
Journal of Quantitative Spectroscopy & Radiative Transfer 284 (2022) 108131 

Contents lists available at ScienceDirect 

Journal of Quantitative Spectroscopy & Radiative Transfer 

journal homepage: www.elsevier.com/locate/jqsrt 

Multiple scattering of light in nanoparticle assemblies: User guide for 

the terms program 

D. Schebarchov, A. Fazel-Najafabadi, E.C. Le Ru, B. Auguié∗

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 

600, Wellington 6140, New Zealand 

a r t i c l e i n f o 

Article history: 

Received 22 November 2021 

Revised 15 February 2022 

Accepted 16 February 2022 

Available online 19 February 2022 

a b s t r a c t 

We introduce terms , an open-source Fortran program to simulate near-field and far-field optical prop- 

erties of clusters of particles. The program solves rigorously the Maxwell equations via the superposi- 

tion T -matrix method, where incident and scattered fields are decomposed into series of vector spherical 

waves. 

terms implements several algorithms to solve the coupled system of multiple scattering equations that 

describes the electromagnetic interaction between neighbouring scatterers. From this formal solution, 

the program can compute a number of physically-relevant optical properties, such as far-field cross- 

sections for extinction, absorption, scattering and their corresponding circular dichroism, as well as local 

field intensities and degree of optical chirality. By describing the incident and scattered fields in a basis of 

spherical waves the T -matrix framework lends itself to analytical formulas for orientation-averaged quan- 

tities, corresponding to systems of particles in random orientation; terms offers such computations for 

both far-field and near-field quantities of interest. This user guide introduces the program, summarises 

the relevant theory, and is supplemented by a comprehensive suite of stand-alone examples in the web- 

site accompanying the code. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

terms – acronym for T -matrix for Electromagnetic Radiation 

ith Multiple Scatterers – is a suite of Fortran 90 routines to sim- 

late light scattering by rigid clusters of particles immersed in a 

omogeneous, non-absorbing medium. The calculation is based on 

he superposition T -matrix (STM) method, an extension of Water- 

an’s T -matrix formalism [1–4] to multiple scatterers [5–7] . The 

ncident and scattered fields are expanded into series of vector 

pherical wave functions (VSWFs), which can be interpreted as a 

ultipolar decomposition. For linear media, the coefficients de- 

cribing the scattered field follow a linear relationship with those 

f the known incident field; this linear relationship is expressed 

hrough the so-called T -matrix, which encodes the full information 

bout a scatterer’s linear optical properties and its response to an 

rbitrary incident excitation. Where several particles are present, 

ight scattered by one particle can contribute to the excitation of 

he others; the self-consistent set of exciting and scattered fields 

rom each particle, and the cluster as a whole, is expressed in the 
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TM framework as a linear system of equations involving the sin- 

le particle T -matrices, and translation matrices to transform the 

SWFs from one particle to another. The solution of this system 

f equations enables the calculation of near-field quantities as well 

s far-field cross-sections, for specific directions of incidence and 

olarisation, or after analytical orientation-averaging. 

In principle many types of particle shapes can be used in terms , 

rovided an external program can calculate and export their corre- 

ponding T -matrix. terms provides built-in calculations of single- 

article T -matrices for homogeneous and multi-layered spheres, 

nd our Matlab code smarties can export accurate T -matrices for 

blate and prolate spheroidal particles in a compatible format [8] . 

he maximum number of particles that terms can consider is typ- 

cally about a few hundred for standard computers and small max- 

mum multipolar order, although larger systems could be modelled 

sing an iterative linear solver [9–11] or implementing a hierarchi- 

al fast multipole method [11,12] . 

This guide aims to describe the program from a user’s per- 

pective, illustrate the types of calculations that it can perform, 

nd highlight its strengths relative to other computational meth- 

ds. The code is released as open-source, and we welcome con- 

ributions from the community. A dedicated website [13] provides 

https://doi.org/10.1016/j.jqsrt.2022.108131
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tand-alone examples to illustrate the program’s capabilities in 

pecific applications. 

.1. General features 

From a generic description of the scattering problem, consisting 

n the position and orientation of N particles, dielectric functions 

r input T -matrix for each particle, and the incident wavelength(s), 

he program can perform three main types of simulations: 

1. Near-field mode , to map local fields and derived quantities at 

fixed incidence, or with orientation-averaging. 

2. Far-field mode , to calculate cross-sections (extinction, scatter- 

ing, and absorption, as well as corresponding linear and circular 

dichroism) at fixed incidence and with orientation-averaging. 

3. Polarimetry mode , to calculate Mueller matrices, Stokes parame- 

ters, and differential scattering cross-sections at specified scat- 

tering angles. 

At runtime, the program sets up a linear system of equations in 

he form Ax = b , where the matrix A is constructed from a given

et of single-particle T -matrices, particle coordinates and orienta- 

ions, and the vector (or matrix) b characterises the specified inci- 

ent plane wave excitation(s). The unknown x determines the self- 

onsistent field exciting each scatterer, as described in more details 

n Section 3 . The linear system is then solved using one of several

chemes selected by the user: 

0. Application of a (direct) solver to determine x , corresponding 

to the particle-centred scattering coefficients for one or more 

specific incident field(s), b . 

1. Direct inversion of the matrix A to determine the particle- 

centred T -matrices for the cluster of particles [14] . 

2. Stout et al.’s [14,15] iterative scheme for calculating the 

particle-centred T -matrices. 

3. Mackowski & Mishchenko’s [7,9,16–18] scheme for calculating 

the particle-centred T -matrices. 

Implementation of these multiple solution schemes in a modu- 

ar code-base is a core feature in terms ; we hope it will prove use-

ul for designing, testing, and benchmarking various methods, and 

erhaps lead to the implementation of new improved algorithms. 

The most notable features of terms include: 

• Export of the collective T -matrix describing the entire cluster of 

particles. 
• Import of general T -matrices, which can be pre-generated using 

terms or another program, such as smarties (for spheroids) [8] . 
• Built-in calculation of individual T -matrices for stratified/coated 

spheres described by Mie theory [19] . 
• Calculation of partial absorption cross-sections in each layer of 

coated spheres, following Mackowski [20] . 
• Calculation of orientation-averaged far-field cross-sections and 

associated circular dichroism [21] . 
• Calculation of orientation-averaged near-fields [15] and optical 

chirality [22] . 
• Calculation of the Mueller matrix and Stokes parameters for 

specific incidence and scattering angles [4] . 
• Possible compilation with all double-precision variables pro- 

moted to quad-precision [23] . 
• Export the output results in plain text or “HDF5” file format 

[24] . 

.2. Relation to other codes 

terms belongs to the family of codes implementing the super- 

osition T -matrix method for collections of scatterers. Other im- 

lementations have been described in the literature [7,14,15,21,25–

9] (for a comprehensive review, we refer the reader to Ref. [30] ); 
2 
vailable open-source programs include that of Mishchenko & 

ackowski for spherical particles and optically-active media 

 mstm ) [18] , celes by Egel and coworkers [31] , and for nonspher-

cal particles the recent additions of FastMM by Markkanen and 

uffa [11] , smuthi by Egel and coworkers [32] and qpms by Ne ̌cada

nd Törmä [33] . 

Among the many available techniques to solve light scatter- 

ng problems [34] , the STM method holds distinct advantages over 

urely numerical techniques such as the Finite Elements Method 

FEM) [35] , the Discrete Dipole Approximation (DDA) [36] , or the 

inite Differences Time Domain (FDTD) method [37] . Unlike STM, 

hese techniques require discretising the whole cluster geometry 

nd solving the full electromagnetic problem for every direction of 

ncidence. Other notable advantages include: 

• Orientation-averaged far-field properties can be obtained at 

very little computational cost, with analytical formulae [21,38–

41] . Orientation-averaged near-field quantities can also be com- 

puted [15,22] , albeit with some computational overhead, pro- 

viding analytical benchmark results [42] . 
• For clusters of several identical particles only one T -matrix 

needs to be calculated. 
• Within its domain of validity the Extended Boundary Condition 

Method (EBCM), and the T -matrix framework more broadly, is 

typically faster and more accurate than competing methods, 

and is therefore often used for benchmark calculations [4] . 
• The multipolar decomposition of electromagnetic fields can 

provide physical insight into complex optical responses [43] . 

It should be noted that the STM method is not without its lim- 

tations, 

• Closely-spaced scatterers can lead to inaccurate results, or re- 

quire very large multipolar orders, and the exact domain of 

applicability of the method in such situations is not fully- 

understood [23] . Some proposals to overcome this issue have 

recently been demonstrated [44] , and may be implemented in 

terms in the future. 
• The calculation of local fields in the vicinity of elongated 

nanoparticles is limited by the Rayleigh Hypothesis [45] . 
• Our particular implementation is limited to relatively small 

numbers of particles (a few tens to hundreds, on a typical 

workstation, and depending on their size parameter). 
• Numerical instabilities arise at high maximum multipolar order 

(from approximately n max ≈ 30 typically), preventing the calcu- 

lation of accurate T -matrix elements in double-precision, and 

leading to ill-conditioning of matrices. 
• Nonspherical particle shapes require first computing the T - 

matrix with an external program. terms has built-in func- 

tions for homogeneous and multi-layered spheres, and for non- 

spherical particles the T -matrix can be obtained from a va- 

riety of methods. For axisymmetric particle shapes, available 

methods include Mishchenko’s EBCM implementation [4] or 

smarties [8] for spheroids. The null-field method with discrete 

sources [46] is another alternative, related to the T -matrix 

method. For more complex particle geometries it is also possi- 

ble to obtain a T -matrix via the surface-integral equation (SIE) 

method [47] , or the volume-integral equation method [11] . 

Other algorithms to compute a T -matrix have also been pro- 

posed for the Discrete Dipole Approximation [48] , or general 

solvers such as the Finite-Element Method [29] . 

Different superposition T -matrix algorithms have been pro- 

osed, with their own strengths and target application; an impor- 

ant feature of terms is that it is possible to compare several algo- 

ithms and choose the most suitable for a given problem. Our im- 

lementation does not currently consider periodic arrays of scat- 

erers [29,33,49–51] , or the presence of a substrate [32,46,51–53] . 
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For complex geometries, especially compact clusters involv- 

ng very irregular shapes, the superposition T -matrix framework 

ay not be the best approach. In such situations the invariant- 

mbedding T -matrix method [54] , the recently proposed global 

olarizability matrix method [55] , the Surface Integral Equa- 

ion [56] and Volume Integral Equation methods [47,57] , or the dis- 

rete dipole approximation [36] may provide better alternatives, as 

ell as generic methods such as FEM or FDTD. 

.3. Aims of this manual 

terms is accompanied by a comprehensive set of examples 

vailable online [13] ; this user guide aims to provide a useful 

omplement introducing i) the necessary background information 

bout the method; ii) the initial steps required to install and run 

he program; iii) a high-level description of the program and its 

apabilities. 

.4. Licensing 

terms is made available under the Mozilla Public License Ver- 

ion 2.0, but note that parts of the code include external Fortran 

ibraries under different licencing, such as lapack (BSD), and HDF5 

outines (copyright The HDF Group) [24] . 

.5. Disclaimer and request for feedback 

The terms program is provided “as is”, without warranty of 

ny kind. While we have tested the program in a large number 

f configurations we cannot provide any guarantee as to the accu- 

acy or validity of simulation results obtained with the program. 

he user is strongly encouraged to perform their own reference 

hecks against other methods, but also internal consistency checks 

y switching the solution method, increasing the multipolar order, 

nd if necessary using quad precision. 

We welcome comments, reports of errors, and suggestions of 

ew features, which can be addressed directly to the authors or 

ia the code’s hosting website. 

. Getting started 

Figure 1 displays a partial overview of terms ’ capabilities, 

ith calculation results taken from the online documentation [13] , 

hich includes over 20 self-contained examples illustrating all the 

ifferent options for using terms . We do not repeat these examples 

n this user guide but instead provide the basic common starting 

oint which can be adapted for any specific use case. 

.1. Installation 

The code was developed and tested predominantly on standard 

ersonal desktop and laptop computers running Linux (Ubuntu 

8.04 LTS) and MacOS, as well as the R ̄apoi HPC Cluster at Victoria

niversity of Wellington. We’ve also successfully installed and run 

erms on Windows via the Windows Subsystem for Linux (WSL 2). 

ur Linux configuration includes: the gfortran compiler in gcc 
ersion 7.4.0, HDF5 software with libraries “libhdf5-dev ”, blas 

libblas-dev ” and lapack “liblapack-dev ”. We advise us- 

ng a fairly recent Fortran 90 compiler ( gcc versions below 6 have 

aused problems), and recent HDF5 release “HDF5-1.12.1 ” [24] . 

There are two ways for producing the executable file: 

• (Recommended) using Cmake , with parameters defined in 

CMakeLists.txt : 
> cd build 
> cmake . 

> make 

3 
will produce an executable terms for your machine, which you 

can leave in its location or move elsewhere. Alternatively, 
• A basic script is provided under build/buildTERMS.sh to 

specify the compilation options (double vs quad precision, de- 

bug mode, and use of a system’s lapack ). 

> cd build 
> bash buildTERMS.sh 
will produce an executable terms for your machine, which you 

can leave in its location or elsewhere. 

The executable reads user-defined instructions describing the 

cattering problem from an input file, and is called as follows: 

> ./terms inputfile > messages.log 
The results of calculations are stored in specific output files in 

he current directory and displayed in the terminal together with 

ny errors and warnings (it can be convenient to redirect the stan- 

ard output to a log file, as in the example above). 

.2. Initial steps 

The main input parameters are read from a plain text input file 

line by line and from left to right; blank lines are ignored). Each 

ine is interpreted as a sentence and split into space-separated 

ords. The first (left-most) word is interpreted as a case-sensitive 

eyword, and the subsequent words as arguments for that key- 

ord. In each sentence, text from the first word starting with the 

ash character (#) is interpreted as a human-readable comment 

nd thus ignored by the program. All the supported keywords and 

orresponding arguments are documented in Appendix A.1 . The or- 

er of keywords generally doesn’t matter, with just two exceptions: 

odeAndScheme must be the first keyword, and Scatterers 
ust be the last. 

.3. Minimal example 

We first illustrate the use of terms on a simple case, the calcu- 

ation of far-field spectra for absorption, scattering, and extinction 

ith a structure consisting of four gold spheres immersed in water. 

ost simulation parameters are kept to their default values. 

This simulation uses the following input file, 

ModeAndScheme 2 3 
Wavelength 300 900 300 
Medium 1.7689 # epsilon of water 

Scatterers 4 
Au 31.5 0 -50 30 
Au -31.5 0 -50 30 
Au 22.2738 22.2738 50 30 
Au -22.2738 -22.2738 50 30 

The program is run with the command 

/terms input > log , where the log file contains in- 

ormation about the simulation (how detailed depends on the 

ptional Verbosity argument). The output for this simulation 

onsists of a number of plain text files, storing the far-field 

ross-sections: 

• Files cs(Abs|Ext|Sca)OA contain orientation-averaged 

cross-sections. 
• Files cd(Abs|Ext|Sca)OA contain orientation-averaged opti- 

cal activity. 
• Files cs(Abs|Ext|Sca)(1X|2Y|3R|4L) contain fixed- 

orientation cross-sections for the respective polarisation (’ X ’, 
’ Y ’: 2 orthogonal linear polarisations; ’ R ’, ’ L ’: right and left

circular polarisations). 
• Files csAbs(1X|.)_scat(00i)coat(j) contain partial ab- 
sorption cross-sections inside multi-layered spheres. 
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Fig. 1. Illustrative overview of terms . (a) Pictorial representations of nanoparticle clusters studied with terms (Left to right: closely-spaced dimer [23] , trimer of Au@Pd 

core-shell antennas [58] , chiral dimer and helix of Au spheroids [42] (also bottom helix), hybrid antenna-satellite photocatalyst [59] ). (b) Collective T -matrix of a chiral dimer 

of prolate spheroids (after online example 13 [13] ; the colour maps the modulus of the T -matrix elements, here truncated at n max = 3 ). (c) Far-field spectra of orientation- 

averaged cross-sections (absorption, scattering, extinction, and their corresponding circular dichroism in the bottom panel); the structure consists of a chiral dimer of prolate 

Au spheroids in water [42] . (d) Near-field map of � (ε) | E | 2 in a trimer of Au@Pd core-shell antennas [58] . (e) Dispersion map of the degree of circular polarisation displayed 

by a helix of five prolate Au spheroids (after online example 08 [13] ). 
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This plain text output can become inconvenient when running 

any simulations; terms provides an option to produce a single 

ierarchical Data Format ( HDF5 ) output file [24] , with the output 

uantities stored under individual fields instead of separate files. 

he HDF5 file format can be read in many other programs, using 

.g. the built-in h5read function in Matlab, or packages rhdf5 
or R, h5py for Python, HDF5.jl for Julia, to list only a few pop-

lar options. 

The documentation’s website features many minimal examples 

f use for each option of the program, and with various cluster 

onfigurations. 

.4. Range of validity and choice of solution scheme 

The T -matrix method is often used as a benchmark for other 

umerical techniques such as DDA or FEM, as it provides very ac- 

urate results. A sufficiently-high value of the maximum multipole 

rder, n max , should be chosen for each simulation, and conver- 

ence of the results with increasing n max is often a good indicator 

f the accuracy of the results. terms performs internal checks of 

onvergence for the far-field cross-sections, by comparing the rel- 

tive error between successive partial sums over multipole orders 

 to n max . We strongly advise users to monitor the messages and 

heck for issues with convergence. It is also useful to re-run calcu- 

ations with a higher value of n max and check that the results do 

ot differ. In near-field calculations a higher n max value is gener- 

lly needed, and we find that values above 30 can require switch- 

ng to quad precision. The challenging case of nonspherical parti- 

les with strongly-overlapping circumscribed spheres pushed some 

alculations to use n max above 50; even with quad precision arith- 

etic the accuracy eventually deteriorates (above 60, typically). We 

mphasise that these are extreme cases; in many standard situ- 

tions a low value of n max is sufficient (8 is the default value). 

he coupled-dipole method [60] , widely used in nano-optics, cor- 
4 
esponds roughly to setting n max = 1 (Appendix Fig. A3 presents 

uch a comparison). 

