
SPlaC package v1.0

guide and supplementary information

Eric Le Ru and Pablo Etchegoin

December 3, 2008

Contents

1 Introduction 3
1.1 License . 3
1.2 Description and overview . 3
1.3 Installation . 4
1.4 Disclaimer . 5
1.5 Feedback . 5
1.6 Getting started . 5

2 A few Matlab technicalities, tips, and tricks 6
2.1 Vectors and matrices . 6

2.1.1 General remarks . 6
2.1.2 Carrying sums using matrix operations 7

2.2 Spherical Bessel functions and numerical issues 8
2.2.1 Computation of spherical Bessel functions 8
2.2.2 Check for numerical problems in the Mie theory codes

of SPlaC . 9

3 Mie theory codes: plane wave excitation (PWE) 10
3.1 Angle-dependent functions for PWE 10
3.2 Radial arguments of VSHs . 11

3.2.1 Computation . 11
3.2.2 Values at origin . 12
3.2.3 Far-field asymptotic expansions 12

3.3 VSH expansions for PWE . 12
3.3.1 Grouping of |m| = 1 terms 12
3.3.2 Representation of the field in our PWE implementation 13
3.3.3 Equivalence with the treatment of Ref. [1] 14

3.4 Enhancement factors for PWE 15
3.4.1 Local field intensity EFs 15
3.4.2 SERS EFs . 16

1

3.5 Radiation (scattering) profile for PWE 16

4 Mie theory codes: dipole emission 17
4.1 General remarks . 17
4.2 Angle-dependent functions for dipole emission 17
4.3 VSH expansions for dipole emission 18

4.3.1 General expression for m = 0 18
4.3.2 Representation of the field in our implementation of

dipole emission . 19

5 Mie theory codes: spherical multilayer systems 19

2

This guide is part of SPlaC v1.0, the SERS and Plasmonics Codes pack-
age for Matlab. More information can be found on the website:

http://www.victoria.ac.nz/raman/book/codes.aspx

The first section contains general information on the package and is es-
sentially a repeat of the content of the readme file. The rest of this guide
contains some supplementary information on specific aspects of the imple-
mentation, in particular in the relation to Mie theory. Note that many of
the concepts and formulae used in these codes are discussed in the book:
E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman
Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).
These will not be repeated here.

Note finally that the codes can be used independently of the book or
even of this guide. These are only required for a detailed understanding of
the codes and possibly for adapting/rewriting them to specific needs.

1 Introduction

1.1 License

This package, including all its files and content are under the following
copyright: 2008 Eric Le Ru and Pablo Etchegoin.

The package may be used freely for research, teaching, or personal use.
The unmodified complete package (including the README files) may be
re-distributed and freely exchanged for pure research purposes, but cannot
be commercialized or used for commercial/government purposes.

If research results obtained using the package are published in the scien-
tific literature (or in any other form), the package should be appropriately
referenced through its link to the book:

E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman
Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).

1.2 Description and overview

This package contains a suite of Matlab codes to carry out various EM
calculations relevant to SERS and plasmonics. Most of the underlying theory
and relevant formulae are described in the aforementioned book (see license
above). The relevant equations and sections from the book are referenced
when possible in the “inline comments”to the codes. However, the codes
can also be used independently of the book (most of the theory can also be
found in standard EM textbooks).

This package includes:

3

• 30 self-running MatLab codes (functions) to reproduce most of the
“theoretical” figures of the book
(in directory BookFigures).

• Analytical expressions for the optical properties of silver (Ag) and gold
(Au) in the visible/NIR region
(in directory General).

• Codes to evaluate reflection/refraction at multilayer planar interfaces
(in directory Plane).
These include local-field calculations and example scripts for Surface
Plasmon Resonances (SPRs) in the Otto and Kretsmann configura-
tions.

• Ellipsoids in the electrostatics approximation
(in directory Ellipsoids).
These include local-field calculations relevant to SERS (average and
maximum enhancement factors) for prolate and oblate spheroids, and
for general ellipsoids.

• Mie theory codes for plane wave excitation
(in directory Mie/PWE).
These include radiation profile and local field calculations along with
plotting tools for visualization.

• Extension of Mie theory to dipolar emission
(in directory Mie/DIP).
These include radiation profile and radiative and non-radiative en-
hancements calculations, along with plotting tools for visualization.

• Extension of Mie theory to spherical multilayers (e.g. coated sphere)
(in directory Mie/MUL).
These codes reuse many of the codes in Mie/PWE and Mie/DIP.

• Scripts to obtain useful symbolic expressions related to Mie theory
(in directory Mie/SYM).
The Matlab “symbolic toolbox” is necessary to run these.

