post (2001) obtained an
OMD schedule as dual to a linear programing approach to stochastic dominance, while Bowden
(2002) noted that OMD provides a non parametric diagnostic procedure for the existence of CAPM
and the detection of historical pricing inefficiencies in a market equilibrium context. When applied
to individual portfolio selection, with an arbitrary utility function, the problem effectively reduces to
solving the corresponding portfolio problem for a representative OMD generator, which has a very
simple structure.Unlike mean variance, the OMD solution process has a close relationship with
second order stochastic dominance. In particular, the OMD generator utility functions can also be
regarded as generators for the cumulative areas involved in stochastic dominance, and the efficient
sets are identical. In addtion to the specifically portfolio aspects, the paper further develops utility
generator and spanning theory.

The underlying programme may thus be said to be one of replacing mean variance analysis by
something much more general yet operationally easy to implement. The principal results of the
present paper are as follows.

1. The space of utility maximising portolios forms a one dimensional manifold, and takes the
form of an OMD efficiency envelope or frontier. A mean variance efficiency frontier is a familiar
example of the one dimension aspect. The price of the extra generality to arbitrary utility functions is
that the manifold, while remaining one dimensional, is not linear, so that the efficient portolio set is
no longer convex and the two fund separation theorem of mean variance no longer holds. Dybvig
and Ross (1982) noted that the stochastic dominance portfolio set is not convex and this corresponds
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( see point 7 below).
2. The efficient frontier has an envelope relationship with a set of efficient utility generators.

A utility generator takes the form of a utility function with just two linear segments like the payoff to
the writer of a put option. Russell and Yeo (1988), also Bowden (2000), noted that the expectation of
these functions corresponded to the cumulated distribution functions, and the present paper exploits
this relationship in a portfolio context. The OMD envelope, or efficiency frontier, is the concave hull
of the utility generators.

3. The efficient frontier can easily be located by using linear programming (LP). Post (2002)
showed that LP can be used in a stochastic dominance context; see also Young (1998). The OMD
efficiency frontier is a simpler LP problem, having just two linear segments, and one does not have
to use large scale LP algorithms, a computational convenience to most users.

4. The space of risk averse utility functions is spanned by a set of efficient OMD utility
generators. Any risk averse utility function can be written as a weighted sum of the efficient
generators, the pattern of weights depending upon the individual’s attitudes to risk. This also gives
us a way of generating utility functions more or less at will, or of smooth approximation in terms of
linear or quadratic segments, extending the restricted range of quadratic utility functions, should one
desire to use these for any purpose.

5. The spanning property will mean that the individual in his or her portfolio selection will
act as though it was done with respect to a single generator, so that for such purposes, any utility
function can effectively be replaced by one consisting of just two linear segments as above. In turn,
this means that each individual will plot as a particular point along the OMD envelope, and
revelation experiments can be designed to find out just where.

6. In the absence of further portfolio constraints such as nonnegativity, the optimal portfolios
satisfy the pencil property, which means that when plotted against the optimising portfolio, all OMD
schedules must cross the horizontal axis together at the same point. This property was noted by
Bowden (2002) in a CAPM market equilibrium context. The present paper shows it is true of
portfolio selection at an individual level.

7. The OMD envelope is associated with an OMD efficient set, and the latter is identical
with the second order stochastic dominance (SSD) efficient set, which is thereby revealed to be one
dimensional, with associated features such as the pencil property. As is well known, stochastic
dominance involves a correspondence between efficiency according to some utility function ( the
utility version) and a majorisation relation in terms of the distribution functions ( the statistical
version). The precise nature of this correspondence depends upon the underlying class of utility
functions ( e.g. Dybvig (1988 appendix)). We shall take this to be the class of utility functions that
are strictly increasing and concave, with marginal utility tending to zero as wealth or returns become
infinitely large; augmented by the utility generators where necessary to complete the statistical
correspondence. This line of attack reinforces a connection of stochastic dominance with convexity
theory noted by Pec̆arić et al ( 1992, ch 12). Indeed, many propositions about SSD are provable from
convexity theory without much recourse to statistics.