Single-particle T -matrices computed with Mie theory are gener- 

lly accurate up to n max = 60 . Following Wiscombe’s criterion, this 

orresponds to a size parameter of 45, or a sphere radius of 2 mi- 

rons in vacuum for visible light. For spheroids, smarties enables 

ccurate calculation of T -matrix elements with an aspect ratio of 

p to 100, and similar size limitations as Mie theory [8] . 

Multiple-scattering generally introduces a loss of precision 

ompared to single-particle calculations, and requires larger val- 

es of n max . The user is advised to consider the different so- 

ution schemes implemented in terms , as they can offer sub- 

tantial benefits in specific situations. For instance, Stout and 

o-workers introduced a balancing scheme [15] that stabilises 

he numerical calculations and proves very effective for closely- 

paced resonant particles. terms has extended this improve- 

ent to other schemes by default (controlled with the keyword 

toutBalancing ). A dramatic difference between Scheme 2 and 

 is observed when particles are widely-separated: our implemen- 

ation of Mackowski & Mishchenko’s scheme fails where separa- 

ions are above a few hundred nanometres even at large n max , 

hile Stout’s scheme maintains good accuracy without requiring 

 n max value much larger than dictated by the single-particle re- 

ponse. The key difference between the two schemes is that Mack- 

wski & Mishchenko’s translates all VSWFs to a common origin, 

hile Stout’s maintains particle-centred expansions throughout 

14–18,61] . 

The performance of Mackowski & Mishchenko’s scheme is usu- 

lly very good, in both accuracy and speed, and is chosen as the 

efault. 

The results of terms calculations have been validated against 

ackowski & Mishchenko’s mstm code for collections of spheres 

18] (Appendix Fig. A2 ), and against a commercial finite element 

ackage (Comsol [62,63] ) for dimers of spheroids [23] . 
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Fig. 2. Pictorial representation of a T -matrix and relevant indices for n max = 2 . The 
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of darker shade. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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. Underlying principles of the code 

In the following presentation, the complex electric field is de- 

oted by E (r , t) , where r is a point coordinate and t is time; we

ssume harmonic time dependence at angular frequency ω, so that 

 

−iωt factors out and is omitted from the rest of the discussion. 

.1. Vector spherical wave functions 

We define the vector spherical wave functions (VSWFs) as, 

 

(ζ ) 
nm 

(k r ) = 

1 √ 

n (n + 1) 
∇ × (ψ 

(ζ ) 
nm 

(k r ) r ) , (1) 

 

(ζ ) 
nm 

(k r ) = 

1 

k 
∇ × M 

(ζ ) 
nm 

(k r ) . (2) 

ith k the wavenumber and 

 

(ζ ) 
nm 

(k r ) = z 
(ζ ) 
n (kr) Y nm 

(θ, ϕ) , (3) 

here z 
(ζ ) 
n are spherical Bessel functions. For our purposes we 

nly require ζ = 1 ( z (1) 
n = j n , spherical Bessel functions of the first

ind) and ζ = 3 ( z (3) 
n = h n , spherical Hankel functions of the first

ind), referred to as regular and the irregular functions, respec- 

ively, which are linearly independent. Henceforth, for brevity and 

otational convenience we refer to ψ 

(3) 
nm 

as simply ψ nm 

, and ψ 

(1) 
nm 

s ˜ ψ nm 

. Furthermore, the tilde will also be placed over the coeffi- 

ients (e.g. ̃  a ) to explicitly indicate a regular basis set. 

The spherical harmonics Y nm 

for | m | ≤ n we write as, 

 nm 

(θ, ϕ) = γnm 

√ 

n (n + 1) P m 

n ( cos θ )e i mϕ , (4) 

here the associated Legendre functions P m 

n ( cos θ ) are defined us- 

ng the Condon-Shortley phase and 

nm 

:= 

√ 

(2 n + 1) 

4 πn (n + 1) 

(n − m )! 

(n + m )! 
. (5) 

his convention is consistent 1 with our main references 

4,14,19,64] . 

Formally, n can run up to ∞ , though numerically all series of 

SWFs are truncated to some maximum multipole order n max . We 

lso introduce the composite index p(n, m ) for convenience, de- 

ned as 

p := n (n + 1) + m (6) 

ith, 

 = Int ( 
√ 

p ) (7) 

 = p − n (n + 1) . (8) 

 general regular solution to the Helmholtz equation can be ex- 

ressed in the VSWF basis as, 

 

 (k r ) = 

n max ∑ 

n =1 

n ∑ 

m = −n 

[ ̃  a 1 ,nm ̃

 M nm 

(k r ) + ̃

 a 2 ,nm ̃

 N nm 

(k r )] 

= 

2 ∑ 

s =1 

p max ∑ 

p=1 ̃

 a s,p ̃  w s,p (k r ) 

= 

l max ∑ 

l=1 

˜ w l (k r ) ̃  a l =: ˜ W (k r ) ̃  a , (9) 
1 However, note that Mishchenko et al. [4] define their ψ 

(ζ ) 
nm (k r ) as 

 

(ζ ) 
n (kr) P m n ( cos θ )e i mϕ , which must be multiplied by γnm 

√ 

n (n + 1) to match 

ur ψ 

(ζ ) 
nm (k r ) in (3) . 

E

w

t  

c

5 
here ˜ a ∈ C 

l max is a column vector of coefficients, ˜ W = 

 ̃

 w 1 , ̃  w 2 , . . . , ̃  w l max 
] is a basis-set pseudo-matrix of dimension 

 × l max , i.e. a row vector composed of column vectors 

˜ 

 l(s,n,m ) := 

{˜ M nm 

for s = 1 ˜ N nm 

for s = 2 

(10) 

nd l max is the maximal value of another composite index l, intro- 

uced for convenience 

l := (s − 1) n max (n max + 2) + n (n + 1) + m 

= (s − 1) p max + p 

≤ l max (11) 

 max = 2 n max (n max + 2) = 2 p max , (12) 

here s ∈ { 1 , 2 } is sometimes referred to as the parity or mode in-

ex, corresponding to either M or N functions. 

The irregular variant of (9) is obtained by simply removing the 

verhead tildes (e.g. ˜ W → W ), which corresponds to switching the 

adial dependence from j n (kr) to h n (kr) throughout ( Fig. 2 ). 

.2. The T -matrix ansatz 

Outside a given scatterer, the total field E tot (k r ) = ̃

 E inc (k r ) +
 sca (k r ) is partitioned into a known incident contribution ̃

 E inc (k r ) 

nd unknown scattered contribution E sca (k r ) . Both contributions 

re expanded in terms of VSWFs up to some multipole order n max , 

 

 inc (k r ) = E ̃  W (k r ) ̃  a , (13) 

 sca (k r ) = EW (k r ) a , (14) 

here E corresponds to the incident field’s amplitude (usually 

aken as unity, E = | ̃  E inc | = 1 ), and 

˜ a ∈ C 

l max , a ∈ C 

l max are the in-

ident and scattered coefficients, respectively. The association of 
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Fig. 3. Illustration of local and global reference frames for a cluster of particles and 

their associated T -matrices. 
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 inc with regular (or incoming ) and E sca with irregular (or outgo- 

ng ) VSWFs is a choice motivated by physical reasoning: (i) ̃  E inc (k r )

ught to be well defined everywhere within a finite distance from 

he origin, which rules out irregular VSWFs due to their singular 

ehaviour at r = 0 ; and (ii) E sca (k r ) ought to satisfy the so-called

ommerfeld radiation condition [4] , requiring that the transverse 

art of E sca (r ) tend to 0 as 1 /r as | r | → ∞ , and the longitudinal

art decay faster than 1 /r. Given the linearity of the governing 

axwell equations in linear media, the T -matrix method expresses 

he linear dependence between ̃

 a and a , 

 = T ̃

 a , or a l = 

∑ 

l ′ 
T l l ′ ̃  a l ′ , (15) 

here T is the so-called “transition” or “transfer” [4,14] matrix ( T - 

atrix for short), which depends on the scatterer’s characteristics 

t a given wavelength but is independent of illumination, encoded 

n ̃

 a . For a spherically symmetric scatterer centred at the origin, T 

s a diagonal matrix with the diagonal elements determined ana- 

ytically by Mie theory. For other particle shapes, terms requires 

hat the T -matrix be provided as input, with a format specified in 

ppendix A.1 (keyword TmatrixFiles ). Note that the T -matrix 

ay also represent the response of a composite scatterer compris- 

ng multiple particles; terms can in fact calculate such a collective 

 -matrix from individual one-body T -matrices, [14,15] and re-use 

t as input to simulate the scattering properties of a superstructure 

f such elements [29] . 

.3. Transformation under rotation/translation of coordinates 

The STM method requires transforming the series expansions 

f the fields from one origin to another, such as from the centre 

f one particle to a neighbour’s, or to a common origin referred to 

s the global frame’s . Typically the T -matrix of a nonspherical par- 

icle will have been calculated in a convenient orientation, e.g. for 

xisymmetric particles with symmetry axis along z, requiring ro- 

ations in changing reference frame as illustrated in Fig. 3 . In the 

ollowing we summarise useful relations for the translation and ro- 

ation of VSWFs. We take the notational convention that expres- 

ions in local coordinate frames are specified with a superscript in 

rackets. 
6 
.3.1. Rotation 

Let r (1) = (r, θ (1) , ϕ 

(1) ) and r (2) = (r, θ (2) , ϕ 

(2) ) be the spherical

olar coordinates of the same point P in coordinate systems 1 and 

, respectively, sharing the same origin O . If coordinate system 2 

s obtained by rotating coordinate system 1 through Euler angles 

α, β, γ ) , here defined in the “zyz” convention [4] with 0 ≤ α < 

 π , 0 ≤ β ≤ π , and 0 ≤ γ < 2 π , then 

 

(2) 
nm 

(k r (2) ) = 

n ∑ 

μ= −n 

ψ 

(1) 
nμ (k r (1) ) D 

n 
μm 

(α, β, γ ) , 

 

(1) 
nm 

(k r (1) ) = 

n ∑ 

μ= −n 

ψ 

(2) 
nμ (k r (2) ) D 

n 
μm 

(−γ , −β, −α) , (16) 

here D 

n 
μm 

= e −iμαd n μm 

(β) e −imγ and d n μm 

are the Wigner D - and

-functions [4] . Conveniently, ˜ ψ nm 

, ˜ M nm 

, ˜ N nm 

, M nm 

and N nm 

trans- 

orm in exactly the same manner under rotation, so substituting 

 nm 

by a desired basis function in (16) will give the appropriate 

xpression (see equations (5.23)– (5.24) of Ref. [4] for details). 

n our notation, W 

(2) (k r (2) ) in coordinate system 2 is related to 

 

(1) (k r (1) ) in coordinate system 1 via 

 

(2) = W 

(1) R (α, β, γ ) (17) 

here R (α, β, γ ) is a unitary block-diagonal matrix (of size l max ×
 max ), satisfying 

 

−1 (α, β, γ ) = R 

† (α, β, γ ) = R (−γ , −β, −α) (18)

ith matrix elements given by 

 l l ′ (α, β, γ ) = δss ′ δnn ′ D 

n 
m 

′ m 

(α, β, γ ) , (19) 

here the index l(s, n, m ) is defined in (11) . Note that (17) also

pplies to regular waves ˜ W . Now, if a (regular or irregular) spher- 

cal wave expansion is described by a vector of coefficients a (1) in 

oordinate system 1 and by a (2) in coordinate system 2, then 

 

(2) = R 

† (α, β, γ ) a (1) , (20) 

hich follows from equating the field expansions and using (17) , 

.e. 

 

(1) a (1) = W 

(2) a (2) = W 

(1) R (α, β, γ ) a (2) 

⇒ a (1) = R (α, β, γ ) a (2) . (21) 

et us re-label coordinate system 1 as G to indicate a global, space- 

xed reference frame, and coordinate system 2 as L for local frame, 

ttached to a scatterer. A T -matrix T (L ) expressed in the local 

rame is transformed into T (G ) = RT (L ) R 

† in the global frame, where 

 (α, β, γ ) depends on the Euler angles (α, β, γ ) that rotate frame

 onto frame L (as opposed to L onto G ). To clarify, consider 

a (L ) = T 

(L ) ˜ a (L ) 

 

† a (G ) = T 

(L ) R 

† ˜ a (G ) 

a (G ) = RT 

(L ) R 

† ︸ ︷︷ ︸ 
T (G ) 

˜ a (G ) ⇒ T 

(G ) = RT 

(L ) R 

† . 

f the scatterer is rotationally symmetric about the local z-axis, 

hich is tilted by spherical polar angles (θ, ϕ) relative to the 

lobal z-axis, then α = ϕ, β = θ , and the value of γ is irrelevant 

ue to axial symmetry, so we can choose γ = 0 to have T (G ) =
 (ϕ, θ, 0) T (L ) R (0 , −θ, −ϕ) (see Sec. 5.2 of Ref. [4] for details). 

.3.2. Translation 

Consider a point P with coordinates r (1) in coordinate system 

 with the origin at O 1 . If we choose another origin O 2 displaced

y d 12 from O 1 , then the coordinates of P relative to O 2 will be

 

(2) = r (1) − d , as illustrated in Fig. 4 . The translation-addition 
12 
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Fig. 4. (a) Illustration of how the coordinate vector of point P is transformed from 

r (1) to r (2) when the origin is switched from O 1 to O 2 . Dashed red line bisects 

the O 1 P edge of the O 1 PO 2 triangle. (b) Illustration of how the singularity at O i 
exhibited by W (k r (i ) ) is spread over the surface of a ball with radius d i j = r i j af- 

ter translation to a target origin O j by displacement vector d i j . The irregular ba- 

sis remains irregular outside the ball, i.e. W (k r (i ) ) = W (k r ( j) ) ̃  O 

( j,i ) for r ( j) > r i j , but 

is transformed into a regular basis inside the ball, i.e. W (k r (i ) ) = ̃

 W (k r ( j) ) O 

( j,i ) for 

r ( j) < r i j . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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2 We note that collapsing the three factors in the sequence as one matrix 

( RO z R 
−1 ) does not yield the expected result (matrix O 

(i, j) ), suggesting a numeri- 

cal instability in this multiplication. However, multiplying a T -matrix T by the three 

matrices successively does yield the same result as multiplying it by O 

(i, j) . 
heorem for vector spherical waves states that [6,9] , in the limit 

 max → ∞ , 

 

(1) (k r (1) ) = 

{
W 

(2) (k r (2) ) ̃  O (k d 12 ) , if r (2) > d 12 , ˜ W 

(2) (k r (2) ) O (k d 12 ) , if r (2) < d 12 , 
(22) 

˜ 

 

(1) (k r (1) ) = 

˜ W 

(2) (k r (2) ) ̃  O (k d 12 ) , (23) 

here ˜ O (k d 12 ) and O (k d 12 ) are ( l max × l max ) matrices of regular

nd irregular translation-addition coefficients (TACs), respectively 

14] . Note the conditional statement for irregular waves: the trans- 

ormation depends on the relative length of r (2) and d 12 . In Fig. 4 ,

n irregular basis centred at O 1 is mapped onto a regular basis 

entred at O 2 via the irregular TACs. However, if O 2 were to the 

eft of the bisector, so that r (2) > d 12 , then the irregular basis cen-

red at O 1 would be mapped onto an irregular basis centred at O 2 

ia the regular TACs. 

Note that O 1 and O 2 are themselves points with coordinates 

 1 and r 2 , respectively, in a common “global” frame with a fixed 

rigin O . If we denote the global frame coordinates of P by r ,

hen r (1) = r − r 1 , r (2) = r − r 2 , and d 12 = r (1) − r (2) = r 2 − r 1 =:

 21 . Henceforth we follow Stout and coworkers [14,15] and adopt 

he shorthand notation 

˜ O 

(i, j) := ̃

 O (k r i j ) = ̃

 O (k d ji ) , and likewise for

 

(i, j) , yielding 

 

(i ) = 

{
W 

( j) ˜ O 

( j,i ) , if r ( j) > r i j , ˜ W 

( j) O 

( j,i ) , if r ( j) < r i j , 
(24) 

˜ 

 

(i ) = 

˜ W 

( j) ˜ O 

( j,i ) . (25) 

ote the reversal of indices in r i j = d ji and the minus sign in r i j =
d i j ; note that d i j = d ji = r i j = r ji ≥ 0 in our notations. 

To express the translation-addition theorem in terms of the co- 

fficients (the a ’s) of a VSWF expansion, multiply (from the right) 

oth sides of Eqs. (24) and (25) by column vector a (i ) , where the

uperscript ( i ) indicates where the VSWF expansion is centred. 

rom inspection of the right-hand side we find that 

 

( j) = ̃

 O 

( j,i ) a (i ) , if r ( j) > r i j , (26) 

 

 

( j) = O 

( j,i ) a (i ) , if r ( j) < r i j , (27) 

 

 

( j) = ̃

 O 

( j,i ) ˜ a (i ) . (28) 

ote that (26), (27) and (28) are in a similar matrix-vector form to 

he rotation Eq. (20) . 

.3.3. Factorized translation (involving rotation) 

A general translation from centre r i to another centre r j by 

isplacement vector d i j = (d i j , θi j , ϕ i j ) can be separated into three

teps: 
7 
1. Rotation of the local frame to align the z-axis with the d i j 

vector. In the zyz convention, the appropriate Euler angles are 

α = ϕ i j , β = θi j , and γ = 0 . 

2. Axial translation along the rotated local z-axis by d i j . 

3. Rotation of the local frame to realign the z-axis with the orig- 

inal orientation. The appropriate Euler angles are α′ = −γ = 0 , 

β ′ = −β = −θi j , and γ ′ = −α = −ϕ i j . 

This factorisation can be expressed in matrix form as 

 

( j,i ) = R (ϕ i j , θi j , 0) O z (d i j ) R (0 , −θi j , −ϕ i j ) (29)

or the irregular case, where O z (d i j ) represents the matrix of z- 

xial translation coefficients, many of which are zero due to the 

pecial case of axial translation along z. Note that the three afore- 

entioned steps correspond to stepwise movement of the local 

xis, from the perspective of the initial point i , and the transforma- 

ion corresponds to reading the matrix multiplication in (29) from 

eft to right; but the sequence of steps and the direction of move- 

ent is actually reversed from the perspective of the scatterer at 

he destination point. More importantly, since all three matrix- 

actors on the right-hand side of (29) will contain many zeroes, 

perating on a vector of VSWF coefficients in a sequence of three 

teps can actually reduce the scaling of the net computational cost 

rom ∼ n 4 max to ∼ n 3 max , when the naïve matrix multiplication on 

ach step is replaced by a custom operation that sums just over 

he relevant (non-zero) components. 