1.3 Installation

• Unzip the SPlaC.zip file, keeping the subdirectory structure for clar-
ity.

• Then set your Matlab current directory to SPlaC and run the InitPath.m
function once in Matlab to add all the SPlaC subdirectories to your
Matlab path. All the SPlaC functions and scripts are then accessible
from the command line. This allows all codes to run and communicate
with each other irrespective of the current directory.

4

Note that you must run InitPath.m each time you restart Matlab. To
avoid this step, you may add all SPlaC folders to your Matlab path perma-
nently or edit the startup.m file to do that (check Matlab help for details).

1.4 Disclaimer

These codes have been developed and tested with Matlab 7.5.0 (R2007b)
on a PC running Microsoft Windows XP Pro SP2. Slight changes may be
necessary to run them on older (or newer!) version of Matlab.

Although every efforts have been made to get rid of bugs (programming
bugs, or even incorrect physical formulae), some may (must, we could say)
still be present. We hope the users will help us identify them and we will
try to update the codes when necessary.

Note also in this context that these codes do not implement a strict
error checking of the user inputs, i.e. following the famous English proverb
“garbage in, garbage out” (also known as “GIGO” in computer science), if
the parameters are incorrect during a function call, errors will occur.

The authors do not accept any responsibility for improper use of the
codes, accidental errors that might still be present in them, or improper
interpretation of their limitations and/or results derived therefrom. It is the
responsibility of the user to check the validity of the inputs/outputs, their
physical interpretation, and their suitability for his/her specific problem.

1.5 Feedback

We would like to hear from the users of these codes to improve them. This in-
cludes simple issues of layouts and organization of the information or plain
errors. Please feel free to send us any feedback (good or bad), bug re-
ports, questions, comments, or suggestions to eric.leru@vuw.ac.nz and/or
pablo.etchegoin@vuw.ac.nz.

1.6 Getting started

The easiest way (perhaps) to start realizing the extent of the codes, and what
can be done with them, is to try to reproduce the figures from the book in
the directory “BookFigures”. From this latter directory, each individual m-
file (a MatLab function) reproduces a specific figure shown in the book and
its accompanying calculations.

The reason for trying to gain familiarity with the codes by reproducing
figures is twofold. First of all, the codes run by themselves and, therefore,
the inexperienced user is spared the work of having to decide which param-
eters he/she needs to start the calculation. In addition, the figures and the
results can (and should) be used in conjunction with the book itself. In that
manner, a lengthy explanation of the physical meaning of the calculation
(which would be impossible to include in the code itself) is readily available.

5

Moreover, the reader can also adapt the figure to his/her specific needs, or
“play with the parameters” to get a deeper understanding.

Once the user is familiar with the meaning of the calculation, the codes
producing the figures can be inspected. The most important programming
lines are accompanied by a suitable comment or remark. We believe any
user with a minimum of experience in MatLab can easily follow the logic of
the calculation. The main exception to this are the lines of code used for
plotting and visualization, which are not explained in as much detail, but
can be understood using the Matlab help. For example, the MatLab script
MakeFig6 11.m, to reproduce Figure 11 of Chapter 6, contains under close
inspection a call to the routine: PweSolveSingleSphere, which solves the
Mie scattering problem for a single sphere. This code therefore provides
a hands-on example of how to call this routine. In this way, a potential
user can learn without much effort and through examples how the different
functions can be pieced together to produce a specific outcome. This can
then be potentially be used for different needs or applications beyond the
ones shown in the book.

In the case of the codes for Mie theory, two functions, PweFullMonty and
DipFullMonty are also provided to give an illustration of the possibilities
of the codes by producing a number of representative figures. These are
a good starting point to browse and understand the codes. These can be
called simply by running the scripts PweFullMonty for Mie theory for plane
wave excitation, and DipFullMonty for Mie theory for dipole emission.

Finally, the codes can be browsed in HTML format in the SPlaC online
help. Thanks to the cross-linking of all functions and scripts, this provides
a relatively easy and efficient way to navigate the codes. The SPlaC online
help can be found at:

http://www.victoria.ac.nz/raman/book/codes/helpstart.html

from where it can also be downloaded as a zip file for local browsing.

2 A few Matlab technicalities, tips, and tricks

We discuss here a few specific issues related to Matlab programming. Users
are encouraged to use the Matlab help for further details and SPlaC handling
of potential numerical problems.