The scheme of the paper is as follows. Section II establishes notation and briefly reviews the
generalised functions used in OMD analysis, including the utility generators. It moves on to develop
the utility spanning theory. Section III establishes the OMD envelope and its properties. Section IV
proves that the optimising solution for a arbitrary risk averse utility function must lie on the resulting
frontier, and shows that the OMD efficient set and the SSD efficient set are one and the same.
Section IV turns to computation, and shows that LP methods can be used to obtain the efficient
frontier. Section V offers some concluding remarks and considers further applications.
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II Utility spanning
A Notation
(a) Returns. Individual asset returns are written in lower case as ri for asset i = 1...n, or

simply r as a representative asset. Often we use the return symbol (r or R) as a convenient shorthand
for the relevant asset; thus ‘asset r’ means the ‘asset whose return is r’. No risk free rate is assumed,
so this is going to be the standard practitioner portfolio construction. The joint distribution function
Φr of underlying asset returns is taken to be of full rank, and we assume it has a density φr.No
assumptions are made about the ambient market equilibrium or disequilibrium, so CAPM or other
models of market equilibrium are not assumed. Portfolio returns are written in upper case as
R = ∑ i xiri, where the xi are collectively a set of portfolio proportions such that
x ∈ X = x : ∑ xi = 1, the feasible set of portfolios. The domain D of portfolio returns will
usually be taken as RL<R< ∞, where the lower limit RL may itself be −∞. For instance, the
logarithmic utility function log(1+R) or the square root 1 + R will require RL > −1, but others
allow an infinite lower return.Often a dummy portfolio return denoted P will be employed. This will
have the same domain of definition as R, so that PL = RL.

(b) Utility functions. The investor has a Von Neumann-Morgenstern utility function of the
general form U(W,W0), where W0 is opening wealth and W is the result from investing that wealth.
W and W0 are related by W =W0(1+R), where R is the portfolio rate of return. Initial wealth W0 can
enter additionally via wealth effects, likewise past wealth via habit effects, as can other
environmental modifiers to the individual’s preferences. In what follows, initial wealth W0 and any
other modifiers will be taken as a given datum and notationally suppressed. The resulting utility
function is written as U(R). The use of return R to proxy outcome wealth is simply a matter of
contextual simplicity and much of the ensuing spanning theory will apply equally to more general
contexts.The utility function U will be taken as strictly concave and increasing, so what follows
applies to a risk averse investor with increasing utility of money. It is assumed that U(R) is
differentiable to order 2 and also that limR→∞ U′R = 0, i.e. marginal utility tends to zero. Denote by
Ψu the resulting set of utility functions.

(c) The ramp function as utility generator.
For a given return number P, the ramp function UPR is given by

UPR = R − PSFP − R,

where the step function SFP − R can be defined as

SFR − P = 1 ; R > P
= ½ ; R = P
= 0 ; R < P.

Effectively, UPR = minR − P, 0. However, it is desirable to preserve the step function expression
in order to harmonise with operations involving distribution functions. Indeed, all the theory that
follows can be expressed in terms of the Temple-Schwartz generalised distribution theory, for which
see Lighthill (1959), Antosik et al (1973),or Vilenkin and Klimyk (1995); the same convenience
applies to classical stochastic dominance.

The ramp function will play the role of a utility generator. It is sketched in figure 1 for different
values of the parameter P; the latter may be called the focal point or node of the generator.Viewed as
a utility function, the risk aversion of the generator UPR relative to a fixed return distribution
diminishes as P increases from P to P′. It will be observed that for fixed P, UPR is concave in R,



5

though not strictly so. It is not technically differentiable at R = P. However, we can define the
derivative in the sense of Temple Schwartz theory as UP

′ R = 1 − SFR − P = SFP − R. The
collection of generators UPR;PL < P < ∞ will constitute a useful completion of the chosen set
of utility functions as specified under (b) above.

P

R

U

P'

UP(R) UP'(R)

Focal points

Figure 1: The OMD utility generator
Denote by FR;xor just FR the distribution fucntion of portfolio returns for a given portfolio

x, and let fR be the corresponding density. The utility generators are connected with stochastic
dominance theory via the relationship

EUPR = −ℑP = −∫
PL

P
FRdR, 1   #   

where the function ℑP will be recognised as the stochastic dominance cumulator, namely the area
underneath the distribution function up to the chosen point P. Also useful is the running or
truncated mean function defined by

μP = 1
FP ∫PL

P
fRdR,

which is the average over values of R less than or equal to the given value P.