Another potential advantage of using (29) is that, after obtain- 

ng the three factors for O 

( j,i ) , they can be recycled when com- 

uting the reverse translation O 

(i, j) to reduce the overall com- 

utational cost. First, beware that O z (−d i j ) is not the inverse of 

 z (d i j ) , and note that O z (d i j ) is invariant to interchanging i and j

 d i j = d ji ≥ 0 ). Actually, [ O z (d i j )] −1 = R (0 , π, 0) O z (d i j ) R (0 , −π, 0) ,

here R (0 , π, 0) is block-diagonal and each block is anti -diagonal. 

econd, since ϕ i j = π + ϕ ji and θi j = π − θ ji , R (ϕ ji , θ ji , 0) can

e calculated from R (ϕ i j , θi j , 0) using the symmetry relation 

 

n 
μm 

(π − θ ) = (−1) n −m d n −μm 

(θ ) (see Eq. (B.7) in Ref. [4] ), so that

 

n 
μm 

(ϕ ji , θ ji , 0) = (−1) n −m +1 D 

n −μm 

(ϕ i j , θi j , 0) , where the extra pref-

ctor of −1 comes from multiplying by e −iπ = −1 . 

Computing O 

(i, j) in general is more costly than the com- 

ined effort of computing O z , R , and R 

−1 . terms implements the 

wo strategies to translate T -matrices: either by computing O 

(i, j) 

ith the general formula, or by applying successive operations as 

 

(
O z (R 

−1 T ) 
)
. The choice can be made by the user with the key- 

ord DisableRTR , but we have not found a difference in the ex- 

mples we have considered. 2 

.4. Superposition T -matrix for multiple scatterers 

This section follows the treatments by Stout et al. [14,15] as 

ell as similar discussions for multi-sphere clusters by Mackowski 

 Mishchenko [7,9,16,17] ( Fig. 5 ). 

For a cluster of N scatterers (each of arbitrary shape), the collec- 

ively scattered field E sca may be formally separated into additive 

ontributions from the individuals, namely: 

 sca (r ; k ) = 

N ∑ 

j=1 

E sca , j (r ; k ) = E 

N ∑ 

j=1 

W 

( j) (k r ( j) ) c ( j) 
j 

(30) 

here r ( j) = r − r j , r j is the position of the jth scatterer in the

lobal frame. Note that each partial field contribution E sca , j (r ) in 

30) is developed in terms of irregular waves centred at r j , as in-

icated in the superscript of r ( j) and the corresponding coefficients 
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Fig. 5. Pictorial representation of light scatttering by a nanoparticle cluster. An inci- 

dent plane wave with known wavevector ( k inc ) and incident field ( E inc ) is scattered 

by a cluster of N particles centred at r 1 , r 2 , . . . , r N . Each particle scatters in response 

to the net incident field exciting it (partial waves illustrated in dashed blue). The 

self-consistent total field everywhere in space is the superposition of the incident 

field ( E inc ), and of the collectively scattered field ( E sca ). The scattered field is illus- 

trated by distorted wavefronts outgoing from the cluster. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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3 Note that (39) is equivalent to Mackowski’s Eq. (4) of Ref. [18] , though in Mack- 

owski & Mishchenko’s earlier papers the same equation (Eq. (13) of Ref. [16] and 

Eq. (3) of Ref. [17] ) has a plus sign instead of the minus, which may be entirely due 

to a minus sign featuring in the incident field expansion (see Eq. (4) in Ref. [16] ). 

This minus sign is absent in Eq. (2) of the more recent Ref. [18] , and the subse- 

quent Eq. (4) matches our Eq. (39) . 
 

( j) 
j 

. The centre of expansion need not necessarily be the centre of 

he particle associated with E sca , j (r ) , so we still keep the subscript

j in c 
( j) 
j 

as a label specifying the particle centre, which may seem 

edundant, but keep in mind that c (i ) 
j 

is well defined for i � = j. It

s also important to note that (30) does not actually prescribe how 

xactly the collectively scattered field is partitioned among the in- 

ividuals. The partitioning is to be determined self-consistently. To 

et up a self-consistent system of linear equations, it is useful to 

efine the excitation field 

˜ E exc , j (r ) for each scatterer j, and then 

evelop it in terms of regular VSWFs centred at r j , i.e. 

 

 exc , j (r ) := ̃

 E inc (r ) + 

N ∑ 

l=1 
l � = j 

E sca ,l (r ) 

= E ̃  W 

( j) (k r ( j) ) ̃  a ( j) + E 

N ∑ 

l=1 
l � = j 

W 

(l) (k r (l) ) c (l) 
l 

= E ̃  W 

( j) (k r j ) 

⎛ ⎜ ⎜ ⎝ ̃

 a ( j) + 

N ∑ 

l=1 
l � = j 

O 

( j,l) c (l) 
l ︸ ︷︷ ︸ ˜ c ( j) 

j← l 

⎞ ⎟ ⎟ ⎠ 

(31) 

for r ( j) < min ‖ r j − r l ‖ (32) 

=: E ̃  W 

( j) (k r j ) ̃  e ( j) 
j 

(33) 

here ˜ a ( j) = ̃

 O 

( j, 0) ˜ a contains the incident field coefficients and 

 

 

( j, 0) := ̃

 O (k r j ) . In the last equality of (31) , W 

(l) is transformed

nto ˜ W 

( j) , with the corresponding coefficients given by ˜ c 
( j) 
j← l 

= 

 

( j,l) c (l) 
l 

, where the subscript j ← l specifies the scattered field 

artition of scatterer l developed (as a regular VSWF expansion) 

bout particle j. Note the application of the translation-addition 

heorem clause that applies only inside the ball of radius r jl (for 

ach l � = j) centred at r j ). This approach is strictly valid only if the

ranslation ball fully contains the target scatterer’s surface, where 

he boundary conditions are to be matched. While non-overlapping 

pherical scatterers are always guaranteed to satisfy this condition, 

longated particles such as spheroids can be problematic, because 

he singularity sphere can cross the target scatterer’s surface if it is 

ufficiently close (yet still not overlapping). These aspects are dis- 

ussed in more details in Ref. [23] (and references therein). 

A self-consistent system of linear equations can now be ob- 

ained by requiring that 

 

( j) 
j 

= T j ̃  e ( j) 
j 

, (34) 
8 
here T j is the “one-body” T -matrix characterising scatterer j, as 

efined above in Section 3.2 . Note that (34) reduces to (15) for 

 single scatterer ( j = N = 1 ) at the origin, because then ̃

 e 
( j) 
j 

�→ ̃

 a ,

 

( j) 
j 

�→ a , and T j �→ T . From (31), (33) , and (34) we obtain an equa-

ion expressed just in terms of the field coefficients: 

 

 

( j) 
j 

= ̃

 a ( j) + 

N ∑ 

i =1 
i � = j 

O 

( j,i ) T i ̃  e (i ) 
i 

, (35) 

hich Stout et al. label as “the fundamental multiple scattering 

quation” (Eq. 9 in Ref. [14] ). It is helpful to rewrite the linear 

ystem (35) in block-matrix form: 

 

 

 

 

I −O 

(1 , 2) T 2 · · · −O 

(1 ,N) T N 

−O 

(2 , 1) T 1 I · · · −O 

(2 ,N) T N 

. . . 
. . . 

. . . 
. . . 

−O 

(N, 1) T 1 −O 

(N, 2) T 2 · · · I 

⎤ ⎥ ⎥ ⎦ 

⎛ ⎜ ⎜ ⎜ ⎝ 

˜ e (1) 
1 ˜ e (2) 
2 
. . . ˜ e (N) 

N 

⎞ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎝ 

˜ a (1) ˜ a (2) 

. . . ˜ a (N) 

⎞ ⎟ ⎟ ⎠ 

, 

(36) 

hich is in the standard form Ax = b , with x the unknown, and 

 a known input source. The solution x gives all the ˜ e (i ) 
i 

’s for a

iven ̃

 a and T i ( i = 1 , . . . , N), from which we can determine all the

 

 

(i ) 
i 

’s using (34) . Alternatively, we can use (34) to substitute the 

xcitation field coefficients for the scattered field coefficients and, 

ssuming the one-body T -matrices are invertible, obtain 

 

−1 
j 

c ( j) 
j 

−
N ∑ 

i =1 
i � = j 

O 

( j,i ) c (i ) 
i 

= ̃

 a ( j) , (37) 

 

 

 

 

T 

−1 
1 

−O 

(1 , 2) · · · −O 

(1 ,N) 

−O 

(2 , 1) T 

−1 
2 

· · · −O 

(2 ,N) 

. . . 
. . . 

. . . 
. . . 

−O 

(N, 1) −O 

(N, 2) · · · T 

−1 
N 

⎤ ⎥ ⎥ ⎦ 

⎛ ⎜ ⎜ ⎜ ⎝ 

c (1) 
1 

c (2) 
2 
. . . 

c (N) 
N 

⎞ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎝ 

˜ a (1) ˜ a (2) 

. . . ˜ a (N) 

⎞ ⎟ ⎟ ⎠ 

. (38) 

o avoid involving the matrix inverses T −1 
j 

, we can also rearrange 

he linear system into 

 

( j) 
j 

− T j 

N ∑ 

i =1 
i � = j 

O 

( j,i ) c (i ) 
i 

= T j ̃  a ( j) , (39) 

 

 

 

 

I −T 1 O 

(1 , 2) · · · −T 1 O 

(1 ,N) 

−T 2 O 

(2 , 1) I · · · −T 2 O 

(2 ,N) 

. . . 
. . . 

. . . 
. . . 

−T N O 

(N, 1) −T N O 

(N, 2) · · · I 

⎤ ⎥ ⎥ ⎦ 

⎛ ⎜ ⎜ ⎜ ⎝ 

c (1) 
1 

c (2) 
2 
. . . 

c (N) 
N 

⎞ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 

a (1) 
1 

a (2) 
2 
. . . 

a (N) 
N 

⎞ ⎟ ⎟ ⎟ ⎠ 

, 

(40) 

here a 
( j) 
j 

= T j ̃  a ( j) corresponds to irregular series coefficients for 

he scattered field of particle j in isolation (from all the other N −
 particles). 3 

Note that (36), (38) , and (40) are all in the form of a general

atrix equation Ax = b , which can be solved for the column vec- 

or(s) x without inverting the matrix A . However, formal inver- 

ion is necessary when seeking collective T -matrix constructions, 

hich describe the entire cluster’s response to arbitrary incident 
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elds, and can notably provide analytical formulas for orientation- 

veraged quantities. A number of collective T -matrices are defined 

n the next section, following the different treatments of Stout and 

ackowski & Mishchenko. 

.5. Collective T -matrix constructions 

The system of coupled matrix equations in (38) can be solved 

or c 
( j) 
j 

by inverting the matrix to obtain 

 

( j) 
j 

= 

N ∑ 

i =1 

T 

( j,i ) ˜ a (i ) = 

( 

N ∑ 

i =1 

T 

( j,i ) ˜ O 

(i, 0) 

) 

︸ ︷︷ ︸ 
:= Mackowski ′ s T ( j) 

M 

˜ a (41) 

= 

( 

N ∑ 

i =1 

T 

( j,i ) ˜ O 

(i, j) 

) 

︸ ︷︷ ︸ 
:= Stout ′ s T ( j) 

S 

˜ a ( j) , (42) 

here T ( j,i ) represent what we may call “pairwise T -matrices”, ex- 

ressing the portion of the scattered field from particle j in re- 

ponse to its excitation by particle i ; the T ( j,i ) matrices are ar- 

anged and defined as follows 

T 

( j,i ) 
]

= 

⎡ ⎢ ⎢ ⎣ 

T 

(1 , 1) T 

(1 , 2) · · · T 

(1 ,N) 

T 

(2 , 1) T 

(2 , 2) · · · T 

(2 ,N) 

. . . 
. . . 

. . . 
. . . 

T 

(N, 1) T 

(N, 2) · · · T 

(N,N) 

⎤ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎣ 

T 

−1 
1 

−O 

(1 , 2) 

−O 

(2 , 1) T 

−1 
2 

. . . 
. . . 

−O 

(N, 1) −O 

(N, 2) 

= 

⎡ ⎢ ⎢ ⎣ 

T 1 0 · · · 0 

0 T 2 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · T N 

⎤ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎣ 

I −O 

(1 , 2) T 2 · · ·
−O 

(2 , 1) T 1 I · · ·
. . . 

. . . 
. . . 

−O 

(N, 1) T 1 −O 

(N, 2) T 2 · · ·

= 

⎡ ⎢ ⎢ ⎣ 

I −T 1 O 

(1 , 2) · · · −T 1 O 

(1 ,N) 

−T 2 O 

(2 , 1) I · · · −T 2 O 

(2 ,N) 

. . . 
. . . 

. . . 
. . . 

−T N O 

(N, 1) −T N O 

(N, 2) · · · I 

⎤ ⎥ ⎥ ⎦ 

−1 ⎡ ⎢ ⎢ ⎣ 

T 1 0
0 T
. . . 

...
0 0

ith the last two lines merely showing how the one-body T - 

atrices can be factored out in two different ways (left or right). 

The T ( j,i ) matrices provide a complete and exact solution to 

he multiple scattering problem. Crucially, they retain all the in- 

ormation required to calculate fields at any point within or out- 

ide the cluster (except within the Rayleigh Hypothesis region 

or nonspherical scatterers). Stout et al. denotes these matrices 

scatterer-centred transfer matrices” (see Eq. (12) in Ref. [14] ), 

hile Mackowski & Mishchenko refer to them as “sphere-centred”

see Eq. (16) in Ref. [16] and Eq. (4) in Ref. [17] ). Arguably,

oth appellations are equally applicable to T ( j) , which Mackowski 

 Mishchenko define one way (see Eq. (61) in Ref. [17] ) without 

iving a particular name, while Stout et al. define T ( j) differently 

nd call it “individual N-body transfer matrices” (see Eqs. (14) and 

27) in Ref. [14] ). The difference between both is explicitly stated 

n Eq. (41) , with Stout’s T 
( j) 
S 

retaining expansions from each scat- 

erer’s origin, and Mackowski & Mishchenko’s T 
( j) 
M 

collapsing all ex- 

ansions to a common origin O . Note that neither definition should 

e confused with the one-body T -matrices T j of Eq. (34) . 
9 
−O 

(1 ,N) 

−O 

(2 ,N) 

. . . 

T 

−1 
N 

⎤ ⎥ ⎥ ⎦ 

−1 

(43) 

 ,N) T N 
 ,N) T N 

. . . 

I 

⎤ ⎥ ⎥ ⎦ 

−1 

(44) 

· · 0 

· · 0 

. . . 
. . . 

· · T N 

⎤ ⎥ ⎥ ⎦ 

(45) 

Mackowski & Mishchenko additionally consider the collective 

cattering coefficients a for the irregular VSWF expansion about 

he common origin of the whole cluster, i.e. 

 sca (r ; k ) = EW (k r ) a 

= EW (k r ) 

( 

N ∑ 

j=1 ̃

 O 

(0 , j) c ( j) 

) 

, 

for ‖ r ‖ > max ‖ r j ‖ , (46) 

here the second equality relies on a particular clause of the 

ranslation-addition theorem, which is valid only outside of the 

mallest circumscribed sphere (encompassing all N scatterers) cen- 

red at the global frame’s origin. From (46) and (41) we have 

 = 

N ∑ 

j=1 ̃

 O 

(0 , j) c ( j) 
j 

= 

N ∑ 

j=1 ̃

 O 

(0 , j) 
N ∑ 

i =1 

T 

( j,i ) ˜ a (i ) 

= 

N ∑ 

j=1 ̃

 O 

(0 , j) T 

( j) 
M ̃

 a , (47) 

here a and ̃

 a are now related as in (15) , providing expressions for 

he collective T -matrix of the entire cluster 

 = 

N ∑ 

j=1 

N ∑ 

i =1 ̃

 O 

(0 , j) T 

( j,i ) ˜ O 

(i, 0) 

= 

N ∑ 

j=1 ̃

 O 

(0 , j) T 

( j) 
M 

= 

N ∑ 

j=1 ̃

 O 

(0 , j) T 

( j) 
S 
˜ O 

( j, 0) , (48) 

here in the last equality we used the fact that T 
( j) 
M 

= T 
( j) 
S 
˜ O 

( j, 0) .

ackowski & Mishchenko refer to the collective T in (48) as the 

cluster-centred” T -matrix (see Eq. (19) in Ref. [16] , Eq. (64) in 

ef. [17] , and Eq. (29) in Ref. [18] ). Note that (47) is valid only

utside of the cluster’s smallest circumscribed sphere centred at 
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he common origin; this collective T -matrix does not allow the cal- 

ulation of near-fields between particles [17,18] . 

In the terms program, when Scheme � = 0 the collective 

 -matrix is calculated in the subroutine contractTmat of 

he multiscat module; it is used to calculate orientation- 

veraged far-field cross-sections. However, if the keyword 

cattererCentredCrossSections is included in the in- 

ut file, the collective T will not be calculated and the program 

ill be using alternative orientation-averaging formulas based on 

article-centred T -matrices T (i, j) instead. 

.6. Far-field cross-sections 

In Mode = 2 the program calculates far-field cross- 

ections for the given incident field direction(s) and four po- 

arisations (two linear, two circular), as well as their average over 

he full solid angle using analytical formulas. 

.6.1. Fixed orientation cross-sections 

After solving for the particle-centred coefficients c 
( j) 
j 

for a 

iven 

˜ a and T j ’s (where j = 1 , . . . , N), the corresponding fixed- 

rientation extinction ( σext ), scattering ( σsca ), and absorption ( σabs ) 

ross-sections can be calculated. Here we state formulae for σext 

nd σsca expressed in terms of origin- and particle-centred coef- 

cients, without derivation but with references to the previously- 

ited literature. For a non-absorbing incident medium (real-valued 

avenumber k , as must be the case throughout terms ), σabs can 

e inferred using energy conservation: σabs = σext − σsca . 