2.1 Vectors and matrices

2.1.1 General remarks

Matlab has been designed to work with arrays, typically vectors (row or
column) and matrices. Organizing data into arrays and manipulating these
arrays rather than their elements individually result in a much more concise

6

code and much faster execution times. We have therefore tried to design the
codes with this in mind. This however requires a bit of “getting used to”.

To help with the readability of the codes, the dimension of every variable
is specified in the codes as “inline comments”. For example, [1 x N] means
a row vector with N elements (1 row, N columns). [L x 1] denotes a column
vector with L elements (L rows, 1 column). [L x N] is a matrix with L rows
and N columns. Many of the codes compute quantities that are wavelength-
dependent. As a rule of thumb, the wavelengths are always specified in rows,
i.e. variable lambda is a column vector [L x 1].

Note also that the codes make use of structures to group variables and
pass or return them between functions. Check Matlab help for more infor-
mation on structures.

2.1.2 Carrying sums using matrix operations

Let us consider a sum:

S(λ) =
N∑

n=1

fn(λ). (1)

This sum needs to be evaluated for L values of λ. One then uses the matrix
F [L x N] containing fn(λ), and the command: S=sum(F,2). This results
in a column vector S [L x 1] with the desired sums.

If we now consider a sum:

S(λ) =
N∑

n=1

anfn(λ), (2)

this can be concisely (and rapidly) carried out as a matrix-vector product.
Defining A as the row vector [1 x N] with elements an, we then simply
have: S=F*transpose(A) resulting in a column vector S [L x 1] with the
desired sums. Note that * denotes here the matrix product (as opposed to .*
denoting the element-by-element product on two arrays of same dimension.

Similar considerations can be extended to the approximation of inte-
grals as sums (using the simplest Simpson’s approximation). If we have an
integral:

I =
∫ θ2

θ1

f(λ, θ)dθ, (3)

we define T as a row vector [1 x T] of θ’s evenly spaced by a step dtheta,
and F the matrix [L x T] containing f(λ, θ). We then have I=sum(F,2) *
dtheta. For an integral:

J =
∫ θ2

θ1

f(λ, θ)g(θ)dθ, (4)

we define G a row vector [1 x T] with g(θ) and we have J=F*transpose(G)
* dtheta. This is implemented for example as follows:

7

nNbTheta = 361; % large number of theta for small steps
dtheta = (theta2-theta1)/(nNbTheta-1); % step
theta = linspace(theta1,theta2,nNbTheta); % row [1 x T]
% assume F is [L x T] and G is [1 x T]
I = dtheta * sum(F,2);
J = dtheta * F * transpose(G);

2.2 Spherical Bessel functions and numerical issues

2.2.1 Computation of spherical Bessel functions

Although the spherical Bessel functions are not directly implemented in
Matlab, it is straightforward to compute them from the standard Bessel
functions, for which full support is provided in Matlab in the form of the
functions besselj (for Jn), bessely (for Yn), and besselh (for H

(1)
n =

Jn + iYn). As briefly mentioned in Sec. H.6.2, the use of besselh may
lead to loss of precision. This is particularly acute when real and imaginary
part differ by large orders of magnitude. To illustrate this, let us consider
H

(1)
15 (1), one can check that:

besselh(15,1) = 1.1862e-001 -9.2570e+014i
besselj(15,1) = 2.2975e-017
bessely(15,1) = -9.2570e+014

Although the besselh result is correct when viewed as a complex number
within double floating-point precision (i.e. ≈ 1e-16 relative error), it is
obvious that the operation real(besselh), which should be equivalent to
besselj gives a wrong result by many order of magnitudes, because of loss
of precision/term cancellation.

To avoid this issue, one may use besselj + i*bessely instead of besselh
as suggested in Sec. H.6.2. This is satisfactory in most cases, except when
loss of precision/term cancellation occurs when carrying the sum besselj
+ i*bessely. Unfortunately, this occurrence is also possible, as in the fol-
lowing example based on the calculation of H

(1)
1 (23i):

besselh(1,23i) = -1.7347e-011 - 1.0622e-027i
besselj(1,23i) = 4.8816e-008 + 7.9722e+008i
bessely(1,23i) = -7.9722e+008 +4.8833e-008i
besselj(1,23i)+i*bessely(1,23i) = -1.7347e-011 -1.1921e-007i

This time, the imaginary part in the final expression is incorrect because of
a cancellation problem in the sum.