B Utility spanning
Although the utility generators UP(R) are themselves non differentiable and of very simple form,

they have some useful spanning properties. Under mild regularity conditions, we can show that the
expected utility of any otherwise arbitrary utility functions U(R)∈ Ψu can be written as a weighted
average of the utility generators:

EUR = α0 + α1 ∫
PL

∞
wPEUPRdP ;wP  0,∫

PL

∞
wPdP = 1, 2

  #   

where α0 and α1 >0 are some constants, allowable under Von Neumann Morgenstern choice
theory.This turns out to be true, with the choice wP  −U′′P.In turn, this implies (in section III)
that the portfolio theory of Ψu reduces to that for the representative generator. However, we shall
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first demonstrate the spanning property.
Lemma 1
Suppose PL<R Pa , some finite upper limit. Then relative to some fixed point R0 such that

PL < R0  Pa,

UR − UR0 = U′PaR − R0 + ∫
PL

Pa
−U′′PUPR − UPR0dP . 3

  #   

Proof
Simple integration by parts shows that

UR = UPa + U′PaR − Pu + ∫
PL

Pa
−U′′PUPRdP .

Setting R = R0 and subtracting yields the desired result (3).
□
In a portfolio context, the return R = Rx depends upon the chosen portfolio x. Sometimes we

shall emphasise this by writing the expected utility as EUR;x , but it will be taken in what
follows that this dependence holds even where not explicitly annotated as such.
Proposition 1
Suppose the utility function U∈ Ψu and distribution of returns are such that both ER

andEUR exist, uniformly in x∈ X. Then

EUR = α0 + α1 ∫
PL

∞
wPEUPRdP ;wP  0,∫

PL

∞
wPdP = 1,

where α0 and α1 > 0 are constants and wP  −U′′P.
Proof

EUR − UR0 = ∫
PL

Pa
UR − UR0fRdR + ∫

Pa

∞
UR − UR0fRdR.

From the given hypotheses, the second term on the RHS must tend to zero uniformly in x as Pa → ∞.
Substituting expression (3) into the first RHS term and letting Pa → ∞ gives the required result,
noting that UR0 and U′RL will just amount to constants.

□
Remarks:
(a) The condition that for any fixed portfolio x,ER;x or EUR;x converge uniformly in x

should not be taken as a necessary limitation on the portolio mean, which can indeed be unbounded
over different portfolio choices x, just as for mean variance analysis.It refers instead to the
convergence of the improper intergrals used to obtain the expected values, and is no more than what
is required by standard portfolio theory.

(b) The spanning condition as given relates to expected utility. However by differentiating
expression (3) we see that pointwise in R,

U′R = ∫
PL

∞
−U′′PUP

′ RdP 4,   #   

which means that the spanning property also applies to marginal as well as expected utility.Property
(4) can be used to simplify a number of the proofs of OMD properties in Bowden (2000).
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III Generator solution properties
A Properties of expected generator utility
Expected generator utility is defined for portfolio x as

VP;x = EUPR;x = −ℑP;x , 5   #   

In what follows, we shall often refer to the function VP;x as the ‘SSD cumulator’, or just
‘cumulator’, for the given portfolio, taking the negative sign as understood. For fixed x, the
stochastic dominance cumulator equivalence (5) shows us that VP;x will be decreasing, such that
0 > VP,x > −∞, and C2 in P. For fixed P, UPR is a concave function of R = x ′r,which is linear
in elementary returns r. Hence it will be true that VP; x will be concave in x .The following result
shows that at least for P≠ 0, it is strictly concave.
Proposition 2
Suppose the distribution Φr of returns is of full rank. If P ≠ 0, the Hessian H of VP; x with

respect to x is negative definite, everywhere in X.The Hessian is negative semidefinite for P = 0.
Proof: See Appendix A.
□

Corollary
If P≠ 0, then the portfolio optimising solution is unique and a parametric function x̃ = x̃P of P.

If in addition V(P;x) is C2 in P, then x(P) is C1.
Proof

The uniqueness follows from the strict concavity of VP;x with respect to x, and the
convexity of X. The existence and C1 property of xP follows from the implicit function theorem
and the first order optimising conditions.

□
Remark: The behaviour at P=0 is not troublesome; at worst, it is associated with the possibility

of a point of inflexion; see Bowden (2003,figure 2) for an example in the context of hedging theory.

B The OMD envelope
We can now consider what happens to the optimising generator solutions as the focus P varies.