Fixed-orientation extinction cross-sections are calculated using 

ext = − �{ ̃  a † a } 
k 2 

= − 1 

k 2 

l max ∑ 

l=1 

� 

{˜ a ∗l a l 
}

(49) 

= − 1 

k 2 
� 

{ 

N ∑ 

j=1 ̃

 a ( j) † c ( j) 

} 

(50) 

= − 1 

k 2 

N ∑ 

j=1 

l max ∑ 

l=1 

� 

{˜ a ( j) ∗
l 

c ( j) 
l 

}
(51) 

=: 

N ∑ 

j=1 

σ ( j) 
ext , (52) 

here �{ . . . } indicates taking the real part of the quantity inside 

he braces, ̃  a ( j) † is conjugate transpose of the column vector ̃  a ( j) , 
 

 

( j) ∗
l 

is the complex conjugate of the vector component a 
( j) 
l 

, and 

 is the wavenumber in the incident medium. Note that, since 

{ ab ∗} = �{ a ∗b} for any complex numbers a and b, (49) is equiva-

ent to Eq. (H.65) of Ref. [19] and Eq. 5.18a of Ref. [4] (provided

 E 

inc 
0 

| 2 = E = 1 ). Equation (51) is taken from Eq. (29) of Ref. [15] ,

hich follows from simplifying Eq. (43) of Ref. [14] and substitut- 

ng into Eq. (42) of the same reference. Also note that σext is (for- 

ally) separable into additive contributions from individual scat- 

erers, i.e. σext = 

∑ 

j σ
( j) 
ext . 

Fixed-orientation scattering cross-sections can be calculated us- 

ng 

sca = 

| a | 2 
k 2 

= 

1 

k 2 

l max ∑ 

l=1 

a ∗l a l (53) 

= 

1 

k 2 

N ∑ 

j=1 

N ∑ 

i =1 

a ( j) † ˜ O 

( j,i ) a (i ) (54) 

= 

1 

k 2 

N ∑ 

j=1 

N ∑ 

i =1 

l max ∑ 

l=1 

l max ∑ 

l ′ =1 

a ( j) ∗
l 

˜ O 

( j,i ) 
l l ′ a (i ) 

l ′ (55) 

=: 

N ∑ 

j=1 

σ ( j) 
sca , (56) 
10 
here | a | 2 = a † a . Note that (53) is equivalent to Eq. (H.64) of

ef. [19] and Eq. (5.18b) of Ref. [4] (provided | E 

inc 
0 

| 2 = E = 1 );

hile (55) is from Eq. (29) of Ref. [15] , which follows from substi- 

uting Eq. (45) of Ref. [14] into Eq. (42) of the same reference. 

In terms , with Mode = 2 all the far-field cross-sections are 

alculated in the main subroutine spectrumFF . If the keyword 

cattererCentredCrossSections is included in the input 

le, fixed orientation cross-sections are calculated using particle- 

entred coefficients via the subroutine calcCsStout ( Eqs. (51) 

nd (55) are implemented in this subroutine). Otherwise, they 

re calculated using origin-centred coefficients via the subroutine 

alcCs . 

.6.2. Orientation averaged cross-sections 

One attractive feature of the T -matrix method is that it provides 

elatively simple means of calculating orientation-averaged cross- 

ections, herein denoted by 〈 σext 〉 , 〈 σsca 〉 and 〈 σabs 〉 ; these are of-

en used to describe a randomly oriented scatterer, or, equivalently, 

ight incident from a random direction [65] . Note that in terms the 

rientation averaging applies to the cluster as a whole, not to indi- 

idual particles within the cluster: they are considered rigidly held 

ogether (attached on a template, in practice). As with the fixed- 

rientation cross-sections, orientation averages can be calculated 

ither from the origin-centred collective T -matrix T , or from the 

article-centred T -matrices T (i, j) . 

 σext 〉 = − 2 π

k 2 
� { Tr (T ) } (57) 

= − 2 π

k 2 

∑ 

j 

∑ 

k 

� 

{
Tr 
(
T 

( j,k ) ˜ O 

(k, j) 
)}

(58) 

=: 
∑ 

j 

〈 σext , j 〉 (59) 

 σsca 〉 = 

2 π

k 2 
Tr 
(
T 

† T 

)
(60) 

= 

2 π

k 2 

∑ 

j 

∑ 

k 

Tr 

⎛ ⎝ 

[ ∑ 

l 

˜ O 

(k,l) T 

(l, j) 

] † [ ∑ 

i 

T 

(k,i ) ˜ O 

(i, j) 

] 

⎞ ⎠ (61) 

=: 
∑ 

j 

〈 σsca , j 〉 (62) 

he cluster’s absorption cross-section can be calculated from en- 

rgy conservation, 

 σabs 〉 = 〈 σext 〉 − 〈 σsca 〉 . (63) 

lternatively, it may also be calculated directly from the flux of 

he Poynting vector of the total field entering the surface of each 

ndividual particle. This provides the physically-meaningful portion 

f energy absorbed within each scatterer j, and their sum adds 

p to the total absorption cross-section for the cluster. Following 

tout [14] and restricting ourselves to non-magnetic, homogeneous 

pheres, 

 σabs 〉 = 

2 π

k 2 

∑ 

j 

∑ 

k 

∑ 

l 

Tr 

([
T 

( j,k ) 
]† 

� j T 

( j,l) ˜ O 

(l,k ) 

)
(64) 

=: 
∑ 

j 

〈 σabs , j 〉 (65) 

here the absorption matrix � j is of the form 

j = 

[
C j 0 

0 D 

j 

]
. (66) 

 

j and D 

j are diagonal matrices with matrix elements 

 

j 
n = 

� 

[
iρ j ψ 

∗
n (ρ j χ j ) ψ 

′ 
n (ρ j χ j ) 

]
| ψ n (ρ j χ j ) ψ 

′ 
n (χ j ) − ρ j ψ 

′ 
n (ρ j χ j ) ψ n (χ j ) | 2 (67) 
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j 
n = 

� 

[
iρ∗

j 
ψ 

∗
n (ρ j χ j ) ψ 

′ 
n (ρ j χ j ) 

]
| ρ j ψ n (ρ j χ j ) ψ 

′ 
n (χ j ) − ψ 

′ 
n (ρ j χ j ) ψ n (χ j ) | 2 (68) 

here ψ n (x ) are Ricatti-Bessel functions: ψ n (x ) = x j n (x ) , χ j = kR j ,

nd ρ j = k j /k . k is the wavenumber in the incident medium, R j the

adius of sphere j, and k j the wavenumber inside (homogeneous) 

phere j. 

When Scheme = 1 or 2 and the input file requests 

cattererCentredCrossSections , the orientation-averaged 

ross-sections are calculated in the subroutine calcOaStout 
hich uses particle-centred T -matrices T (i, j) ( Eqs. (58) , (61), (64) ). 

er-particle orientation-averaged absorption is currently only re- 

urned for homogeneous spheres, as the generalisation of Eq. 

64) to arbitrary scatterers is not yet available. 

In other cases, orientation-averaged cross-sections are calcu- 

ated in the subroutine calcOAprops , which uses the common- 

rigin collective T -matrix T ( Eqs. (57) , (60), (63) ). Note that these

alculations based on collective T are much faster than those based 

n particle-centred T -matrices T (i, j) . 

.6.3. Circular dichroism 

Circular dichroism (CD) is defined as the difference between 

he optical properties of the structure under left and right circu- 

arly polarised incident fields. Its calculation is more natural when 

SWFs are expressed in the “helicity” basis, related to the standard 

parity” ( te, tm ) basis via the helicity operator ( � = 

∇×
k 

) leading to

21] , 

 R,nm 

= 

1 √ 

2 

(M nm 

− N nm 

) , �Z R,nm 

= −Z R,nm 

(69) 

 L,nm 

= 

1 √ 

2 

(M nm 

+ N nm 

) , �Z L,nm 

= Z L,nm 

, (70) 

here the subscripts ( R ) and ( L ) refer to right and left circularly

olarised light. The corresponding T -matrix describes the scatter- 

ng of circularly-polarised incident fields in the helicity basis. 

Using these definitions the relation between the T -matrix 

locks in parity and helicity bases reads 

T LL T LR 

T RL T RR 

]
= 

1 

2 

[
I I 
I −I 

][
T 11 T 12 

T 21 T 22 

][
I I 
I −I 

]
, (71) 

here I is the identity matrix with the same size as the 4 matrix 

locks ( T 11 , etc.). The orientation averaged cross-sections for a spe- 

ific (L) or (R) polarisation can be obtained from Eqs. (59) , (62) ,

y restricting the coefficients of the incident field to one helicity, 

21] 

 σsca 〉 L = 

4 π

k 2 
Tr 
(
T 

† 
LL 

T LL + T 

† 
RL 

T RL 

)
(72) 

 σext 〉 L = 

4 π

k 2 
� [ Tr ( T LL ) ] (73) 

 σabs 〉 L = 

4 π

k 2 
� 

[
Tr 
(
T LL ( I − T 

† 
LL 
) − T 

† 
RL 

T RL 

)]
(74) 

ith simple changes L ↔ R for R polarisation. Circular dichroism is 

hen obtained as the difference between (L) and (R) cross-sections. 

The subroutine calcOAprops implements these formulas, cal- 

ulated for Scheme � = 0 . 

.6.4. Stokes scattering vector and phase matrix 

Some light scattering applications require characterising the 

ngular and polarisation characteristics of the scattered field for 

 specified incident plane wave. terms uses the Stokes vector 

ormalism to describe such situations in Mode = 3 , following 
11 
ef. [4] . From the incident electric field E 0 , the components of the 

ncident Stokes vector read 

 = 

⎡ ⎢ ⎣ 

I 
Q 

U 

V 

⎤ ⎥ ⎦ 

= 

1 

2 

√ 

ε 

μ

⎡ ⎢ ⎣ 

E 0 θ E ∗
0 θ

+ E 0 ϕ E 
∗
0 ϕ 

E 0 θ E ∗
0 θ

− E 0 ϕ E 
∗
0 ϕ 

−2 � (E 0 θ E ∗0 ϕ ) 
2 � (E 0 θ E ∗0 ϕ ) 

⎤ ⎥ ⎦ 

(75) 

he 4 × 4 phase matrix Z relates incident and scattered field Stokes 

ectors, with the following expressions, 

 11 = 

1 
2 
(| S 11 | 2 + | S 12 | 2 + | S 21 | 2 + | S 22 | 2 ) (76) 

 12 = 

1 
2 
(| S 11 | 2 − | S 12 | 2 + | S 21 | 2 − | S 22 | 2 ) (77) 

 13 = −� (S 11 S 
∗
12 + S 22 S 

∗
21 ) (78) 

 14 = −� (S 11 S 
∗
12 − S 22 S 

∗
21 ) (79) 

 21 = 

1 
2 
(| S 11 | 2 + | S 12 | 2 − | S 21 | 2 − | S 22 | 2 ) (80) 

 22 = 

1 
2 
(| S 11 | 2 − | S 12 | 2 − | S 21 | 2 + | S 22 | 2 ) (81) 

 23 = −� (S 11 S 
∗
12 − S 22 S 

∗
21 ) (82) 

 24 = −� (S 11 S 
∗
12 + S 22 S 

∗
21 ) (83) 

 31 = −� (S 11 S 
∗
21 + S 22 S 

∗
12 ) (84) 

 32 = −� (S 11 S 
∗
21 − S 22 S 

∗
12 ) (85) 

 33 = � (S 11 S 
∗
22 + S 12 S 

∗
21 ) (86) 

 34 = � (S 11 S 
∗
22 + S 21 S 

∗
12 ) (87) 

 41 = −� (S 21 S 
∗
11 + S 22 S 

∗
12 ) (88) 

 42 = −� (S 21 S 
∗
11 − S 22 S 

∗
12 ) (89) 

 43 = � (S 22 S 
∗
11 − S 12 S 

∗
21 ) (90) 

 44 = � (S 22 S 
∗
11 − S 12 S 

∗
21 ) (91) 

here S is the standard 2 × 2 amplitude scattering matrix linking 

ncident and scattered transverse field vectors in the respective di- 

ections ( ̂ r inc ) and ( ̂ r sca ), [4] 

E sca 
θ

(
ˆ r sca 
)

E sca 
ϕ 

(
ˆ r sca 
) ] = 

exp ( i kr ) 

r 
S 
(

ˆ r sca , ̂  r inc 
)[ E inc 

0 θ
E inc 

0 ϕ 

]
. (92) 

he amplitude scattering matrix S is derived from the collective 

 -matrix following Ref. [4] (Eqs. (5.277)–(5.280)). 

.6.5. Differential scattering cross-section 

The differential scattering cross-section describes the angular 

istribution of the scattered light. It depends on the polarisation 

f the incident wave as well as the incidence and scattering direc- 

ions, and is readily calculated from the Stokes phase matrix and 

ncident Stokes vector [4] 

dC sca 

d�
= 

1 

I inc 

[ Z 11 ( ̂ r , ̂  n inc ) I inc + Z 12 ( ̂ r , ̂  n inc ) Q inc 

+ Z 13 ( ̂ r , ̂  n inc ) U inc + Z 14 ( ̂ r , ̂  n inc ) V inc ] . (93) 

.7. Near-field quantities 

Solving the linear system of multiple-scattering equations pro- 

ides the scattered field coefficients, from which we can com- 

ute the complex vector fields E , B everywhere in space, as well 
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s derived quantities such as | E | 2 , | E | 4 , or the local degree of

ptical chirality C ∝ � (E 

∗ · B ) . If only specific directions of inci-

ence are needed, the system may be solved directly, without in- 

ersion ( Scheme = 0 , fastest). However, in some circumstances, 

uch as the description of randomly-oriented clusters, we also 

eek orientation-averaged near-field quantities, requiring Scheme 
 0 . 

Near-field values are calculated in Mode = 1 in terms , with 

apNF the main subroutine which receives input values and dis- 

atches to other subroutines for the calculation of specific near- 

eld quantities. 

.7.1. Orientation averaged local field intensity 

Following Ref. [61] , the local field intensity expressed in terms 

f the scatterer-centred T -matrices T (i, j) can be averaged over all 

ossible directions of light incidence and polarisation, yielding 

| E tot (k r ) | 2 〉 = 2 πE 2 ( A 0 + B 0 + C 0 ) (94) 

here 

 0 = 1 / 2 π, (95) 

 0 = 2 � 

N ∑ 

j=1 

N ∑ 

l=1 

Tr 

(˜ W 

† (r l ) P ( ̂ r l , ̂  r j ) W (r j ) T 

( j,l) 
N 

)
, (96)

 0 = Tr 

( 

N ∑ 

j=1 

N ∑ 

l=1 

N ∑ 

i =1 

N ∑ 

k =1 

O 

(l,k ) T 

† (i,k ) 
N 

W 

† (r i ) P ( ̂ r i , ̂  r j ) W (r j ) T 

( j,l) 
N 

) 

(97) 

here P ( ̂ r i , ̂  r j ) = C t ( ̂ r i ) C ( ̂ r j ) and C ( ̂ r j ) transforms vector in the j th

article spherical coordinate basis to the cartesian coordinate sys- 

em: 

( ̂ r j ) = 

[ 

sin θ j cos ϕ j cos θ j cos ϕ j − sin ϕ j 

sin θ j sin ϕ j cos θ j sin ϕ j cos ϕ j 

cos θ j − sin θ j 0 

] 

. (98) 

he terms A 0 , B 0 , C 0 correspond to the incident electric field, the

nterference between incident and scattered electric field, and the 

cattered electric field, respectively. 

The orientation average of the local field intensity is mainly cal- 

ulated in the subroutine calcOaNFUnpol of the multiscat 
odule. Note that this quantity is averaged over all polarisations; 

 derivation of 〈| E tot (k r ) | 2 〉 for L and R circular polarisations sepa-

ately is given in Appendix A.5 , and implemented in calcOaNF . 

.7.2. Optical chirality ( C ) 

In order to evaluate the local degree of optical chirality ( C ), 

he total electric E = E sca + E inc and magnetic B = B sca + B inc vec-

or fields are first evaluated at the requested position, from which 

 is obtained as [66] 

 = 

−ωε 0 
2 

� (E 

∗. B ) (99) 

rom the Maxwell equation B = −iω 

−1 ∇ × E , the magnetic field 

s expressed in the VSWF basis with the same coefficients as the 

lectric field (with a simple swap and a prefactor), 

 (r ; k ) = 

−ik 

ω 

n max ∑ 

n =1 

n ∑ 

m = −n 

[ a 1 ,nm 

N nm 

(k r ) + a 2 , nm 

M nm 

(k r )] (100) 

hus, the field coefficients ( a 1 ,nm 

, a 2 ,nm 

) provide us with both 

he electric and magnetic field, from which we derive the lo- 

al degree of optical chirality C . The subroutine calcLDOC of 

he multiscat module calculates C . The value of C is often 
12 
ormalised with respect to the degree of chirality of circularly- 

olarised plane waves C = ±kE 2 ε 0 / 2 ( + for RCP and - for LCP, re-

pectively), with incident electric field E ≡ | E inc | , defining 

 = 

2 

kε 0 E 2 
C . (101) 

.7.3. Orientation-averaged optical chirality 〈 C 〉 
For the calculation of orientation-averaged local degree of opti- 

al chirality 〈 C 〉 , we combine the near-field averaging procedure of 

ection 3.7.1 with the treatment of optical activity in Section 3.6.3 , 

xpressing electric and magnetic fields as VSWFs in the helicity ba- 

is. We refer the reader to Ref. [22] for details of the derivation, 

nd summarise the result: 

 C 〉 = 2 πkε 0 E 
2 � ( A 0 + B 0 + C 0 + D 0 ) (102) 

here, for right-handed circular polarisation 

A 

(R) 
0 

= −1 / 4 π

B 

(R) 
0 

= 

N ∑ 

j=1 

N ∑ 

l=1 

Tr 
(˜ Z 

† 
R 
(k r l ) 

[
−U 

(R ) 
j,l 

+ V 

(R ) 
j,l 

])
C (R) 

0 
= 

N ∑ 

j=1 

N ∑ 

l=1 

Tr 
([

−U 

† (R ) 
j,l 

− V 

† (R ) 
j,l 

]̃
 Z R (k r l ) 

)
 

(R) 
0 

= 

N ∑ 

j=1 

N ∑ 

l=1 

N ∑ 

i =1 

N ∑ 

k =1 

Tr 

(
O 

(k,l) 
RR 

[
U 

† (R ) 
j,l 

+ V 

† (R ) 
j,l 

][
−U 

(R ) 
i,k 

+ V 

(R ) 
i,k 

])
(103) 

here ˜ Z R and 

˜ Z L are the left and right regular VSWFs in helic- 

ty basis and Z R , Z L the corresponding irregular VSWFs (cf Eqs. 69, 

0 ). The terms U 

(R ) 
j,l 

and V 

(R ) 
j,l 

(and their Hermitian transpose) are 

ntroduced for conciseness and defined as, 

 