Therefore, there is unfortunately, to our knowledge, no easy magic solu-
tion to this problem. In fact such cancellation problems may also arise in
the evaluation of most of the sums that are computed within Mie theory.
It is intrinsic to numerical problems involving numbers of widely different

8

magnitudes. Fortunately, such cancellations problem have in many cases no
significant consequences on the final results, i.e. they occur in terms whose
magnitude is anyway negligible compared to others and therefore do not
affect the final results. In other cases, they may be related to real physical
aspects (for example, the evaluated formula could have been simplified ana-
lytically). Despite this, it is necessary to identify these problems during the
computation, and let the user investigate further whether or not they are
an issue.

2.2.2 Check for numerical problems in the Mie theory codes of
SPlaC

Perhaps, the better compromise is therefore to use besselh, since its result
is correct within double floating-point precision in the absence of further
manipulations. The only solution is then to check for potential term can-
cellation problems in every sums that are computed. This is carried out in
the codes by carrying the sums by calling the functions GenCheckSum2Mat,
GenCheckSumMatVec, and GenCheckSumReal. These functions (see SPlaC
help for details) return the result of the sum, and in the process check for
any cancellation issue by calling the auxiliary function GenCheckSumNumPb.
For example, after a sum of the type S =

∑
an, one must call the func-

tion GenCheckSumNumPb(S,max(abs(an))) (the arguments may be vectors
or matrices of the same size). It will check that:
abs(S)>1e-12*abs(max(abs(an))), which typically ensures that any term
cancellations could be handled within the double floating-point precision. If
not, a warning is issued and it is up to the user to investigate whether it is
a real problem or not. Note that such checks must also be done when tak-
ing the real and imaginary parts of complex numbers (these operations are
equivalent to sums of the number and its complex conjugate) for example us-
ing GenCheckSumReal. For sums carried out as the product of a matrix and
vector as described earlier, one can call the function GenCheckSumMatVec to
both do the sum and check for numerical problems.

In practice, it is better to keep these error-checking functions, but they do
slow down significantly the calculations. For more intensive computations,
and once such errors have been ruled out on representative examples, it is
possible to speed up the computations by temporarily turning off the error
checking routines by defining the global variable as follows:

global noCheckSum;
noCheckSum=true;

To reactivate the error checking, either define noCheckSum=false, or simply
use clear all or clear global noCheckSum to clear the global variable.

Finally, it is worth mentioning a common situation where loss-of-precision
warnings will always occur: that of non-absorbing spheres for the calcula-

9

tion of absorption or non-radiative properties such Qext, Qabs, MTot, or
MNR. These are not an issue since these quantities are easily derived for
non-absorbing materials as: Qext = QSca, Qabs = 0, MTot = MRad, and
MNR = 0.

3 Mie theory codes: plane wave excitation (PWE)

Appendix H of the book provides the theoretical basis for our Mie theory
implementation. Substantial simplifications can be obtained for the special
cases of plane wave excitation (PWE) and dipolar emission. Some of these
were discussed in App. H and Ref. [1] provides a detailed description of
the PWE case. This section and the next one summarize the most impor-
tant formulae that were not included in App. H but are used to actually
implement numerically the Mie calculations.

Note that the function PweFullMonty illustrates many of the possibilities
of these codes for plane wave excitation. The script PweScriptFullMonty
can be used to define the relevant parameters and call the function
PweFullMonty. It will produce six examples of figures summarizing the
results of the Mie computations.

3.1 Angle-dependent functions for PWE

For plane wave excitation, we only need Pm
n (cos θ) for |m| = 1. We could

use the Matlab function legendre to compute all Pm
n for m = 0..n but this

would not be very efficient when only m = 1 is needed. It is therefore better
to compute the P 1

n directly for n =1..nNMax using a recurrence relation.
We here use the ones provided in Ref. [1]. To this end, we define as in Ref.
[1]:

πn = −P 1
n(cos θ)
sin θ

and τn = −dP 1
n(cos θ)
dθ

. (5)

Note that Ref. [1] does not use the Condon-Shortley phase in their definition
of Pm

n (cos θ), i.e. there is a factor (−1)m difference with our definition
(see Eq. H.19 of the book). The negative signs in the definition above
(not present in Ref. [1]) arise because of this different convention, but the
function πn and τn are the same as those used in Ref. [1].

We then have the recurrence relations [1]:

πn =
2n− 1
n− 1

cos θπn−1 −
n

n− 1
πn−2, (6)

τn = n cos θπn − (n + 1)πn−1, (7)

with the initial conditions:

π0 = 0 and π1 = 1. (8)

10

Note that these relations are only valid for 0 ≤ θ ≤ π (always the case here).
The function PwePinTaun(nNmax,theta) can be used to compute πn

and τn for several angle (theta given as a column vector). As an example,
the script PweScriptPolarPinTaun reproduces the polar plots of πn and τn

shown in Ref. [1]. Also, the script SymPinTaun can be used to obtain the
symbolic expressions of these two functions for the first few n’s.