Definition:
The OMD envelope, or the OMD efficient frontier, is the function vP defined by

vP = VP; x̃P = EUPR;R = x̃P ′r . 6   #   

It follows from the envelope theorem of concave programming1 footnote that vP is the
mathematical envelope of the functions VP,x. In other words,

vP  VP;x, allx; 7a

v ′P = ∂VP; x̃
∂P . 7b

  #   

  #   

Figure 2 shows how things must look. Let x0 = x̃P0) be the optimum portfolio at P = P0 , so that
v0 = VP0, x̃P0 . For any other portfolio proportions x1 say, we must have VP0,x1 < v0 . The
same property will be true of portfolio x0 at P = P1 in relation to v1 = VP1, x̃P1 .The individual
schedules VP;x have slope asymptotically -1, as does the envelope itself. In mathematical terms
(Rockafeller (1970 ch1 §5)), the OMD envelope is the concave hull of the utility generators, and its
epigraph is the union of those for the individual generators.
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V(P,x0)

V(P,x1)

v(P)

P

E[UP]

P0 P1

Figure 2: The OMD envelope vP
Save in one special case, the OMD envelope does not in itself represent the expected utility from

any one portfolio. That is, there does not exist a portfolio xd such that vP = EUPR;xd. One
could ask what would happen if the portfolios over differing P ( e.g. x0 and x1 ) were insensitive to
P. In this case the local portfolio plots of figure 2 would run together and merge with vP. The
interpretation is that the common portfolio xd would optimise EUPR for every value of P. This is
the absolute stochastic dominance criterion.

Figure 3 illustrates the OMD envelope in terms of second order stochastic dominance, making
use of expression (5) above. Figure 3 is effectively figure 2 rotated 1800 about the horizontal axis. In
this form it will be familiar as the standard SSD construction involving the cumulated distribution
functions, in this case of the portfolio returns.The OMD envelope is that of the SSD cumulators
applied to the respective optimal x̃P portfolios. The nature of the construction suggests that the
OMD envelope will generate the SSD efficient set, and this turns out to be true.
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v(P)ℑ(P;x1)

ℑ(P;x0)

Cum F(P)

PP0 P1

Figure 3: The OMD envelope in stochastic dominance terms

C The pencil property
The ordered mean difference schedule τiP (Bowden 2000) for return ri against a benchmark R

is defined by

τiP = Eri − RUP
′ R

EUP
′ R

= EPri − R , 8   #   

where the operator EP. denotes the running mean difference obtained by first ordering the paired
observations by increasing R values, then for any P, taking the average difference corresponding to
values of R less than or equal to P.

For a given P0, the first order conditions for the generator problem reduce to
Eri − RUP0

′ R = 0, for all i.Measured against the optimum portfolio R̃0 = x̃P0 ′r as
benchmark,this means that all OMD schedules τiPcross the horizontal axis at a common point,
namely P0. We call this the pencil property. Figure 4 illustrates. The OMD schedules may not
necessarily be monotonic as illustrated and could have individual multiple crossing points2.By a
process of extension, all points along the OMD envelope must share the pencil property. The OMD
efficiency frontier is generated by portfolios R̃ such that when measured against R̃P, all OMD
schedules cross at the common point P.
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P
P0

τ(P)

r1r2

r3

r4

OMD plots of assets #1-4 returns 
against portfolio return R(x˜(P0)).

Figure 4: Pencil property of optimal generator solutions

D Inefficient portfolios
Inefficient portfolios will be those where the cumulators V(P,x) plot entirely inside the OMD

frontier, illustrated in figure 5 below. There exists no point of tangency, so that it is not true that x =
x̃(P0), for some P0 . However, given an arbitrary portfolio x it is always possible to bound the
corresponding cumulator VP,x by means of of a weighted average of the efficient cumulants
VP, x̃P0.

To do this, we introduce the idea of a weighting function wmP analogous to a probability
density with wmP ≥ 0 and ∫

D
wmPdP = 1.Consider a weighted sum of the form

FmR = ∫
P0
wmP0FR; x̃P0dP0 ,

in which FR; x̃P0 is the distribution generated by the efficient portfolio at P0 .Evidently FmR is
a mixed distribution, though not necessarily one corresponding to any single portfolio. It can instead
be regarded as generated by a variable porfolio, in the following sense. The cumulator for the
mixture may be written as

VmP = ∫
P0
wmP0VP, x̃P0dP0 .

As a function of P0, for fixed P, the element VP, x̃P0 is concave in P0 with a unique maximum at
P0 = P. Using the second mean value theorem of integral calculus applied to the right hand integral,
we can therefore write

VP = VP, x̃πP ;πP ≤ P. 9   #   

We can interpret this as saying that the cumulator constructed from any mixture can always be
regarded as a cumulator generated by a variable portfolio, if not a fixed one. By altering the weight
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function we can alter the mapping defined in (9) at will.
Now let the cumulator VP,x be generated by some arbitrary portfolio x. Given any return

number P, we have VP,x < VP, x̃P, and from the continuity of xP there must exist P0 < P
such that V P,x = VP, x̃P0. Figure 5 illustrates,with the tangency point at A. Writing
P0 = πP, we must have πP ≤ P, as above. Thus we can write

VP,x = VP, x̃πP ;πP ≤ P.