(R ) 
j,l 

: = Z R (k r j ) T 

( j,l) 
RR 

; U 

† (R ) 
j,l 

= T 

† ( j,l) 
RR 

Z 

† 
R 
(k r j ) 

V 

(R ) 
j,l 

: = Z L (k r j ) T 

( j,l) 
LR 

; V 

† (R ) 
j,l 

= T 

† ( j,l) 
LR 

Z 

† 
L 
(k r j ) (104) 

he corresponding formulas for left-handed circular polarisation 

ead 

A 

(L) 
0 

= +1 / 4 π

B 

(L) 
0 

= 

N ∑ 

j=1 

N ∑ 

l=1 

Tr 
(˜ Z 

† 
L 
(k r l ) 

[
U 

(L ) 
j,l 

− V 

(L ) 
j,l 

])
C (L) 

0 
= 

N ∑ 

j=1 

N ∑ 

l=1 

Tr 
([

U 

† (L ) 
j,l 

+ V 

† (L ) 
j,l 

]̃
 Z L (k r l ) 

)
 

(L) 
0 

= 

N ∑ 

j=1 

N ∑ 

l=1 

N ∑ 

i =1 

N ∑ 

k =1 

Tr 

(
O 

(k,l) 
LL 

[
U 

† (L ) 
j,l 

+ V 

† (L ) 
j,l 

][
U 

(L ) 
i,k 

− V 

(L ) 
i,k 

])
(105) 

ith 

 

(L ) 
j,l 

: = Z L (k r j ) T 

( j,l) 
LL 

; U 

† (L ) 
j,l 

= T 

† ( j,l) 
LL 

Z 

† 
L 
(k r j ) 

V 

(L ) 
j,l 

: = Z R (k r j ) T 

( j,l) 
RL 

; V 

† (L ) 
j,l 

= T 

† ( j,l) 
RL 

Z 

† 
R 
(k r j ) (106) 

ote that the sum of B 0 and C 0 simplifies to, 

 

(
B 

(R) 
0 

+ C (R) 
0 

)
= −2 � 

( 

N ∑ 

j=1 

N ∑ 

l=1 

Tr 
(˜ Z 

† 
R 
(k r l ) U 

(R ) 
j,l 

)) 

(107) 

nd 

 

(
B 

(L) 
0 

+ C (L) 
0 

)
= 2 � 

( 

N ∑ 

j=1 

N ∑ 

l=1 

Tr 
(˜ Z 

† 
L 
(k r l ) U 

(L ) 
j,l 

)) 

. (108) 

hese formulas ( 102–108 ), and corresponding ones for polarised 

| E tot (k r ) | 2 〉 , are implemented in the subroutine calcOaNF of the

ultiscat module. 
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.8. Solution schemes 

terms offers several options, selected by Scheme , to solve the 

ultiple scattering problem described in Section 3.4 . It generally 

equires determining the particle-centred coefficients c 
( j) 
j 

for given 

ndividual scatterer properties (described by T 
( j) 
1 

) and an excita- 

ion field (described by ̃  a ( j) ) impinging from a particular direction. 

his can be achieved by solving the linear system of equations in 

36) for c 
( j) 
j 

without performing matrix inversion, thus producing a 

omplete description of the scattered field for the given excitation. 

he linear system can be solved with multiple right-hand sides, 

epresenting different excitations, with standard linear algebra rou- 

ines. Performing matrix inversion to determine the collective T - 

atrix becomes worthwhile only when many impinging directions 

re to be considered, or when orientation-averaged quantities are 

f primary interest. 

A brute force approach to solving the multiple scattering prob- 

em would be to construct the N l max × N l max matrix in Eq. (36) and

hen invert it to obtain the pairwise scatterer-centred T -matrices 

 

(i, j) . However, this approach is computationally demanding. To 

elp alleviate the cost of one large matrix inversion, Stout et al. 

14,15] proposed a recursive scheme where a smaller ( l max × l max ) 

atrix is inverted N − 1 times. 

.8.1. Recursive scheme with matrix balancing 

In the recursive algorithm described by Stout et al. [14] , the el- 

ments of T 
( j,i ) 
N 

are accumulated recursively from auxiliary subsys- 

ems, incrementally built up from one to N particles. The recursive 

ystem is prescribed by the following four equations: 

 

(N,N) 
N 

= 

[[
T 

(N) 
1 

]−1 −
N−1 ∑ 

j=1 

O 

(N, j) 

( 

N−1 ∑ 

i =1 

T 

( j,i ) 
N−1 

O 

(i,N) 

) ]
−1 (109) 

=: S −1 , (110) 

 

(N,i ) 
N 

= T 

(N,N) 
N 

( 

N−1 ∑ 

j=1 

O 

(N, j) T 

( j,i ) 
N−1 

) 

, i � = N, (111) 

 

( j,N) 
N 

= 

( 

N−1 ∑ 

i =1 

T 

( j,i ) 
N−1 

O 

(i,N) 

) 

T 

(N,N) 
N 

, j � = N, (112) 

 

( j,i ) 
N 

= T 

( j,i ) 
N−1 

+ 

( 

N−1 ∑ 

l=1 

T 

( j,l) 
N−1 

O 

(l,N) 

) 

T 

(N,i ) 
N 

, j, i � = N, (113) 

here a common matrix sum has been underlined. Note that only 

ne l max × l max matrix is inverted on each of the N − 1 iterations. 

he inverted matrix becomes ill-conditioned for large n max , but the 

ssociated problems can be (at least partly) circumvented by ap- 

lying the recursive scheme to appropriately “balanced” matrices 

nd coefficients: [15] ̂ T 

( j,i ) 
N 

]
sp,s ′ p ′ := 

[
D 

( j) T 

( j,i ) 
N 

[ ̃  D 

(i ) ] −1 
]

sp,s ′ p ′ (114) 

= 

ξn (p) (k M 

R j ) 

ψ n ′ (p ′ ) (k M 

R i ) 

[
T 

( j,i ) 
N 

]
sp,s ′ p ′ ̂ T 

( j) 
1 

]
sp,s ′ p ′ := 

[
D 

( j) T 

( j) 
1 

[ ̃  D 

( j) ] −1 
]

sp,s ′ p ′ (115) 

= 

ξn (p) (k M 

R j ) 

ψ n ′ (p ′ ) (k M 

R j ) 

[
T 

( j) 
1 

]
sp,s ′ p ′ ̂ O 

( j,i ) 
]

sp,s ′ p ′ := 

[˜ D 

( j) O 

( j,i ) [ D 

(i ) ] −1 
]

sp,s ′ p ′ (116) 

= 

ψ n (p) (k M 

R j ) 

ξn ′ (p ′ ) (k M 

R i ) 

[
O 

( j,i ) 
]

sp,s ′ p ′ , 

here ˜ D 

( j) and D 

( j) are regular and irregular diagonal matrices 

ith the Riccati-Bessel functions ψ n (x ) = x j n (x ) or ξn (x ) = xh n (x )
13 
n the diagonal. (Here, j n (x ) and h n (x ) are, respectively, the spher-

cal Bessel and Hankel functions of the first kind) [19] . Note that 

tout et al. [15] ’s “matrix balancing” may also be regarded as 

left and right preconditioning”, as the matrix to be inverted is 

ssentially left- and right-multiplied by two different matrices to 

mprove its condition number. This procedure aims to make nu- 

erical inversion more robust and accurate. Instead of balancing 

hroughout, as Stout et al. [15] propose to do, we prefer to localise 

he balancing act just at the inversion step in (110) , i.e. 

 

(N,N) 
N 

= S −1 

= 

[
D 

(N) 
]−1 

D 

(N) S −1 
[˜ D 

(N) 
]−1 ˜ D 

(N) (117) 

= 

[
D 

(N) 
]−1 
[ ˜ D 

(N) S 
[
D 

(N) 
]−1 
] −1 ˜ D 

(N) 

=: 
[
D 

(N) 
]−1 ̂ S −1 ˜ D 

(N) (118) 

here ̂  S is obtained by balancing S analogously to ̂  T 
( j,i ) 
N 

. Note that 

q. (110) can be factored in two ways: 

 

(N,N) 
N 

= T 

(N) 
1 

S −1 
R = S −1 

L T 

(N) 
1 

(119) 

here 

 R = 

[ 

I −
N−1 ∑ 

j=1 

O 

(N, j) 

( 

N−1 ∑ 

i =1 

T 

( j,i ) 
N−1 

O 

(i,N) 

) 

T 

(N) 
1 

] 

(120) 

 L = 

[ 

I − T 

(N) 
1 

N−1 ∑ 

j=1 

O 

(N, j) 

( 

N−1 ∑ 

i =1 

T 

( j,i ) 
N−1 

O 

(i,N) 

) ] 

(121) 

ither of which may be preferred if T (N) 
1 

is difficult to invert. To fa- 

ilitate the inversion of S L and S R , slightly different balancing (and 

ubsequent unbalancing) should be used: 

 

−1 
L = 

[
D 

(N) 
N 

]−1 
[ 

D 

(N) 
N 

S L 
[
D 

(N) 
N 

]−1 
] −1 

D 

(N) 
N 

(122) 

=: 
[
D 

(N) 
N 

]−1 ̂ S −1 
L D 

(N) 
N 

, (123) 

 

−1 
R = 

˜ D 

(N) 
N 

[ [˜ D 

(N) 
N 

]−1 
S R ̃  D 

(N) 
N 

] −1 [˜ D 

(N) 
N 

]−1 
(124) 

=: ˜ D 

(N) 
N 
̂ S −1 

R 

[˜ D 

(N) 
N 

]−1 
. (125) 

ere S L is balanced using only irregular weights, while S R is bal- 

nced like a T -matrix using only regular weights. In our experi- 

nce, ̂  S R is much better conditioned for inversion than ̂

 S . 

In terms program the balancing formulas are implemented in 

he subroutines balanceVecJ and balanceMatJI . 

.8.2. Mackowski & Mishchenko’s scheme 

From Eqs. (43) and (45) it follows that 
 

 

 

I · · · −T 

(1) 
1 

O 

(1 ,N) 

. . . 
. . . 

. . . 

−T 

(N) 
1 

O 

(N, 1) · · · I 

⎤ ⎥ ⎦ 

⎡ ⎢ ⎣ 

T 

(1 , 1) 
N 

· · · T 

(1 ,N) 
N 

. . . 
. . . 

. . . 

T 

(N, 1) 
N 

· · · T 

(N,N) 
N 

⎤ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

T 

(1) 
1 

· · · 0 

. . . 
. . . 

. . . 

0 · · · T 

(N) 
1 

⎤ ⎥ ⎦ 

, (126) 

r, equivalently, 

 

(i,i ) 
N 

−
∑ 

j � = i 
T 

(i ) 
1 

O 

(i, j) T 

( j,i ) 
N 

= T 

(i ) 
1 

, (127) 

hich is a linear system of the general form AX = B , where we

ant to find matrix X for a given A and B , which contains mul-

iple right hand sides. That is, each column of X and B can be 
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reated independently, so we have to solve many linear systems 

f the form Ax ν = b ν , where x ν and b ν are the ν ’th column of X

nd B , respectively. 

Mackowski & Mishchenko (M&M) [17,18] “contract” the sec- 

nd particle index of T 
( j,i ) 
N 

, using T 
( j) 
N 

= 

∑ 

i T 
( j,i ) 
N 

˜ O 

(i, 0) , to rewrite 

he linear system in terms of individual (as opposed to pairwise) 

catterer-centred T -matrices T 
( j) 
N 

, i.e. 

 

 

 

I · · · −T 

(1) 
1 

O 

(1 ,N) 

. . . 
. . . 

. . . 

−T 

(N) 
1 

O 

(N, 1) · · · I 

⎤ ⎥ ⎦ 

⎛ ⎜ ⎝ 

T 

(1) 
N 
. . . 

T 

(N) 
N 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

T 

(1) 
1 
˜ O 

(1 , 0) 

. . . 

T 

(N) 
1 
˜ O 

(N, 0) 

⎞ ⎟ ⎠ 

, 

(128) 

r, equivalently, 

 

(i ) 
N 

−
∑ 

j � = i 
T 

(i ) 
1 

O 

(i, j) T 

( j) 
N 

= T 

(i ) 
1 
˜ O 

(i, 0) , (129) 

here the number of independent linear systems of the form 

x ν = b ν is now reduced. M&M use the biconjugate gradient 

ethod to solve Ax ν = b ν for each ν , where the row order 

i.e. length of each column vector) is predetermined from Mie the- 

ry for each (spherical) scatterer in isolation, and the truncation 

imit for the column order (i.e. the maximum value of ν) is de- 

ermined on-the-fly from the convergence of each scatterer’s con- 

ribution to the collective rotationally-averaged extinction cross- 

ection (see Eq. (66) in Ref. [17] ). 

Mackowski & Mishchenko’s scheme is implemented as Scheme 
 3 in terms , with the addition of balancing discussed above, 

hough we use a direct linear solver instead of an iterative one. 

. Conclusion and outlook 

We have introduced terms , an open-source Fortran program to 

imulate light scattering by rigid clusters of nanoparticles, in fixed 

r random orientation with respect to incident light. terms im- 

lements several superposition T -matrix algorithms and recently- 

erived formulas for analytical orientation-averaging of far-field 

nd near-field optical properties. This manuscript provides a brief 

ummary of the method and references the key formulas imple- 

ented in the program. A companion website [13] includes a com- 

rehensive suite of self-contained examples illustrating the pro- 

ram’s capabilities in realistic calculations. We hope this program 

ill be useful to the light scattering community of researchers, and 

e welcome contributions to extend the program’s use cases. As 

oted in the introduction, the superposition T -matrix method has 

een implemented in several other publicly-available programs, 

ach with its own set of features, and we welcome collaboration 

o combine these effort s. We conclude below with an outlook of 

he possible extensions we are considering for the future develop- 

ent of terms . 

Code improvements 

• Optional use of an iterative solver to solve large linear systems 
• Import/export of T -matrices in HDF5 format 
• Import of T -matrices for more general particle shapes, from 

Scuff-EM [47] 
• Built-in calculation of spheroid T -matrices (port of smarties 

[8] ) 
• Improved methods for the calculation of TACs [67] 
• Additional built-in material dielectric functions 
• Optimisation of time-consuming calculations 

ew features 

• Calculation of internal fields for non-spherical particles ob- 

tained via EBCM [8] (exporting matrix R = Q 

−1 ) 
14 
• Orientation-averaged internal fields for coated spheres and 

nonspherical particles, adapting Ref. [14] 
• Orientation-averaged partial absorptions for layered particles 
• Orientation-averaged absorption and scattering circular dichro- 

ism in Stout’s scatterer-centred formalism (not from the collec- 

tive T -matrix) 
• Chiral media, following Ref. [51] 
• T -matrix for anisotropic core-shell spheres, following Ref. [68] 
• T -matrix for coated spheroids, following Refs. [69,70] 
• Dipolar incident field 

• T -matrix of model molecules, following Ref. [71] 
• Extension to infinite periodic arrays, following Ref. [33] 
• Integral representation of near-fields in the Rayleigh region, fol- 

lowing Ref. [45] 
• Alternative expansions for particles with intersecting circum- 

scribed spheres, following Ref. [44] and Ref. [72] 
• Geometry optimisation (via external libraries) 

We also consider porting the codebase to the Julia language 

73] , to benefit from an interactive environment to develop and 

est new features, without sacrificing run-time performance. 
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ppendix A 

1. Keywords 

List of case-sensitive keywords and corresponding arguments 

upported by terms . Optional arguments are enclosed in square 

rackets (nested in some cases). 

ain input parameters 

odeAndScheme M S 
If present, this keyword must appear first in the input file. It 

akes two arguments: positive integer M specifying the desired cal- 

ulation mode; and non-negative integer S specifying the solution 

cheme to be used. The default values are M = 2 and S = 3. 

Mode of calculation 

• M = 1 triggers a single- or multi-wavelength calculation of near 

fields E , B and optical chirality C , at fixed incidence directions 

and/or orientation-averaged 

• M = 2 triggers a single- or multi-wavelength calculation of far- 

field properties (e.g. spectra of optical cross-sections), at fixed 

incidence directions and/or orientation-averaged 

• M = 3 triggers a single- or multi-wavelength calculation of po- 

larimetric properties, such as Stokes scattering vectors, phase 

matrix, and differential scattering cross sections for multiple in- 

cidence and/or scattering angles 

Scheme of solution 

• S = 0 will seek solutions for the given angles of incidence, 

without seeking the collective T -matrix 
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• S > 0 will calculate the collective T -matrix either ( S = 1 ) by

direct inversion of the complete linear system to obtain T (i, j) , 

or ( S = 2 ) by using Stout’s iterative scheme for T (i, j) , or ( S = 3 )

by using Mackowski & Mishchenko’s scheme for T (i ) . Note that 

fixed-orientation cross-sections are also calculated when S > 0 . 

Scatterers N 
This keyword must appear last in the inputfile , with a sin- 

le positive integer argument N specifying the number of scatter- 

rs. The following N lines specify all the required parameters per 

catterer, and each line must contain five or more space-separated 

elds, i.e. 

Tag x y z R [ a b c [ d ] ] 
f Tag(1:2) = ‘‘TF’’ ), otherwise 
Tag x y z R [a [ b [ c ] ] ] where Tag is a contigu-

us string, which may contain one underscore to separate the root 

rom the suffix; x , y , z are the cartesian coordinates (in the lab

rame) for the scatterer, whose smallest circumscribing sphere has 

adius R . All other subsequent parameters (inside square brackets) 

epend on the root of Tag . 

Before the root of Tag is parsed, the code first looks for a suffix 

f the form _S? and associates it with a multipole selection prede- 

ned using the MultipoleSelections keyword. 

If the root of Tag is either “TF1”, “TF2”,..., or “TF9”, which corre- 

pond to a 1-body T -matrix file listed under the TmatrixFiles 
eyword, floats a , b , and c can be supplied to specify the Euler an-

les describing the scatterer orientation (default angle values are 

ll zero). Another float d may be included to specify the aspect 

atio for spheroids, which is currently only used for mapping lo- 

al field intensity and visualising the geometry. Note that d is in- 

erpreted as the ratio of polar (along z) to equatorial (along x or 

) length, so that d > 1 for prolate spheroids, d < 1 for oblate

pheroids, and d = 1 for spheres (default). Note that for nonspher- 

cal particles the circumscribing sphere radius R is used to check 

or potential geometrical overlap between particles, but also in the 

alancing scheme. 