The auxiliary angle functions T
(i)
n,m(θ) (Eq. H.36) can then be deduced

easily for |m| = 1 from these two functions:

T 1
n,1(θ) = T 1

n,−1(θ) = −µnπn(θ), (9)

T 2
n,1(θ) = −T 2

n,−1(θ) = −µnn(n + 1) sin θ πn(θ), (10)

T 3
n,1(θ) = −T 3

n,−1(θ) = −µnτn(θ), (11)

where

µn =
√

2n + 1
4π

1
n(n + 1)

. (12)

Note also that for θ = 0, we have:

πn(0) = τn(0) =
n(n + 1)

2
. (13)

3.2 Radial arguments of VSHs

3.2.1 Computation

The Riccati-Bessel functions and their derivatives can be computed using
functions GenRBall, GenRBpsi2, and GenRBxi2 (see SPlaC help for details).

The radial (r-dependent) arguments of the VSHs can be computed from
the three auxiliary functions Z0

n, Z1
n, and Z2

n, defined in Eq. H.35 (repeated
below). Rather than using the functions written to calculate the Riccati-
Bessel functions, it is faster to write a dedicated function for this task:
GenZnAll. One then needs to compute once the spherical Bessel function
zn(ρ) (jn(ρ) or h

(1)
n (ρ)), from which we deduce:

Z0
n(ρ) = zn(ρ), (14)

Z1
n(ρ) = zn(ρ)/ρ, (15)

Z2
n(ρ) = [ρzn(ρ)]′ /ρ = Z0

n−1(ρ)− nZ1
n(ρ), (16)

where we have used z′n(ρ) = zn−1(ρ)− (n + 1)zn(ρ)/ρ.
The script SymZnAll provides analytical expressions for these functions

for small n, along with Taylor expansions for small ρ.

11

3.2.2 Values at origin

Of interest is the behavior for ρ = 0 (only when the regular function jn is
used). All Zi

n(0) are then zero for n ≥ 1, except:

Z1
n=1(0) =

1
3

and Z2
n=1(0) =

2
3
. (17)

In terms of VSH, we then have M(1)
n,m(0) = 0 for all n ≥ 1, N(1)

n,m(0) = 0 for
all n ≥ 2,

N1,1(0)−N1,−1(0) = − 1√
3π

ex, (18)

and
N1,0(0) =

1√
6π

ez. (19)

3.2.3 Far-field asymptotic expansions

Finally, when the Hankel function of the first kind, h
(1)
n is used (for exam-

ple for outgoing spherical waves), the asymptotic forms at infinity are to
dominant order:

Z0
n(ρ) ≈ (−i)n+1 eiρ

ρ
, (20)

Z1
n(ρ) ≈ (−i)n+1 eiρ

ρ2
, (21)

Z2
n(ρ) ≈ (−i)n eiρ

ρ
. (22)

3.3 VSH expansions for PWE

3.3.1 Grouping of |m| = 1 terms

For plane wave excitation, we can choose without loss of generality a plane
wave propagating along (Oz) and polarized along x. We then have only
|m| = 1 terms (see Sec. H.4.1). Moreover, for the incident field an,1 =
an,−1 and this property is transfered to other VSH expansions for the same
problem, for example for the scattered field cn,1 = cn,−1. Similarly, bn,1 =
−bn,−1 and therefore dn,1 = −dn,−1.

Starting from Eq. (H.33) and (H.34), the VSHs sums can therefore be
grouped and expressed in terms of the angle-dependent functions πn and τn

using:
Mn,1(k, r) · er = Mn,−1(k, r) · er = 0

(Mn,1(k, r) + Mn,−1(k, r)) · eθ = −2iZ0
n(kr)µnπn(θ) cos φ

(Mn,1(k, r) + Mn,−1(k, r)) · eφ = 2iZ0
n(kr)µnτn(θ) sinφ

(23)

12

(Nn,1(k, r)−Nn,−1(k, r)) · er = −2Z1

n(kr)µnn(n + 1) sin θπn(θ) cos φ

(Nn,1(k, r)−Nn,−1(k, r)) · eθ = −2Z2
n(kr)µnτn(θ) cos φ

(Nn,1(k, r)−Nn,−1(k, r)) · eφ = 2Z2
n(kr)µnπn(θ) sinφ

(24)
We now consider a general expansion of the field in VSHs as:

E(r) = E0

∑
n,m

cn,mM(i)
n,m(kM , r) + dn,mN(i)

n,m(kM , r). (25)