This is again of variable portfolio form, with the portfolios drawn from the efficient frontier.We can
always find some weighting function wxP with associated mapping πxP  πP, and by means
of this bound the given generator cumulator by a weighted sum of the efficient portfolio cumulators.
This may be summarised as follows.
Proposition 3
Let portfolio x be arbitrary. Then we can always find a weighting function wxP0 , in general

depending upon x, such that for any return number P,

VP,x ≤ ∫
P0
wxP0VP, x̃P0dP0. 10   #   

Remark: If portfolio x already belongs to the OMD efficient frontier, then x = x̃P0x for some
P0x. In this case, wxP0 = δP0 − P0x, the Dirac delta function3 centred at P0x , and equality holds
in (10).

V(P,x˜(P0)

V(P,x˜(P))

P

E[UP (R)]

P0 P

OMD envelope 
v(P)

V(P,x)

πx

V(P,x)

A

Figure 5 Inefficient portfolio relationship to frontier
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IV General utility functions
A The envelope as optimal
We can now exploit the above generator/cumulant properties to derive the principal theoretical

result of the paper, namely that the OMD envelope must contain the solution for any U∈ Ψu.
Suppose that UR is such a utility function , and let x∗ be its optimising portfolio solution. The
theorem that follows shows that this portfolio must plot somewhere along the OMD envelope. In
other words, there must always exist a return number P∗ such that x∗ = x̃P∗ .
Theorem 1
For any utility function U∈ Ψu , the optimum portfolio x∗ = x̃P∗ for some return number P∗

.The latter is explicitly given by

P∗ = arg max
P0

∫
P
wuPVP, x̃P0dP,

where the weighting function wuP is proportional to U′′P, the second derivative of the given
utility function at R = P.

Proof
The objective is to maximise EURx, subject to the adding up constraint 1′x = 1. Using

expression (2) of section II we can replace this with the equivalent problem

maxx Vx = ∫
P
wuPVP,xdP .

Suppose P∗=arg maxP0 ∫P wuPVP, x̃P0dP ; that is, x̃P∗maximises Vx over x ∈ XOMD.For
an arbitrary portfolio x, we have

Vx = ∫
P
wuPVP,xdP

 ∫
P
∫
P0
wuPwxP0VP, x̃P0dP0dP from proposition 3

= ∫
P0
wxP0∫

P
wuPVP, x̃P0dPdP0

≤ ∫wuPVP, x̃P∗dP

= Vx̃P∗ .

Thus given the optimising portfolio x∗ is unique, it must correspond with x̃P∗ ).
□

Corollary
The OMD schedules of the elementary assets have the pencil property with respect to the

optimum portfolio R∗.

B The OMD and SSD efficient sets
As mentioned in the introduction, stochastic dominance comes in different specifications, and

the stochastic dominance portfolio set will reflect the distinctions. However, we shall take the
second order stochastic dominance efficient set of portfolios XSSD as being the set of portfolios
undominated in Ψu. Thus x ∈ XSSD if and only if there does not exist another portfolio xu such that
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Vxu > Vx for any utility function u ∈ Ψu. It follows from the preceding development that
XSSD = XOMD ; the OMD efficient set and the SSD efficient set are one and the same.

This means that we can locate the SSD set with methodology that locates the OMD envelope.
Moreover, the SSD set is recognised as being one dimensional: the solution to every portfolio
maximisation problem must lie in this set and likewise be one dimensional. In addition, the
elements of the SSD set all exhibit the pencil property and other properties associated with the OMD
envelope. For this reason we can refer to the OMD envelope simply as the efficient set, with no
further qualification.

C Tests for efficiency
Given a specific portfolio, one might wish to test whether it belongs to the efficient set. The

foregoing development suggests two criteria for a given portfolio xg to be efficient:
(a) Compute the OMD schedules for the invidual assets and check whether these cross at any

common point, or equivalently whether ‖τP;Rg‖ = 0, for any value of P.
(b) Plot the function VP;xg = EUPRg. If this lies wholly inside the OMD envelope,

then the given portfolio cannot be efficient.