If the root of Tag is not “TF?”, the 1-body T -matrix is computed 

sing Mie theory, which is applicable to coated spheres. The ex- 

ected Tag format is L0@L1@L2@L3 , with the character “@” de- 

imiting substrings that specify the material dielectric function of 

ach concentric region inside the scatterer, starting from the core 
# s sp n np m mp Tr Ti | prolate Au sp
# lambda = 400 nelements = 136 epsIn = -
1 1 1 1 -1 -1 -1.189109253832815e-04 -
1 1 1 1 0 0 -5.597968829951113e-05 -3.
… [truncated] 
2 2 4 4 3 3 -3.794740062663782e-11 5.6
2 2 4 4 4 4 -1.113090425618089e-11 1.7
# lambda = 402 nelements = 136 epsIn = -
1 1 1 1 -1 -1 -1.160926707256971e-04 -
1 1 1 1 0 0 -5.467319805259745e-05 -3.
… [truncated] 
2 2 4 4 3 3 -1.279170882307354e-15 1.3
2 2 4 4 4 4 -3.752182192799965e-16 4.1
… [truncated] 
# lambda = 800 nelements = 136 epsIn = -
1 1 1 1 -1 -1 -7.146139984375531e-07 -
1 1 1 1 0 0 -4.379156367712547e-07 -7.
… [truncated] 
2 2 4 4 3 3 -1.240958755455683e-15 1.3
2 2 4 4 4 4 -3.640885008022631e-16 4.0
… [truncated] 

15 
 L0 ) and going outward . The number of coats is inferred from the

umber of instances of “@” and is currently capped at 3. Tag of a 

omogeneous sphere (without layers) should not contain any “@”, 

.e. Tag = L0 . Currently accepted values for L? are: “Au”, “Ag”, “Al”, 

Cr”, “Pt”, “Pd”, “Si”, and “Water” which trigger internal calculation 

f the wavelength-dependent dielectric functions for the required 

aterial, or “DF1”, “DF2”,…, “DF9” to impose a custom dielectric 

unction listed under the DielectricFunctions keyword. For 

oated spheres, the outer radius of each region must be specified 

y floats R , a , b , c in the order of decreasing size (i.e. going radially

nward ). 

matrixFiles Nfiles 
Specifies the number of external T -matrix files (default: Nfiles 

 0 ). The subsequent Nfiles lines are each read as a string 

nd then interpreted as a filename. Wrap the string in quota- 

ion marks if it contains the relative path or special characters, 

.g. ‘‘../../tmatrix_Au_spheroid_50x20_water.tmat’’
ote that the wavelengths in each file must exactly correspond to 

he values specified by the Wavelength keyword. 

The T -matrix file format is as follows: 

• First line is a comment (starts with a # ) describing the format 

# s sp n np m mp Tr Ti 
• Second line is also a comment and starts with # lambda = 

N1 nelements = N2 where N1 is the wavelength in nanome- 

tres, and N2 is the number of T -matrix elements to be read be- 

low 

• Subsequent lines contain the indices and T -matrix values for 

this particular wavelength, 

1. s , sp are the row (resp. column) index of the multipole mode 

(1: magnetic, or 2: electric) 

2. n , np index the multipole degree 

3. m , mp index the multipole order 

4. Tr , Ti give the real and imaginary part of the T -matrix ele- 

ment 

• If the file contains multiple wavelengths each wavelength-block 

is appended below the others, starting with a line # lambda = 

N1 nelements = N2 

An example is show below, 
heroid in water, a = 10 c = 20 
1.649657+5.771763j 
2.161746691903687e-05 
444956295771378e-05 

36725538124517e-11 
07927691863483e-11 
1.661947+5.778032j 
2.119092055798298e-05 
371696756234449e-05 

78894188143029e-13 
01975575297762e-14 

24.236565+1.458652j 
1.120611667309835e-05 
955074171282911e-06 

46747233206165e-13 
06450678480949e-14 
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DielectricFunctions Nfuns 
Specifies the number of custom dielectric functions (default: 

funs = 0 ). The subsequent Nfuns lines are each read as a string 

nd then interpreted as either (i) a filename with a relative 

ath or (ii) real and imaginary parts of a constant (i.e. wave- 

ength independent) value. Wrap each string in quotation marks, 

.g. ‘‘./../epsAg.dat’’ or ‘‘2.25d0 0.0d0’’ . The files 

hould be in three-column format: the wavelength in nm followed 

y the real and imaginary parts of the relative dielectric function 

n each line. The wavelength range in the file must fully contain 

he range specified by the Wavelength keyword, but the values 

eed not correspond exactly as they will be linearly interpolated. 

edium X 
Sets the real-valued dielectric constant of the host medium (de- 

ault value is 1.0 ). If X < 0 then its magnitude is interpreted as a

efractive index ( s ), from which the dielectric constant is calculated 

s X = s 2 . 

Wavelength L1 [ L2 n ] 
Without the optional arguments, this keyword changes the de- 

ault wavelength of 6 6 6.0 nm to a new value L 1. Including the op-

ional arguments will specify a closed interval [ L 1, L 2 ] divided

nto n regular grid spacings, thus producing n+1 wavelengths. 

Incidence a b c [ p ] / [ na nb nc ] or 

Incidence file filename [p] 
This keyword modifies the incident plane-wave. The default 

ravel direction (along z in lab-frame) can be changed by the Euler 

ngles a in the range [0 , 2 π) and b in the range [0 , π ] , coinciding

ith the azimuthal and the polar angles, respectively, of the spher- 

cal polar coordinates in the lab frame. In addition, the amplitude 

ector can then be rotated about the new travel direction by the 

hird Euler angle c in the range [0 , 2 π) . All three Euler angles are

efined in accordance with the right-hand rule, and the sequence 

f rotation angles a , b , c corresponds to the intrinsic ZY’Z’ conven-

ion. That is: rotate by a about the current z -axis, then by b about

he new y -axis, and finally by c about the new z -axis. 

Near-field and polarimetric calculations, i.e. in modes M = 1 

nd M = 3 , require the polarisation of incident light to be spec- 

fied. The polarisation is set by integer p , with |p| = 1 setting lin-

ar polarisation, |p| = 2 setting circular polarisation, and the sign 

electing one of the two Jones vectors in each case (positive: x - 

inear-polarised or R -circular-polarised; negative: y -linear polarised 

r L -circular-polarised). Note: for a circularly polarised wave trav- 

lling along z , right-circular ( R ) polarisation means that the ampli- 

ude vector is rotating clockwise in the xy -plane from the receiver’s 

iewpoint (looking in the negative z direction). 

The integer p can be omitted in mode M = 2 , because its output

s always calculated for all four polarisations. 

A negative value of argument a , b , and/or c will trigger discreti-

ation of the corresponding angle range to produce −a grid points 

resp. −b or −c). The grid points are uniformly spaced for the first 

nd the third Euler angles, but for the second (i.e. polar) angle the 

iscretisation is such that the cosine is uniformly spaced. Note that 

he discretisation is constructed so that orientational averages are 

omputed as a uniformly weighted Riemann sum with the mid- 

oint rule. The weight w i of each grid point i is simply w i = 1 /n gps ,

here n gps is the total number of grid points. The range maximum 

f each angle can be divided by an (optional) integer na , nb , and

c , to help avoid evaluating redundant grid points in the presence 

f symmetry. 

Multiple incidences can also be read from a file, in which case 

he argument a must be a string starting with ‘f’ or ‘F’, and b must

pecify the filename. The file’s first line must contain the total in- 

idence count, ninc , and the subsequent ninc lines each must con- 

ain four space-separated values: the three Euler angles ( ai , bi , ci )

t

16 
nd the weight w i of each incidence. The weights are only used to 

ompute rotational averages for convenience, which is a common 

se-case. 

In Mode = 1 (near-field calculations), if p is set to p = 1 (de-

ault value, linear polarisaiton), the orientation average of the lo- 

al degree of optical chirality 〈 C 〉 will be calculated for both RCP 

nd LCP (noting that linear polarisation would give 0 everywhere, 

hen orientation-averaged). Since the calculation can be time- 

onsuming, setting p = +/-2 triggers the calculation for only that 

pecific circular polarisation. 

ultipoleCutoff n1 [ n2 [ t ] ] 
Change the primary multipole cutoff (used for irregular offset- 

ing when staging the linear system) from the default value of 8 to 

1 . Another cutoff (used for regular offsetting when “contracting”

he collective T -matrix) can be set to n2 > = n1 (equality by de-

ault). A relative tolerance 10 t (with t < 0 and t = −8 by default) is

sed in the test for convergence of cross-sections with respect to 

ultipole order n = 1 . . . n 2 (the summation can terminate below 

 2 if the relative tolerance is reached). 

ultipoleSelections Ns 
This keyword defines optional multipole selections for individ- 

al T -matrices, and it must be followed by Ns lines with two fields: 

i) a string range specifying the selection range; and (ii) a string 

ype specifying the selection type. For example: 

MultipoleSelections 3 
MM1:4_EM1:4_ME1:4_EE1:4 blocks 
MM1:0_EM1:15_ME1:8_EE1:0 rows 
EM1:1_ME1:1 columns 
The range string must be of the form 

M?:?_EM?:?_ME?:?_EE?:?, with the underscores separating 

he ranges for each T -matrix block (e.g. MM or ME), and each 

ange specified by a closed multipole interval ?:? (e.g. n lo: n hi = 

:4). No selection will be applied to blocks not included in range , 

o these “missing” blocks will remain unmasked (left “as is” in 

he original T -matrix). On the other hand, a whole block can be 

asked (zeroed out) by setting n lo > n hi (e.g. MM1:0 will set the

hole MM block of the T -matrix to 0). 

The type string must either start from “c”, “r”, or “b”, to in- 

icated that the selection is either applied to T -matrix columns, 

ows, or both (producing non-zero blocks). To clarify, if type(1:1) = 

c”, then all T -matrix columns corresponding to multipole orders n 

 n lo and n > n hi will be set to zero. For type(1:1) = “b”, columns

nd rows for n < n lo and n > n hi will be set to zero. 

Output control 

utputFormat F [ filename ] 
If present, the output file format F can be switched between 

lain text (“TXT”, default) and HDF5 (“HDF5”). With “HDF5”, the 

esults will be stored in a file with name “results.h5”, or a user- 

pecified filename (extension .h5 added automatically). 

erbosity L 
Keyword specifying integer-valued verbosity level L . Silent 

ode ( L = 0 ) prints only error statements and warnings. Physical 

uantities and some status indicators are printed at low verbosity 

 L = 1 , default value), with various timings and convergence in- 

icators released at medium verbosity ( L = 2 ). The highest level 

 L = 3 ) is intended for debugging, releasing all print statements 

hroughout the code. 

Near-field specific keywords 

pacePoints filename or 

SpacePoints xlo xhi nx ylo yhi ny zlo zhi nz 
Read (from a file) or calculate (on a regular grid) the cartesian 

oordinates of points in space, where the local field quantities are 

o be evaluated. The file’s first line should contain the total num- 
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er of space-points, and the subsequent lines must contain the x , 

 , and z coordinates of each point. A regular grid is specified by a

losed interval, e.g. [ xlo, xhi ] , and the number of bins ( nx ) the in-

erval is to be divided into (thus producing nx+1 grid points along 

hat dimension). 

apQuantity [p] [E] [B] [C] 
Specify the near-field quantities of interest, in Mode = 1 . In- 

eger argument p selects the raising power applied to the field am- 

litude | E | p or | B | p . The default is p = 2 yielding the field inten-

ity, p = 1 is for the field amplitude | E| , p = 4 for the (approxi-

ate) Raman enhancement factor | E| 4 . Setting p = 0 will output 

he real and imaginary parts of the (vector!) field components at 

ach space-point. 

The optional letters [ E ] [ B ] [ C ] (default: E only) determine which

f the near-field properties (electric and magnetic fields and nor- 

alised value of local degree of optical chirality) will be calculated. 

apOaQuantity [p] 
This is a keyword applicable in Mode = 1 , to request the cal- 

ulation of analytical orientation-averaged near-field quantities. 

• if p is unpolarised , or any word starting with “u ”, the calcu-

lation proceeds to calculate 〈| E | 2 〉 only, averaged over incidence 

directions and polarisation using formulas by Stout et al. 
• if p is polarised , or any word starting with “p ”, the cal-

culation proceeds to calculate 〈| E | 2 〉 , 〈| B | 2 〉 , and 〈 C 〉 follow-

ing the polarisation(s) given in Incidence , namely both LCP 

and RCP polarisations if +/-1 , and a single circular polarisa- 

tion if +/-2 . Note that all three quantities are calculated, un- 

like MapQuantity , as many terms are common. 

The calculation can be slow, which is why there is the option 

o compute the results for a single polarisation. 

Polarimetry keywords 

catteringAngles a b c / [ na nb nc ] 
This keyword specifies the scattering angles in Mode = 3 (po- 

arimetry), for the calculation of Stokes scattering vectors at differ- 

nt scattering angles. The parameters have the same interpretation 

s for Incidence . 
Multiple scattering angles can also be read from a file, in which 

ase the argument a must be a string starting with ‘f’ or ‘F’, and

 must specify the filename. The file’s first line must contain the 

umber of scattering angles, nsca , and the subsequent nsca lines 
17 
ach must contain three space-separated values: the three Euler 

ngles ( ai , bi , ci ) for each scattering angle. 

Advanced use/development 

cattererCentredCrossSections 
Applicable in Scheme 1 and 2. Triggers Stout’s formulae for 

xed and orientation-averaged cross-sections based on scatterer- 

entred matrices; otherwise, the default behaviour is to col- 

apse the coefficients to a common origin. Note that this does 

ot affect the calculation of fixed-orientation partial shell ab- 

orptions for layered spheres, as they are calculated separately. 

umpCollectiveTmatrix [ filename ] 
If the collective T -matrix is computed, this keyword will dump 

t to a file “tmat_col.txt” or a user-specified filename . The file for- 

at is self-consistent, so that the generated T -matrix can be fed 

ack into terms for subsequent calculations. 

umpPrestagedA 
If present, dumps a sparse-format representation of the full ma- 

rix comprising the individual T -matrices after potential masking 

ollowed by rotation in their respective frame. 

umpStagedA 
If present, dumps a sparse-format representation of the full 

atrix comprising the individual T -matrices along the diagonal 

locks, and translation matrices in the off-diagonal blocks. The ex- 

ct form of this matrix is scheme-dependent. 

umpScaCoeff 
If present, dumps the scattering coefficients into a file 

Sca_coeff” for different incidence angles. 

umpIncCoeff 
If present, dumps the incident coefficients in to a file “Inc_coeff”

or different incidence angles. 

isableStoutBalancing 
If present, switches off the balancing. 

isableRTR 
Switches off the three-step translation of T -matrices, where a 

eneral translation is decomposed into a rotation, z -axial transla- 

ion, and then the inverse rotation. Instead, a one-step transforma- 

ion is performed by pre- or post-multiplying by a single matrix 

ontaining the general translation-addition coefficients. 

2. Organisation of the code 
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Fig. A1. Organigram of the code structure in terms , organised in 8 modules. The termsProgram module is the general entry point to the program, dispatching the 

calculations to multiscat . In turn, multiscat uses subroutines from miet , swav , sphmsv , as well as linear algebra wrappers for lapack in linalg . The module eps 
provides definitions of common dielectric functions and associated routines, while HDFfive provides wrappers for the HDF5 output data format. 
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f

s

g
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3. List of subroutines 

In this section we briefly describe the main program, its dif- 

erent modules, subroutines, and functions. The arguments of each 

ubroutine or function are shown in parentheses with output ar- 
18 
uments highlighted in colour (note that some of them are both 

nput and output arguments). For interpretation of the references 

o colour or typographical conventions in the Appendix, the reader 

s referred to the TERMS website or the online preprint. 
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ain program termsProgram 
termsProgram is the main module, with subroutines listed 

elow; it reads the keywords and their corresponding values in the 

nput file and then calls different subroutines of multiscat mod- 

le for the calculation of requested outputs. 

• readInputFile(inputfile) 
Reads the input file containing specific keywords and the cor- 

responding parameter values. 
• errorParsingArguments(keyword) 

If there is an error with the parameter values assigned to a key- 

word, this subroutine informs the user and stops the program. 
• calcEpsilon() 

Updates the escat array storing the relative dielectric func- 

tion(s) for each scatterer evaluated at the specified wave- 

lengths. 

escat is an array for which the number of rows, columns and 

the 3rd dimension correspond to the number of shells, scatter- 

ers, and wavelengths, respectively. 
• calcGridPoints(points) 

For a near-field calculation, this subroutine calculates the grid 

points based on the number of steps, lower and upper values 

along the desired axes. 

points(3, nGridPoints) is an in/output matrix storing 

the cartesian coordinates (x, y, z) of the grid points. 
• sentence2words(sentence, words, nwords_) 

Reads each line of the input file as a sentence and splits it into

space-separated words. 

sentence , words are in/output character arrays, and 

nwords_ is an optional output integer containing the number 

of words in the sentence. 
• dumpNFs2TXTFile(filename, incidences, Epower, 
wavelen, work, Ef, p_label) 
Exports electric and magnetic near fields into a plain text 

file. filename is the name of the text file. incidences, 
Epower, wavelen, work are the incidence angles, selected 

power for mapping fields, wavelength, and near-field quantities, 

respectively. Ef is a logical flag which selects either electric 

field or magnetic field. p_label is an integer array indexing 

the position of each grid point, whether it is inside the sur- 

rounding medium or a particle, and in which layer. 
• dumpNFs2HDF5File(fname, groupname, filename, 
incidences, Epower, wavelen, work, p_label) 
Exports electric and magnetic near fields into a HDF5 file. 

filename , fname , groupname are the names of the HDF5 

file, group, and subgroup name, respectively. incidences, 
Epower, wavelen, work are the incidence angles, selected 

power for mapping fields, wavelength, and near-field quan- 

tities, respectively. Ef is a logical flag which selects either 

electric field or magnetic field. p_label is an integer array 

indexing the position of each grid point, whether it is inside 

the surrounding medium or a particle, and in which layer. 
• countLines(filename) result(nlines) 

Counts lines in a text file. 

ultiscat module 

This module consists of a mix of high-level, core, low-level and 

upplementary routines for solving a multiple scattering problem 

sing the T -matrix formalism. We list below the subroutines of the 

ultiscat module with a brief explanation. A list of common 

rguments and their brief description is at the end of this section. 

he other arguments are explained after each subroutine. 