For PWE, i.e. |m| = 1 only and cn,1 = cn,−1 and dn,1 = −dn,−1, we then
We then have:

E(r) = E0

∑
n

cn,1

(
M(3)

n,1(kM , r) + M(3)
n,−1(kM , r)

)
+dn,1

(
N(3)

n,1(kM , r)−N(3)
n,−1(kM , r)

)
. (26)

The three components of the field can then be conveniently rewritten as:

E · er = −2 sin θ cos φE0

∑
n

dn,1Z
1
n(kr)µnn(n + 1)πn(θ), (27)

E · eθ = −2E0 cos φ
∑
n

µn

(
icn,1Z

0
n(kr)πn(θ) + dn,1Z

2
n(kr)τn(θ)

)
, (28)

E · eφ = 2E0 sinφ
∑
n

µn

(
icn,1Z

0
n(kr)τn(θ) + dn,1Z

2
n(kr)πn(θ)

)
. (29)

We are therefore left with sums over one index only (n).

3.3.2 Representation of the field in our PWE implementation

Moreover, it is convenient to separate from these expressions the φ−dependence,
which is very simple for PWE. This can be expressed in a single expression
for E as:

E/E0 = cos φEcrer + cos φEcteθ + sinφEsfeφ, (30)

where Ecr, Ect, and Esf do not depend on φ and can be obtained simply
from the above sums.

To fully characterize the field numerically, it is better to compute Ecr,
Ect, and Esf for various r, θ, and possibly λ, and the φ-dependence (if
needed) then results from the above expression. This is implemented in
SPlaC in two functions:

13

• PweEgenThetaAllPhi:
which can be used to calculate the λ− and θ− dependence of E at a
fixed distance (r0) from the origin. It returns Ecr, Ect, Esf as [L x T]
matrices.

• PweEgenRThetaAllPhi:
which can be used to calculate the r− and θ− dependence of E at a
fixed wavelength λ0. It returns Ecr, Ect, Esf as [R x T] matrices.

3.3.3 Equivalence with the treatment of Ref. [1]

In Ref. [1], this grouping of the VSHs for m = ±1 for PWE was anticipated
and more adapted versions of the VSHs were defined (these definitions are
however less common for some extensions of Mie theory). In Ref. [1], the
definitions of the expansion coefficients and susceptibilities also differ from
our treatment. The final results, i.e. the value of the fields, should however
be the same for both methods.

Using the expansion of the incident plane wave and considering a single
sphere, we have for the scattered field: cn,1 = ΓnKn and dn,1 = ∆nKn

(see Eq. H.74 and H.75). The scattered field therefore has the following
components (in the spherical coordinate frame):

ESca · er = −2E0 sin θ cos φ
∑
n

µnKn∆nZ1
n(kr)n(n + 1)πn(θ), (31)

ESca · eθ = −2E0 cos φ
∑
n

µnKn

(
iΓnZ0

n(kr)πn(θ) + ∆nZ2
n(kr)τn(θ)

)
, (32)

ESca · eφ = 2E0 sin φ
∑
n

µnKn

(
iΓnZ0

n(kr)τn(θ) + ∆nZ2
n(kr)πn(θ)

)
. (33)

This is (fortunately) consistent with the expressions of Ref. [1] (Eqs. 4.45
and 4.50 in Ref. [1]) thanks to the following correspondences (B. indicates
the notations of Bohren and Huffman in Ref. [1]):

an(B.) ≡ −∆n

bn(B.) ≡ −Γn

En(B.) ≡ −2iµnKnE0

ianEn(B.) ≡ −2µnKnE0∆n

bnEn(B.) ≡ 2iµnKnE0Γn

(34)

The equivalence can also be viewed directly from the VSHs expressions
using the following correspondences (the signs arise partly from the differ-

14

ence in the inclusion of the Condon-Shortley phase between the two treat-
ments):

2µn,mMenm(B.) ≡ (−1)mMn,m + Mn,−m,

2iµn,mMonm(B.) ≡ (−1)mMn,m −Mn,−m,
(35)

where

µn,m =

√
2n + 1

4πn(n + 1)
(n−m)!
(n + m)!

. (36)

The same expressions apply for N.