IV Computation of the efficient set
A Sample aspects

In practice one will have available a time series of sample observations for t = 1,2, ...T on the
elementary returns, and the efficient set is found by maximising the sample expected generator
utilities for sucessive values of P. The relevant sample statistics are:

1. Sample expected utility for portfolio R:

ÊUP = 1
T ∑

t=1

T

Rt − PSFP − Rt . 11a   #   

2. Sample OMD ordinate at P for asset i :

τ̂i = τ̂iP = 1
NP ∑

t=1

NP

rit − Rt ;NP = #t : Rt  P . 11b   #   

The immediate empirical tasks are to find the portfolio x̃P associated with the OMD
generator UPR and to graph the associated OMD envelope or efficiency frontier vP as P varies.
In principle, a variety of techniques is available to solve the portfolio problem. Techniques of
nonlinear programming do not appear to work well, especially those based on the Hessian, though
convergence outcomes have been obtained with conjugate gradient methods, provided the starting
point is not too far from the optimum. Hower, it turns out that linear programming methods are
applicable, as the ensuing development shows, and experience has shown that this works well, even
for quite large data sets.

B The Linear programming solution
Figure 6 shows the linear programming nature of the problem. For a representative observation,

the portfolio mean is x ′r t and the utility element is θt = x ′r t − PSFx ′r t − P. We must have
θt  0 and θ  x t′r t − P. As such, θt could in principle lie anywhere within the feasible set (shaded
boundary), but we shall see that at the LP optimum, it must lie on one or other of the two boundaries,
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as UPRt requires.

R
P

Feasible set for θ tx'r t
– P
 =
 0

Figure 6: OMD linear programming feasible set
The full LP primal can be written as follows. Let A = rt,i denote the Txn data matrix of

observations on the asset returns.

max
x,θ

eu = 1
T 1

′θ subject to : 12

θ  0 λ1

θ − Ax  −P1 λ2

1′x = 1 λ3

x free.

  #   

The dual to problem involves a dual vector partitioned conformably with (12) as
λ ′ = λ1′ ,λ2′ ,λ3, and reads:

min
λ

eu = −Pλ2′ 1 + λ3 subject to : 13

λ1 + λ2  1
T

− A ′λ2 + λ31  0
λ  0 .

  #   

It is clear from the first constraint of (13) that at least one of every pair λ1t,λ2t must be strictly
positive at the optimum, and hence that θt lies on one or other of the branch boundaries of the
feasible set as illustrated in figure 6. Hence the utility element UPRtis correctly captured.

Figure 7 illustrates an empirical OMD efficiency frontier, plotted at intervals of 0.025% on an
annual return basis. The data is a teaching set from Lorimer and Rayhorn (2002) consisting of 59
monthly returns from 1995-1999 on 14 stocks chosen as representative of the industrial coverage in
the S&P 500. The LP routine used is the revised simplex algorithm DLPRS from the Fortran
IMSL(math) library. The empirical OMD schedule generally conforms to the sketch of figure 2 or 5,
except that it has a lower zero deriving from a finite data set.Note that its slope is asymptotically -1,
as the theory requires.
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Empirical OMD efficiency frontier
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Figure 7: Empirical OMD efficiency frontier
The implication is that faced with this data set of returns, the efficient portolio x∗ for every risk

averse investor would lie somewhere along this one dimensional manifold, in the sense that there
would be some point P∗ such that the associated efficient portfolio x̃P∗ = x∗.

The OMD envelope can be used as a quick internally generated check for the existence of
universal stochastic dominance. Such a single portfolio, if it exists, will have the property that it is
optimal for all P. On the other hand if the optimal generator portolios vary with P, this will indicate
that an absolute SSD relationship does not exist among the asset returns of the chosen data set. The
computations associated with Figure 7 indicated that the optimal portfolios did differ systematically
as P varied, so that there is no stochastic dominance in the Lorimer-Rayhorn data.

V Concluding remarks
A Applications
The one dimensional nature of the OMD efficient frontier can be exploited in a number of ways.
(a) It is identical with the stochastic dominance frontier associated with Ψu. Solving the

associated LP problem as in the preceding section is an easy way of obtaining the SSD efficient set,
undemanding in its computational aspects.

(b) Given a specific utility function, one can proceed to replace the full n dimensional
problem maxxEURwith search based on just the one dimension. Solve the LP problem to get the
portfolio associated with each P. Insert x̃(P) into the given expected utility function and repeat along
the P dimension.