• mapNF(ncut, wavelen, inc,ehost, geometry, 
scheme, tfiles_, escat_, nselect_, verb_, 
noRTR_, dump_oaE2, dump_oaB2, field, Bfield, 
N_OC, orAvextEB_int, oa_ldoc, p_label) 
19 
Calculates the electric and magnetic near fields, and normalised 

optical chirality ( C ) for a multiple scattering problem, for dif- 

ferent incidence directions and wavelengths, as well as the 

orientation-averaged value of external 〈| E | 2 〉 , 〈| B | 2 〉 and 〈 C 〉 .
escat_, tfiles_, nselect_, verb_, noRTR_ are op- 

tional inputs. dump_oaE2, dump_oaB2 are logical flags se- 

lecting whether the orientation-averaged values 〈| E | 2 〉 and 

〈| B | 2 〉 will be calculated, respectively. 
• spectrumFF(ncut, wavelen, ehost, geometry, 
scheme, escat_, tfiles_, nselect_, noRTR_, 
verb_, sig_oa_, sig_, sig_abs_, jsig_abs_oa) 
Calculates cross-section spectra for (multiple) fixed ori- 

entations, partial absorptions, and orientation-averaged 

cross-sections for a particle cluster. T -matrices for indi- 

vidual scatterers are either constructed using Mie theory 

or read from an optional argument tfiles_ . escat_, 
tfiles_, nselect_, verb_, noRTR_ are optional 

inputs. jsig_abs_oa contains the orientation-averaged ab- 

sorption cross-section of each particle (valid for homogeneous 

spheres only, at present). 
• solve(wavelen, ehost, geometry, nselect_, 
scheme_, verb_, noRTR_, TIJ, cJ_, cJint_, 
csAbs_, ierr_) 
This routine is the crux of terms and solves a given multi- 

ple scattering problem by operating in a specified scheme. TIJ 
is an in/output argument, cJ_, cJint_, csAbs_ are op- 

tional in/output arguments, nselect_, scheme_, verb_, 
noRTR_ are optional inputs, and ierr_ is an optional output. 

TIJ ( l max × nscat , l max × nscat ) as the input argument stores 

the T -matrix of nonspherical particles as the diagonal blocks 

of the matrix, or dielectric values of different shells for spher- 

ical particles as the diagonal elements of the matrix. nscat 
is the number of scatterers. This subroutine updates and re- 

turns TIJ for the whole system as the output. cJ_(nscat 
x l max , 2, nfi) as the input argument contains details of 

the incident field and as a output argument contains incident 

plane wave coefficients in the first column and scattering coef- 

ficients in the second column. nfi is the number of incident 

angles. cJint_(nscat x l max , 4, 2) : contains the regular 

and irregular field coefficients for each concentric region inside 

spherical scatterers. csAbs_(nscat,4) : contains absorption 

cross section inside each shell of each spherical scatterer. 
• stageAmat(scatXYZ, scatMiet, rtr, right_, 
balance_, verb_, A, Tmats_) 
Stages a pre-staged matrix A . 

A ( l max x nscat, l max x nscat) : an in/output matrix, which 

must contain 1-body T -matrices in the diagonal blocks on 

input and is a pre-staged matrix on the output; right_, 
balance_, verb_ are optional inputs; Tmats_( l max , l max , 
nscat) : an optional output matrix which contains the 1-body 

T -matrix of each particle. balance_ : a logical input argument 

which determines whether balancing is applied or not. 
• calcTIJStout(scatXYZ, scatMiet, rtr, TIJ) 

Calculates the scatterer-centred T -matrix using the recursive 

scheme presented in Refs. [14] and [15] . The relevant equa- 

tions are 33 and 35 in Ref. [14] , and 20, 22 and 24 in [15] . TIJ
is an in/output argument. TIJ( l max x nscat, l max x nscat) 
as the input argument stores the T -matrix of nonspherical par- 

ticles as the diagonal blocks, or dielectric values of different 

shells for spherical particles as diagonal blocks. 
• calcTIMackowski(scatXYZ, scatMiet, rtr, TIJ) 

Calculates the cluster’s T -matrix using Mackowski & 

Mishchenko’s formulation. TIJ is an in/output argument. 

TIJ( l max x nscat, l max x nscat) as the input argument 

stores the T -matrix of nonspherical particles as the diagonal 

blocks, or dielectric values of different shells for spherical 
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particles as diagonal blocks. The output TIJ is the scatterer- 

centred T -matrices calculated using Mackowski & Mishchenko’s 

scheme [16–18] . 
• balanceMatJI(j, jregt, iregt, i, rev_, mnq_, 
Mat) 
Performs balancing on a matrix ( Mat ) using two weights (in- 

dexed by j and i ). Mat is here taken as relating two vectors 

of VSWF coefficients, c j (centred at j) and c i (centred at i ), 

such that c j = Mat c i . Logical inputs jregt and iregt spec- 

ify whether c j and c i are regular or not. Mat is an in/output 

argument. 
• balanceVecJ(j, jregt, rev_, Vec) 

Performs balancing on a single vector ( V ) with a weight in- 

dexed by j. V corresponds here to the VSWF coefficients of par- 

ticle j. Vec is an unbalanced/ balanced vector as the in/output 

argument. j specifies the scatterer. 
• calcCsStout(scatXYZR, aJ, fJ, nmax2_, tol_, 
verb_, sig) 
Calculates the extinction, scattering and absorption cross- 

sections from the incident and scattered coefficients using the 

Stout formulae [14] . nmax2_, tol_, verb_ are optional in- 

puts and sig is an in/output matrix. 
• calcCs(scatXYZR, inc, fJ, nmax2_, tol_, 
verb_, sig) 
Calculates the extinction, scattering and absorption cross- 

sections from the incident and scattered coefficients which are 

collapsed to the common origin. Depending on the dimension 

of the sig , each cross-section is either just a total sum, or 

resolved into contributions from the multipole orders. inc : a 

vector of incidence angles. 
• calcOAprops(Tmat, rtol_, sigOA, verb_) 

Calculates orientation-averaged cross-sections and circular 

dichroism (CD) by transforming the T -matrix ( Tmat ) from “par- 

ity” (M–N) basis to “helicity” (L–R) basis, following Ref. [21] . 

rtol_ is an optional input, verb_ is an optional output, and 

sigOA is an in/output matrix containing orientation-averaged 

cross-sections and CD in each column for n = 1 , . . . , n max . 
• contractTmat(Tin, scatXYZR, rtr, mack_, Tout, 
verb_) 
Combines the scatterer-centred T -matrices into a common ori- 

gin; the output will be the collective T -matrix ( Tout ). verb_ 
is an optional in/output, mack_ is an optional logical input 

to calculate the collective T -matrix based on Mackowski & 

Mishchenko’s scheme [16–18] . 
• alphaTensor(T, Alpha) 

Conversion of l ≤ 3 spherical multipoles of the T -matrix T into 

cartesian multipoles (tensor Alpha ), following formulas for 

‘Higher-Order Polarizability Tensors’ in Ref. [43] . This func- 

tion is called when the keyword DumpCollectiveTmatrix 
is present, and outputs a file alpha_col.txt in the working 

directory. 
• diagnoseTmat(mode_, verb_, Tmat) 

Determines the value of n ≤ n max when Tr (� ( Tcol ) ) converges 

to rtol _ G := 10 −ncut(3) . If mode_ > 0 , also tests for the general

symmetry, which applies to all T -matrices. (See equation 5.34 

on p. 121 of Mishchenko [4] ). 
• calcOaStout(TIJ, scatXYZ, verb_, sigOA, 
cdOA_, jAbsOA) 
Calculates the orientation-averaged extinction and scattering 

cross-sections defined in equations 44 and 47 of Stout [14] . 

The absorption cross-section is then deduced as the difference. 

TIJ is the collective T -matrix, sigOA(3) contains orientation- 

averaged extinction and scattering cross-sections, and cdOA_ is 
an optional output containing the corresponding values of CD. 

jAbsOA : contains the orientation-averaged absorption cross- 

section for each particle. 
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• applyRotTranzRotOnMat(vtacs, bigdOP, rightOP, 
mat) 
Performs the factorised translation of T -matrices when chang- 

ing origin. Instead of a single multiplication of a T -matrix by 

a dense matrix containing the general translation-addition co- 

efficients, this routine executes three multiplications by sparse 

matrices representing 1) a rotation, 2) a translation along the 

z-axis; and 3) an inverse rotation. This is meant to be more ef- 

ficient when high multipole orders are included. 

vtacs(2x pmax,2 x pmax) : axial VTACs with (m, n, q ) in- 

dexing, bigdOP(pmax, pmax) : optional input for rotation, 

rightOP : an optional logical input argument for applying the 

product from the right. mat : a non/translated matrix as the 

in/output. 
• calcField(r, geometry, ipwVec, ipwE0, 
scaCJ, intCJreg_, intCJirr_, scatK_, 
verb_, reE, imE, reB, imB, reE_sca,imE_sca, 
reB_sca,imB_sca, p_label) 
Calculates the electric and magnetic near-field values at the de- 

termined grid points. 

r : a matrix containing the coordinates of the grid points; 

ipwVec(3) , ipwE0(3) : contain the wavevector and am- 

plitude of the incident field, respectively; scaCJ : a vector 

containing scattering coefficients, intCJreg_, intCJirr_ : 
contain the regular and irregular parts of the incident field 

coefficients transformed to the origin of each particle, respec- 

tively, scatK_ is the wavenumber in the host medium, 

and reE, imE, reB, imB, reE_sca,imE_sca, 
reB_sca,imB_sca : contain real(re) and imaginary(im) 

parts of the total electric (E) and magnetic (B) fields and the 

scattered field values at the grid points. 
• dumpTmat(tmat, filename, lambda, eps_med, 
tol_, verb_) 
Routine for dumping the collective T -matrix ( tmat ) to a file in 

the format: 

s, s', n, n', m, m', T_re, T_im 
filename is an argument of type character corresponding to 

the name of the output file; lambda : the value of wavelength; 

eps_med : the dielectric value of the host medium. 
• dumpMatrix(mat, ofile, tolOP, verb_) 

Outputs matrix mat to a desired optional tolerance ( tolOP ). 
ofile : the name of the output file. 

• offsetTmat(off, miet, rtr, right, bigD_, 
useD_, balJI_, Tmat) 
Offsets the supplied T -matrix Tmat by off , which can be ei- 

ther a square matrix of VTACs or a (note: complex!) displace- 

ment vector k r (3) from which VTACs will be generated. Regu- 

lar or irregular VTACs will be generated depending on whether 

k r (3) is purely real or purely imaginary. If the logical input 

miet is true, Tmat will be treated as diagonal. If the logical 

input rtr is true, then offsetting will be based on factorised 

translation. If the logical input right is true, then offsetting 

will be done by post-multiplying Tmat from the right. balJI_ 
triggers balancing of the VTACs and the T -matrices individually, 

before offsetting, but currently works only without factorised 

translation. 
• readTmatFile(filename, unit, wavelen, verb_, 
Tmat) 
Reads a T -matrix from the input file ( filename ) and import it 

into the matrix Tmat . unit : an integer indexing the name of 

the T -matrix file. wavelen is the value of the wavelength. 
• parseInc(inc, verb_, inc_dirn, inc_ampl) 

Calculates the amplitude and direction vector of the inci- 

dent plane wave based on the input Euler angles ( α, β, γ ). 

inc_dirn and inc_ampl are vectors containing the wavevec- 

tor and amplitude of the incident electric field in cartesian co- 
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ordinates, respectively. inc is a vector consisting of polarisation 

type and Euler angles of the incidence direction. 
• calcStokesScaVec(sca_angles, inc2, 
ncut, wavelen, ehost, geometry, scheme, 
tfiles_, escat_, nselect_, noRTR_, verb_, 
StokesPhaseMat, StokesScaVec, diff_sca) 
Calculates the Stokes phase matrix ( StokesPhaseMat ), Stokes 

scattering vector ( StokesScaVec ), and differential scattering 

cross-sections ( diff_sca ). 
sca_angles is a matrix of desired scattering angles; if it is 

not specified in the input file, they are taken equal to the inci- 

dence angles. inc2 is a matrix containing incidence angles. 
• calcLDOC(Ef, Bf, verb_, N_OpC) 

Calculates the normalised optical chirality ( C ) relative to the 

optical chirality of circularly polarised light. Ef , Bf , and N_OpC 
are matrices containing the electric and magnetic field, and C 

values at the grid points, respectively. 
• calcOaNFUnpol(r, geometry, TIJ, lambda, 
ehost, escat, p_label, verb_, orEB2) 
Calculates the orientation average of the total external elec- 

tric and magnetic field intensities. r is a matrix containing the 

cartesian coordinates of the grid points. TIJ is the scatterer- 

centred T -matrix of the cluster. orEB2 is a vector containing 

the value of orientation-averaged external electric and magnetic 

field intensities at the grid points. 
• calcOaNF(pol_type, r, geometry, TIJ, Oa_OC, 
ehost, p_label, scatK_, verb_, Oa_EB2) 
Calculates the orientation average of normalised optical chiral- 

ity 〈 C 〉 , and near field intensities 〈| E tot (k r ) | 2 〉 , 〈| B tot (k r ) | 2 〉 for

circularly polarised incident light. pol_type is the polarisation 

type, r is a matrix containing the cartesian coordinate of the 

grid points. TIJ is the scatterer-centred T -matrix of the struc- 

ture. 
• calcTrace(TRANSA, TRANSB, A, B, tr) 

Calculates the trace of a product of two matrices, 

op(A) ∗op(B) . The input characters TRANSA and TRANSB 
determine the operation op , following the convention of blas ’ 

gemm . Specifically, op = 'N' corresponds to op (A ) = A (no 

operation), whereas op = 'C' corresponds to op (A ) = A † . 

• RotMatX(ang) result(rotMat) 
Calculates a rotation matrix along the x axis using input argu- 

ment angle( ang ). 
• RotMatY(ang) result(rotMat) 

Calculates a rotation matrix along the y axis using input argu- 

ment angle( ang ). 
• RotMatZ(ang) result(rotMat) 

Calculates a rotation matrix along the z axis using input argu- 

ment angle( ang ). 
• rotZYZmat(angles) result(mat) 

Calculates rotation matrix mat for ZY’Z’, using the Euler 

angles = ( α, β, γ ) 

List of common arguments 

• acs_int_ : a matrix containing partial internal absorption in- 

side each scatterer and for each shell. 
• aJ( nscat × l max ), fJ( nscat × l max ): contains incident and scatter- 

ing coefficients. 
• Bfield : contains the real and imaginary parts of the magnetic 

near field at the specified grid points, wavelengths, and inci- 

dence. 
• ehost : a vector of dielectric permittivity of the host medium 

at specified wavelengths. 
• escat_(nscat, 4, size(wavelen)) : depending on the 

number of wavelengths, it is a 2D or 3D array of dielectric val- 

ues for each scatterer, for each shell and wavelength. 
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• field : contains the real and imaginary parts of the electric 

near field at the specified grid points, wavelengths, and inci- 

dence. 
• geometry : a matrix containing physical information of differ- 

ent scatterers such as centre, dimensions and direction. 
• ierr_ : an integer value (0 or 1 or 2); 0 indicates solving was

successful, 1 means there is an error in processing arguments, 

and 2 means an error in prestaging, staging, or solving/inverting 

Ax = b. 
• iregt : logical input, specifies whether vectors are regular or 

not. 
• jregt : logical input, specifies whether vectors are regular or 

not. 
• mnq_ : an optional logical argument which is false by default, 

but if true will change the indexing convention from (q,n,m) 

to (m,n,q), which is used to make the z-axial VTACs block- 

diagonal. Note that index q corresponds to s in this user guide. 
• ncut : a vector in the form [ n 1 , n 2 , tol], which contains the val-

ues corresponding to the keyword “MultipoleCutoff ”. De- 

fault values: [8 , 8 , −8] . 
• nmax2_ : an integer value equals to ncut(2). 
• noRTR_ : an optional input with logical value .true. or 

.false. for the keyword DisableRTR . Default: .false. 
• nselect_ : an optional input matrix which includes informa- 

tion about multipole selection for different scatterers. 
• oa_ldoc ( npts × 4 × nwavelen ): contains the orientation aver- 

aged value of C at different grid points and wavelengths. 
• orAvextE_int ( npts × nwavelen ): contains the orientation av- 

eraged electric field intensity values at different grid points and 

wavelengths. 
• p_label : a matrix determining the position of each grid point, 

whether it is inside the surrounding medium or particles, and 

in which layer. 
• rev_ : an optional logical input which is false by default; trig- 

gers the reverse of balancing – “unbalancing”. 
• right_ : a logical input. According to Eqs. (44) , (45) there are 

two ways for obtaining the TIJ matrix. This argument deter- 

mines whether the product is taken from the left or from the 

right. 
• rtr : a logical input that is the reverse of noRTR_ . 
• scatMiet (nscat): a logical vector with .true. and .false. 

values, determining whether a scatterer is spherical or not. 
• scatXYZ (3,nscat): a matrix containing the cartesian coordi- 

nates (in lab frame) of the particle’s centre. 
• scatXYZR (4,nscat): a matrix containing the cartesian coordi- 

nates (in lab frame) and the radius of the smallest circum- 

scribed sphere of each particle. 
• scheme, scheme_ : an integer value specifying the selected 

scheme. 
• sig_ : a matrix containing cross-sections (Extinction, Scatter- 

ing, Absorption) for different polarisation(s), wavelength(s), and 

incidence(s). 
• sig_abs_ ( 4 × nscat × 4 × nwavelen × nfi): a 5D array contain- 

ing absorption cross-sections inside each shell for each scat- 

terer for 4 Jones vectors, different wavelengths and different in- 

cidence directions. 
• sig_oa_ ( 6 × n × nwavelen ): a matrix consisting of 

orientation-averaged cross-sections and CD at different wave- 

lengtha. The first column gives the values for n max and other 

columns contain values for different value of n = 1 , . . . , ncut(2) . 
• tfiles_ : a matrix of character type, includes the T -matrix 

filename and filepath for non-spherical scatterers. 
• tol_, rtol_ : a real value rtol_G = 10 ncut(3) . 
• N_OC : contains C at the specified grid points, wavelengths, and 

incidence. 
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• verb_ : an integer variable containing the verbosity value ( ∈ 

[0 , 1 , 2 , 3] ) (the default value is 1). 
• wavelen : a vector of specified wavelength(s). 

iet module 

This module contains routines for calculating one-body T - 

atrices (currently limited to spherical scatterers, using Mie the- 

ry). 