3.4 Enhancement factors for PWE

3.4.1 Local field intensity EFs

The field at any point can always be written in the form:

E(r, θ, φ) = cos φEcr(r, θ)er + cos φEct(r, θ)eθ + sinφEsf (r, θ)eφ. (37)

It is therefore easy to derive the parallel and perpendicular local field inten-
sity EFs (LFIEF, see Eq. 5.14 and the following discussion on p. 275):

M⊥
Loc(r, θ, φ) = |Ecr(r, θ)|2 cos2 φ, (38)

M
//
Loc(r, θ, φ) = |Ect|2 cos2 φ + |Esf |2 sin2 φ. (39)

These expressions are convenient to compute surface averages, since the
averaging corresponding to the φ-dependence can be easily done analytically
and only the θ-averaging is left to compute numerically. For example, the
surface averages on a spherical surface (r = r0) can be obtained as:

〈M⊥
Loc〉(r = r0) =

1
2
〈|Ecr(r0, θ)|2〉, (40)

〈M//
Loc〉(r = r0) =

1
2
〈|Ect(r0, θ)|2 + |Esf (r0, θ)|2, 〉 (41)

and the total average LFIEF is simply the sum:

〈MLoc〉(r = r0) =
1
2
〈|Ecr(r0, θ)|2 + |Ect(r0, θ)|2 + |Esf (r0, θ)|2〉. (42)

These averages are computed in the function PweEFaverages, which is
called by PweEsurf and PweEmap.

15

3.4.2 SERS EFs

The approximate SERS EF (Eq. 5.15) is:

F 0
E4(r, θ, φ) =

[(
|Ecr(r, θ)|2 + |Ect(r, θ)|2

)
cos2 φ + |Esf (r, θ)|2 sin2 φ

]2
.

(43)
From this expression, the surface average can then be shown to be:

〈F 0
E4〉(r = r0) =

1
8
〈3

(
|Ecr|2 + |Ect|2

)2
(44)

+3|Esf |4 + 2
(
|Ecr|2 + |Ect|2

)
|Esf |2〉. (45)

One may also separate the perpendicular and parallel contributions to F 0
E4.

The corresponding averages are then:

〈F 0−⊥
E4 〉(r = r0) =

3
8
〈|Ecr|4〉. (46)

and
〈F 0−//

E4 〉(r = r0) =
1
8
〈3

(
|Ect|4 + |Esf |4

)
+ +2|Ect|2|Esf |2〉. (47)

These are also computed in the function PweEFaverages, which is called
by PweEsurf and PweEmap.

3.5 Radiation (scattering) profile for PWE

The scattered field in the far-field can be obtained from the asymptotic
expressions of the VSHs in Eqs. (H.39) and (H.40). For PWE, we can also
directly use the asymptotic form of the Zi

n given earlier. We then have:

E · er ≈ 0 + O(
1
r
), (48)

E · eθ ≈ −2E0 cos φ
eikr

kr

∑
n

µn(−i)n (cn,1πn(θ) + dn,1τn(θ)) , (49)

E · eφ ≈ 2E0 sin φ
eikr

kr

∑
n

µn(−i)n (cn,1τn(θ) + dn,1πn(θ)) . (50)

Following Ref. [1] (Sec. 4.4.4 of Ref. [1]), we can define the functions of
θ for the scattering amplitude matrix:

S1(θ) = −2
∑
n

µn(−i)n+1 (cn,1τn(θ) + dn,1πn(θ)) , (51)

and
S2(θ) = −2

∑
n

µn(−i)n+1 (cn,1πn(θ) + dn,1τn(θ)) . (52)

16

We then have:

E · eθ ≈ E0 cos φ
eikr

−ikr
S2(θ), (53)

E · eφ ≈ −E0 sinφ
eikr

−ikr
S1(θ). (54)

S1 and S2 are scattering amplitudes from which all polarization properties
of the scattered field in the far-field can be derived [1]. These can be plotted
as normalized differential scattering cross-sections as (for S1 for example):

dQS1
Sca

dΩ
=

dσSca

dΩ
/(πa2) =

|S1(θ)|2

πx2
. (55)

Note that

QSca = π

∫ π

0

[
dQS1

Sca

dΩ
+

dQS2
Sca

dΩ

]
sin θdθ. (56)

The function PweFarField can be used to compute S1 and S2, while the
function PwePlotEfarSca produces the plots.

4 Mie theory codes: dipole emission

4.1 General remarks

As explained in Sec. H.5.1, the dipole is considered, without loss of general-
ity, to be on the z axis at a distance d outside the sphere with p = pxex+pzez

(note that ex = eθ on the z axis).
Most results can also be inferred from the solution for the two cases

of a parallel dipole (along ex) and a perpendicular dipole (along ez). The
incident field expansion can then be carried out as explained in Sec. H.5.1.
For a parallel dipole, the only non-zero coefficients are then an,1 = an,−1,
bn,1 = −bn,−1. This is similar to the situation for PWE and many of the
functions written for PWE can therefore be used (they are located in the
folder Mie/PWE). For a perpendicular dipole, the only non-zero coefficients
are an,0. Specific functions have therefore been written for this particular
case (they are located in the folder Mie/DIP).