(c) A further potential application is where one does not know the agent’s utility function in
advance. In investment advisory work, the mean variance frontier is commonly used as a portfolio
selection revelation device. The client is presented with a range of alternative portfolios along the
frontier, together with the corresponding means and standard deviations, as representing the trade off
between apparent expected reward and risk. He or she selects the particular point on the basis of a
preferred combination of expected reward with risk. Given the well known limitations of mean
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variance analysis, it might be possible to devise a revelation experiment to locate the preferred OMD
efficient portfolio, which is not subject to these limitations. Appendix B sketches out a possible
revelation experiment for this purpose.

(d) In some circumstances, one is interested to know whether a preferred portfolio strategy is
sensitive to different choices of the underlying utility fucntion. An example arises in hedging. If
returns of the portfolio to be hedged and the proposed hedge instrument are jointly normal, then a
linear hedge exists that remains invariant to the manager’s utility function. In general, however,
return distributions are not normal, so the issue arises as to whether a given hedge ratio (e.g. that
derived from OLS) remains optimal under different utility functions. In this case one can exploit the
semi parametric nature of the utility generators, and evaluate the optimal hedge ratio as a function of
P, thereby deriving conditions under which invariance will hold (Bowden 2003).

B Comparative properties
Empirically, it is possible to test whether any given point along the mean variance efficient

frontier is also OMD or SSD efficient ( just evaluate the equivalent margins and check the pencil
property). For the the Lorimer Rayhorn data used in section IV the answer is negative.

However, mean variance analysis does have one useful property, namely that the efficient set is
convex. Thus if x1 and x2 are two MV efficient portfolios, so is λx1 + 1 − λx2. The convexity
arises because the MV efficient set is linear. Indeed, if μ and Σ are respectively the mean and
covariance matrix of security returns, then x  Σ−1μ − ρ1, where ρ is an actual or notional risk
free rate that serves parametrically to trace out the MV efficient frontier. In other words, we can
write x = xρ, tracing out a manifold which is not only one dimensional but also linear affine. It is
the convexity property that leads to the two fund separation theorem, which says that any efficient
portfolio can be generated from just two, such as the risk free asset and the market portfolio in a
capital market equilibrium context.

Like the MV frontier, the OMD efficient frontier forms a one dimensional manifold, but it is no
longer necessarily linear; nonlinearity is the price paid for the extra generality. Correspondingly,
convexity is no longer a general property, and the two fund theorem will not hold, in this respect
reflecting the findings of Dyvbig and Ross (1982).

C Incidental applications
The utility spanning theory of the present development can itself be applied to derive flexible

representations of utility preferences. The expected utility spanning properties of section II indicate
that for all practical purposes we can consider utility functions made up of weighted combinations of
the OMD generators, i.e. of the form

UR = ∫
PL

∞
wPUPRdP ;wP  0,∫

PL

∞
wPdP = 1,

for some suitable choice of the weight function wP. For example,we could let wP be the
ordinates of some probability density function. This would result in bounded marginal utility, which
may or may not be viewed as a limitation. However, it does enable one to draw on a range of flexible
representations associated with distributions such as the Weibull, or extreme value families. It also
ties in quite nicely with the interpretation of the risk averse individual as made up of an assemblage
of ‘gnomes’, one for each value of P. A more risk averse investor would have more gnomes in low
values of P. Another possibility is that one can build utility functions up from elementary
components such as linear or quadratic segments, which may be useful in reducing the expected
utility maximisation to a linear or quadratic programming problem. This may be useful in correcting
an inherent defect of a simple quadratic utility function, namely that it diminishes in wealth after a
certain point. Grafting can be done with the aid of improper probability distributions of the kind used
in Bayesian analysis.
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The device of a discrete probability density {wk;k = 1,2, ..K can be used to approximate a
desired utility profile, perhaps initially drawn by freehand, by a series of linear segments. Thus for a
series U(Ri), 1=1,2,...,N, of given ordinates and any given number K of segments, one can set up a
regression model:

Ui = URi = a +∑
k
wkUPkRi

and find the best fitting weights wk by OLS or some form of weighted least squares.Trial plots show
that the approximation becomes quite smooth after a surprisingly small number of segments.

Appendices

A Proposition 2
Suppose the distribution Φr of returns is of full rank. If P ≠ 0, the Hessian H of VP; x is

negative definite, everywhere in X.The Hessian is negative semidefinite for P = 0.
Exposition of the proof is made easier by calling on some generalised function calculus. The step

function was defined in section IIAc of the text. In addition we make use of the Dirac delta function,
defined as

δR − P = 0 ;R ≠ P

∫
PL

∞
δR − PdR = 1.

The unit step function may be viewed as a limiting case of a continuous distribution function such as
the normal distribution with mean P and a variance that tends to zero, and the Dirac delta as the
corresponding limiting density. The Dirac delta has the ‘filtering property’ that for any suitably
smooth function fR, ∫

G
fRδR − PdR = fP and ∫

G
fRδnR − PdR = −1nfnP for the

derivatives. Similarly, if fR is a probability density, ∫
G
SFP − RfRdR = FP, the

corresponding distribution function. Lighthill (1959) has a convenient summary of such
results.Notice also that UP

′ R = SFP − R − R − PδP − R, and if fR is a probability density
EUP

′ R = FP.
Proof of Proposition 2

Expected generator utility is given by

VP;x = ErR − PSFP − R

= ∫ ... ∫
Gr

x ′r − PSFP − x ′rφrdr ,

where φ is the density of returns r, which have domain G(r). Using the rules for differentiating
generalised distributions,

∂V
∂x = ∫ ... ∫

Gr
rSFP − x ′rφrdr

H = ∂2V
∂x∂x ′

= −∫ ... ∫
Gr
rr ′δP − x ′rφrdr .

Let z be any non zero vector. Then
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z′Hz = −∫ ... ∫
Gr

z′r2δP − x ′rφrdr ,

confirming that H is at least negative semidefinite. For z′Hz to be zero would require the following
to be true:

x1r1 + ... + xnrn = P A1a
z1r1 + ... + znrn = 0 , A1b

with (A1b) holding almost everywhere in r .
Suppose P ≠ 0.Choose a non zero element of z; suppose this is zn .Multiply (A1a) by zn, (A1b)

by xn and subtract. We end up with

z̃1r1 + ... + z̃n−1rn−1 = znP , A2

where z̃i = xizn − zixn .Equation (A2) must hold almost everywhere in r1, r2...rn−1 , implying an
exact linear relationship. It can only be the case if the distribution is of less than full rank, violating
the stated assumptions.

If P = 0, then the choice z = x will plainly make z′Hz = 0 without violating the full rank
assumption.

□

B Revelation experiments
As mentioned in section V, the task is to narrow down the efficient frontier in accordance with

the risk preferences of a given investor. A potential starting point is the idea of the shadow risk free
rate. Each point P along the OMD envelope has a different shadow risk free rate, obtained as
ρP = μP;Rx̃P = ER̃UP

′ R̃/EUP
′ R̃; where the running mean function μ isdefined in

section II. The idea is to identify the investor’s representative P via the associated risk free rate. The
steps might run as follows:

(a) For a trial P, chosen on the high side, find ρP as above. Also present to the client a plot
of the density of portfolio returns , or alternatively the distribution function FR̃, or its complement
1 − FR̃, in the form of a readily understandable schedule.

(b) Ask the client to imagine the opportunity to invest risk - free at the rate ρ.Then reduce ρ
by just a little and ask the client if he or she would still want to hold some of the risk free asset at the
new rate. If the answer is still yes, reduce P.

(c) Repeat until the investor is just willing to finally abandon the risk free asset and hold
R̃ = RP alone. The corresponding value of P is that required, and the optimal portfolio is x̃P.

Less risk averse investors will stop earlier, at a higher ρ value, than the more risk averse, so their
effective P is higher. The reader may check that this is so off a standard mean variance construction ,
in which context the actual or notional risk free rate parametises the efficient frontier. The shadow
risk free rate is higher for less risk averse investors. As a test of consistency, one could alternatively
present sucessively higher values of the risk free rate, noting the point at which the investor wishes
to commence adding the risk free asset.

Very possibly one could design alternative revelation experiments. An objective in doing so
should be to present the investor with a complete picture of the trial distribution of portfolio returns,
allowing asymmetries to be taken into account, rather than just limiting information to the mean and
variance at each stage.
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Footnotes
1As X = x : x ′1 = 1}, the first order conditions give ∂V

∂xj
= λ, a Lagrange multiplier. As

dv
dP = ∂V

∂P +∑ j
∂V
∂xj

∂xj
∂P and∑ ∂xj

∂P = 0 , it follows that dV
dP = ∂V

∂P .
2Note that the pencil property may not necessarily hold in the presence of additional portfolio

constraints. For instance, with additional nonnegativity constraints, the first order conditions reduce
to Eri − RU′R = μi where μi is a Kuhn Tucker multiplier such that μixi = 0.So the τi values
would not be zero at the optimum.

3See Appendix A for the precise definition of the Dirac delta function used.