As for the PWE case, the function DipFullMonty provides an illustration
of the various possibilities of the codes and can be called by running the
script DipScriptFullMonty.

4.2 Angle-dependent functions for dipole emission

For dipole emission, we need to introduce new angle-dependent functions
for the VSHs with m = 0. These are defined as:

pn(θ) = Pn(cos θ) and tn =
dPn(cos θ)

dθ
, (57)

17

where Pn are the Legendre polynomials. We could use the Matlab function
legendre to compute all Pm

n for m = 0..n but this would not be very
efficient when only m = 0 is needed. It is therefore better to compute pn

and tn directly using the following recurrence relations:

pn =
2n− 1

n
cos θpn−1 −

n− 1
n

pn−2, (58)

tn = cos θtn−1 − n sin θpn−1, (59)

with the initial conditions:

p0 = 1, p1 = cos θ, t0 = 0, t1 = − sin θ. (60)

The function DipPinTaunPnTn(nNmax,theta) can be used to compute
πn, τn (both defined for PWE and needed for a parallel dipole), and pn and
tn (needed for m = 0) for a number of theta (as a column vector).

Also, the script SymPnTn can be used to obtain the symbolic expressions
of pn and tn for the first few n’s.

Finally, note that for θ = 0, we have:

pn(0) = 1 and tn(0) = 0. (61)

4.3 VSH expansions for dipole emission

4.3.1 General expression for m = 0

For a general dipole emission, we always take without loss of generality the
dipole on the z-axis and aligned in the (xOz) plane. The coefficient of the
expansions are then only non-zero for |m| = 1 (same as PWE) and for m = 0
for Nn,0 VSHs only. The angle-dependent functions for PWE can be used
for |m| = 1. We need to study those relevant to Nn,0. We have:

Nn,0(k, r) · er = n(n + 1)µn,0Z
1
n(kr)pn(θ)

Nn,0(k, r) · eθ = µn,0Z
2
n(kr)tn(θ)

Mn,0(k, r) · eφ = 0

(62)

where

µn,0 =

√
2n + 1

4πn(n + 1)
, (63)

and pn and tn have been defined in the previous section.

18

4.3.2 Representation of the field in our implementation of dipole
emission

As for PWE, it is convenient to isolate from the field expressions the
φ−dependence, which is irrelevant for m = 0 and very simple for |m| = 1.
The field expression for a general dipole p = pxex + pzez is determined by
the three set of coefficients cn,1, dn,1, and dn,0 and takes the form:

E/Ep0 = (p′x cos φEcr+p′zEm0r)er+(p′x cos φEct+p′zEm0t)eθ+p′x sinφEsfeφ,
(64)

where p =
√
|px|2 + |pz|2, p′x = px/p, and p′z = pz/p. Ecr, Ect, Esf , Em0r,

and Em0t do not depend on φ and can be expressed as:

Em0r =
∑
n

dn,0n(n + 1)µn,0Z
1
n(kr)pn(θ), (65)

Em0t =
∑
n

dn,0µn,0Z
2
n(kr)tn(θ), (66)

while the expressions for Ecr, Ect, and Esf have already been given in the
PWE section.

Moreover, to fully characterize the field numerically, it is better to com-
pute Ecr, Ect, Esf , Em0r, and Em0t for various r, θ, and possibly λ. Results
for any dipole orientation, including the φ-dependence then results from the
above expression. This is implemented in the function DipEgenThetaAllPhi,
which can be used to calculate the λ− and θ− dependence of E at a fixed
distance from the origin (r0). It returns Ecr, Ect, Esf , Em0r, and Em0t

as [L x T] matrices. This function is similar to its counterpart for PWE,
PweEgenThetaAllPhi.

5 Mie theory codes: spherical multilayer systems

The Mie theory codes can also be used to compute the properties of a general
multilayer system with spherical symmetry, for example, a nano-shell. The
function MulPweFullMonty provides an illustration of this for plane wave
excitation and can be called by running the script MulPweScriptFullMonty.
Similarly, the function MulDipFullMonty provides an illustration for dipole
emission and can be called by running the script MulDipScriptFullMonty.
Apart from a few specific functions found in directory Mie/MUL, in particular
MulSuscepGDAB for the Mie susceptibilities, the multilayer codes use many of
the functions already written for plane wave excitation and dipole emission.

References

[1] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by
Small Particles (Wiley, New York, 1983).

19