• calcMieTMat(x, s, zeropad_, tmat) 
Calculates the diagonal T -matrix of a spherical scatterer for 

a given size parameter x = kR , relative refractive indices ( s = 

k in /k out ); zeropad_ = nmax maximum value of the multipole 

index inferred from tmat ’s dimensions. 
• calcMieCoeffs(x, s, gammas, deltas) 

Calculates the Mie coefficients for a spherical scatterer as de- 

fined by equations H.46 and H.47 of Ref. [19] . The coefficients 

are interpreted as magnetic and electric susceptibilities ( �n and 

�n , respectively) of the scattered field. Note the relation to 

standard Mie coefficients [4] : a n = −�n and b n = −�n . 
• calcCoatMieCoeffs(x, s, gammas, deltas) 

Calculates the Mie coefficients for a coated sphere based on the 

equations H.110 and H.113 of Ref. [19] . 
• calcStoutCoeffs(x, rri, nmax, Cn, Dn) 

Calculates the Cn,Dn coefficients as defined by equation (50) 

in Stout [14] . These coefficients are used to calculate absorption 

cross-sections. rri is the relative refractive index, nmax is the 

maximum value of the multipole index. 
• calcMieIntCoeffs(a, k, scaCoeffs, 
intCoeffsReg, intCoeffsIrr, csAbs) 
Calculates the regular and irregular VSWF coefficients for the 

field inside each concentric region of a (layered) Mie scatterer. 

The formulae are based on Eqs. H.117– H.123 of Ref. [19] . a , 
k , and scaCoeffs are vectors of the radius of the concentric 

interfaces, relative refractive index, and scattered field coeffi- 

cients for the host medium, respectively. intCoeffsReg and 

intCoeffsIrr are matrices of regular and irregular field co- 

efficients for each concentric region inside the scatterers and 

csAbs contains the partial absorptions calculated using Eq. 

(29) in Mackowski [20] . 

wav module 

This module contains routines for calculating and transform- 

ng scalar (SSWs) and vector spherical waves (VSWFs). It depends 

n Amos (toms644.f) to calculate spherical Bessel and Hankel 

unctions using recurrence. In order to limit redundancy, parame- 

er definitions are renewed only where they are changed. 

• calcVTACs(r0, k, regt, vtacs) 
Calculates the irregular (if regt = .false. ) or the regular (if 

regt = .true. ) vector translation-addition coefficients for a 

given kr0 . 
r0 is a relative position vector, k is the wavenumber, regt is 

a logical argument which determines the type: regular or irreg- 

ular, and vtacs(1:2 ∗pmax,1:2 ∗pmax) is the input/output 

array. 
• calcSTACs(r0, k, pmax, regt, scoeff) 

Calculates the scalar translation-addition coefficients.( αnu,mu ;n,m 

or βnu,mu ;n,m 

). The output corresponds to the scalar translation- 

addition coefficients α(irregular, for regt = .false. ) or 

β(regular, for regt = .true. ). 
pmax is a maximal composite index and 

scoeff(0:pmax,0:pmax) is the coefficients matrix. 
• calcVTACsAxial(r0, k, pmax, regt, flip, mqn_, 
vtacs) 
22 
Calculates the irregular (if regt = .false. ) or the regular (if 

regt = .true. ) vector translation-addition coefficients for a 

given kr0 , along the z-axis. 

r0 is the z-axial displacement distance, flip is a logical argu- 

ment, mqn_ is a logical argument for changing from qnm to 

mqn indexing, and vtacs(1:2 ∗pmax,1:2 ∗pmax) is the ma- 

trix of coefficients. 
• calcSTACsAxial(r0, k, pmax, regt, flip, 
stacs) 
Calculates the normalised scalar translation-addition coeffi- 

cients along the z-axis for a given kr0 . 
r0 is a displacement distance and stacs(0:pmax,0:pmax) 
is the coefficients matrix corresponding to α (irregular, for 

regt = .false. ) or β . 
• calcVSWs(r, k, pmax, regt, cart, waves, 
wavesB) 
Calculates (at r ) the normalised vector spherical waves, M nm 

and N nm 

for evaluation of electric and magnetic fields 

r(3) is the cartesian coordinate of a point in 3D; cart is a 

logical argument which triggers conversion to cartesian coor- 

dinates; waves(2 ∗pmax,3) contains elements ( M nm 

and N nm 

) 

of the abstract column vector defined in Eq. B1 of Ref. [14] and 

wavesB(2 ∗pmax,3) is similar to waves , only swapping the 

position of M nm 

and N nm 

and multiplying by −ik for calculation 

of the magnetic field. 
• calcSSWs(xyz, k, pmax, regt, psi) 

Calculates (at xyz ) the scalar spherical waves ψ nm 

. 

xyz is the cartesian coordinates of a point in 3D; 

psi(0:pmax) contains elements of the spherical waves 

ψ nm 

as defined by equation 13a in Chew [64] . 
• calcJCoeffsPW(ipwE0, kVec, xyz, ipwCoeffsJ) 

Translates the supplied ipwCoeffs coefficients to different 

centres for an incident plane wave. 

ipwE0(3) is the incident plane wave’s amplitude vector, 

kVec(3) is the incident wave vector, xyz(3,nscat) is 

a matrix containing the centre of different scatterers, and 

ipwCoeffsJ ( nscat × lmax ) is a vector containing the trans- 

lated incident plane wave coefficients to the centre of different 

scatterers (according to Eq. 38 of Ref. [14] ). 
• calcCoeffsPW(ipwE0, ipwDirn, ipwCoeffs) 

Calculates the coefficients for expressing an incident plane 

wave in terms of vector spherical waves M nm 

and N nm 

. 

ipwDirn (3) is the normalised direction vector of the incident 

plane wave and ipwCoeffs (2 ∗pmax) contains coefficients for 

expressing an incident plane wave in terms of vector spheri- 

cal waves M nm 

and N nm 

, up to a maximum n max . Follow equa-

tions C.57–59 on p.377 of Ref. [4] . 
• offsetCoeffsPW(a, kVec, xyzr, aJ) 

Translates the VSWF coefficients ( a ) of an incident plane wave 

(centred at the origin) to another origin. 

a ( l max ) contains coefficients for a regular VSWF expansion cen- 

tred at the origin for an incident plane wave, xyzr includes 

centres of different scatterers, and aJ contains scatterer cen- 

tred coefficients. 
• calcWignerBigD(angles, pmax, bigD) 

Calculates the Wigner D-functions ( D 

s 
m,n (α, β, γ ) ). 

angles (3) includes ( α, β, γ ) in radians and bigD (pmax,pmax) 

contains Wigner D-coefficients. 
• calcWignerLittled(theta, pmax, d) 

Calculates the Wigner d-functions ( d s m,n (θ ) ). 

theta is angle in radians and d (0:pmax,0:pmax) are values for 

d s m,n in block diagonal matrix form. 
• calcWignerd0andMore(x, pmax, d, pi, tau) 

Calculates the Wigner d-functions for n = 0 and also computes 

the derivative functions for optional outputs pi and tau . 
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x is cos (θ ) , d (0:pmax), pi (0:pmax), tau (0:pmax) contain val- 

ues for d s 
m, 0 

, πm,s , and τm,s respectively. 

• calcRiccatiBessels(z, nmax, regt, f, df) 
Calculates the Riccati-Bessel functions ψ n (if regt = .true. ) 
or ξn ( regt = .false. ), and their derivatives, for n = 

1 , . . . , n max . 

z is a scalar complex argument, f (1:nmax) is a matrix con- 

taining Riccati-Bessel functions ψ n (z) = z ∗ j n (z) or ξn (z) = z ∗
h n (z) for n = 1 , . . . , n max , and df (1:nmax) are the correspond-

ing derivatives of f . 
• calcSphBessels(z, nmax, regt, bes) 

A wrapper routine for computing spherical Bessel/Hankel func- 

tions of the first kind for a complex argument z . 
bes(0:nmax) contain Bessel ( J n +1 / 2 ) or Hankel ( H n +1 / 2 ) func- 

tion (of 1st kind) values for n = 0 , . . . , n max for a complex argu-

ment z . 
• xyz2rtp(xyz, rtp, cth) 

Transforms the cartesian coordinates (x,y,z) of a point in 3D 

space to spherical polar coordinates ( r, θ, φ) 

xyz(3) is a vector of cartesian coordinates, rtp(3) is a vec- 

tor of spherical polar coordinates, and cth is cos (θ ) . 
• rtp2xyz(rtp, xyz) 

The inverse of xyz2rtp . Transforms the spherical polar coor- 

dinates ( r, θ, φ) of a point in 3D space to cartesian coordinates 

(x, y, z) . 
• calcVTrtp2xyz(rtp, transform) 

Calculates the matrix of transformation from a vector in spher- 

ical coordinates to a vector in cartesian coordinates at point 

( r, θ, φ) (in spherical polar coordinates). 
• calcVTxyz2rtp(rtp, transform) 

The inverse of calcVTrtp2xyz . Calculates the matrix of 

transformation from a vector in cartesian coordinates to a vec- 

tor in spherical coordinates at point ( r, θ, φ) (in spherical polar 

coordinates). 
• calcAbsMat(Xi, ro, mat) 

Calculates the absorption matrix � j = mat (l max , l max ) for the 

input arguments Xi and ro (Eq. (49) of Ref. [14] ). � j is used 

in the evaluation of the orientation-averaged absorption cross- 

section inside each particle. 
• calcLamMat(Xi, ro, mat) 

Calculates the “Lambda” matrix � j = mat (l max , l max ) for the in- 

put arguments Xi and ro (Eq. (53) of Ref. [14] ). � j is used in

the evaluation of the orientation-averaged internal electric field 

inside homogeneous spheres. 
• nm2p(n, m, l) 

Calculates a generalised index l = n(n+1)+m , for a unique 

(n,m) , (Vector spherical harmonics are spanned by two in- 

dices: n and m , such that 0 ≤ n ≤ n max and −n ≤ m ≤ n ). 

n,m,l are integers. 
• p2nm(p, n, m) 

Calculates unique (n,m) from a given composite index p . 
p is a real value. 

• nm2pv2(n, m, p) 
Some recurrences are defined only for m ≥ 0 , in which case we 

shall use a second version of the composite index p v 2 = n (n +
1) / 2 + m . 

• testPmax(name, pmax, nmax) 
Tests pmax for commensurability, i.e. is p max == n max (n max + 

2) and n max = m max ? If not, then the program will be stopped. 

phmsv module 

This module contains routines for calculating Stokes incident 

ector, Stokes phase matrix and scattering matrix for an input T - 

atrix. The formulae are based on Mishchenko [4] . 
23 
• calcStokesIncVec(ehost_, ipwDirn_, ipwAmpl_, 
verb_, Stokes_Vec) 
Calculates the Stokes incident vector Stokes_Vec . 

• calcStokesPhaseMat(SMat, verb_, Z) 
Calculates the Stokes phase matrix for the specified incident 

and scattered angles. SMat(2,2) and Z(4,4) are the scatter- 

ing and Stokes phase matrices which follow Eqs. (5.11–14) and 

(2.106–121) of Ref. [4] . 
• calcScatMat(tmat, host_K, spwDirn_, ipwDirn_, 
verb_, SMat) 
Calculates the scattering matrix using the T -matrix, for the 

specified incident and scattering angles. 

inalg module 

This module contains wrappers to drive LAPACK’s square-matrix 

nversion routines and linear solvers. 

• invSqrMat(trans_, verb_ A) 
Calculates inverse of a complex-valued square matrix A(n,n) , 
using the ZGETRF and ZGETRI routines in LAPACK. A is over- 

written by inv(A) on the output. trans_ is an optional logical 

input, in case .true. the routine considers transpose of A and 

finally returns the transpose of the inverted matrix as the out- 

put. verb_ : an optional input of the verbosity value. 
• solLinSys(isol_, verb_, A, X) 

Solves a complex-valued linear system of equations Ax = b, 

where A (n,n) is a square matrix, b (n) is a known vector, and 

x (n) is the vector to be determined. Depending on the value 

isol_ , calls solLinSysV or solLinSysVX . Both A and X 
are overwritten on output. 

• solLinSysV(verb_, A, X) 
For solving a linear system, uses LAPACK’s “simple” driver 

ZGESV. 
• solLinSysVX(verb_, A, X) 

For solving a linear system, uses LAPACK’s “simple”

driver ZGESVX. 

ps module 

This module contains wavelength-dependent dielectric func- 

ions epsXX(lambda) for various materials including Au, Ag, Al, 

r, Pd, Pt, Si, and Water). 

• interp1(x1, y1, x2, y2) 
Calculates the interpolated data y2 using the input values 

x1,y1 at the points x2 . 

• epsAu(wavelength) result(eps) 
Returns the wavelength-dependent relative dielectric function 

of gold. This function uses the analytical expression given in 

Eq. (E.2) of Ref. [19] . 
• epsAg(wavelength) result(eps) 

Returns the wavelength-dependent relative dielectric function 

of silver. This function uses the analytical expression given in 

Eq. (E.1) of Ref. [19] . 
• epsPt(wavelength) result(eps) 

Returns the wavelength-dependent relative dielectric function 

of a Lorentz-Drude metal, with the parameters for Pt [74] . 
• epsPd(wavelength) result(eps) 

Returns the wavelength-dependent relative dielectric function 

of a Lorentz-Drude metal, with the parameters for Pd [74] . 
• epsSi(wavelength) result(eps) 

Returns the wavelength-dependent relative dielectric function 

of Silicon in the range 206.6 nm to 1200.0 nm interpolated from 

Aspnes and Studna [75] . 
• epsAl(wavelength) result(eps) 

Returns the wavelength-dependent relative dielectric function 

of Aluminum in the range 103.32 nm to 2755.2 nm [76] . 
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• epsCr(wavelength) result(eps) 
Returns the wavelength-dependent relative dielectric function 

of Aluminum in the range 100.8 nm to 31 μm , from the tabu- 

lated data in Ref. [77] pages: 382–385. 
• epsWater(wavelength) result(eps) 

Returns the wavelength-dependent relative dielectric function 

of Water at temperature 20 o C in the range 200 nm to 30 0 0 nm

[78] . 
• epsDrude(wavelength, eps_infty, lambda_p, 
mu_p) result(eps) 
Returns the wavelength-dependent relative dielectric function 

of a Drude metal. The analytical expression is given in Eq. (3.2) 

of Ref. [19] . 

DFfive module 

This module contains subroutines for reading and writing data 

n HDF5 format. 

• h5_crtgrp(filename_, main_grpname, 
subgrpsname) 
This subroutine creates subgroups in an existing group. 

• h5_wrtvec2file(filename_, groupname, 
dsetname, dset_data) 
This subroutine writes vector data in a dataset in an existing 

group. 
• h5_wrt2file(filename_, groupname, dsetname, 
dset_data) 
This subroutine writes data in a dataset in an existing group. 

• h5_wrt_attr(attribute, dataset_id) 
This subroutine adds an attribute to an existing dataset, typi- 

cally a brief explanation about the contents of the dataset. 

4. Validation 

4.1. Far-field spectra against MSTM 

Figure A2 displays orientation-averaged far-field cross- 

ections for a helix of 8 gold nanospheres. The terms simulation 

sed the following input file, 

ModeAndScheme 2 3 
Wavelength 380 820 100 
MultipoleCutoff 12 
Medium 1.0 

ScattererCentredCrossSections 
OutputFormat HDF5 terms 

Scatterers 8 
Au 1.200000e+02 0.000000e+00 -175 50 
Au 8.485281e+01 8.485281e+01 -125 50 
Au 7.347881e-15 1.200000e+02 -75 50 
Au -8.485281e+01 8.485281e+01 -25 50 
Au -1.200000e+02 1.469576e-14 25 50 
Au -8.485281e+01 -8.485281e+01 75 50 
Au -2.204364e-14 -1.200000e+02 125 50 
Au 8.485281e+01 -8.485281e+01 175 50 

here the helix geometry was obtained via the conve- 

ience R function cluster_helix , with parameters: 

erms::cluster_helix(N = 8, a = 50, b = 50, 
 = 50, R0 = 120, pitch = 400, delta = pi/4) . 

The results are also shown for a comparable simulation using 

he mstm package [51] (version 4), which implements the super- 

osition T -matrix method for clusters of spheres (note that terms 

ses similar algorithms in Scheme = 3 , as described above). Very 

ood agreement is observed over the entire spectrum, even with 

uch closely-spaced nanoparticles at resonance. 
24 
4.2. Circular dichroism against a coupled-dipole approximation 

Figure A3 displays orientation-averaged far-field cross- 

ections for a two gold spheroids in a "fingers crossed" con- 

guration immersed in water. The terms simulation used the 

ollowing input file, 

MultipoleCutoff 5 
Wavelength 400 800 400 
Medium 1.7689 
TmatrixFiles 1 
‘‘tmat_Au10x25_Nmax3.tmat’’ 
MultipoleSelections 1 
MM2:1_EM2:1_ME2:1_EE1:1 blocks 
OutputFormat HDF5 cross_sections_dip 
# dimer, dihedral pi/4 
Scatterers 2 
TF1_S1 0 -40 0.0 25 0.0 0.0 0.0 2.5 
TF1_S1 0 40 0.0 25 0.0 0.7853982 0 2.5 

here the T -matrix file ‘‘tmat_Au10x25_Nmax3.tmat’’ was 

btained from smarties , modelling a 10 × 25 nm prolate Au 

pheroid in water. For the coupled-dipole simulation, we use the 

olarisability prescription of Kuwata and coworkers [81] , noting 

hat it differs very slightly from the exact dipole term in terms . 

xcellent agreement is obtained nonetheless, for both orientation- 

veraged cross-sections, and the corresponding circular dichroism. 

rientation averaging is obtained via numerical cubature in the 

oupled-dipole simulations. 

4.3. Additional validations 

Other challenging comparisons have been used to validate the 

esults of terms in other publications. We refer the reader in par- 

icular to Ref. [23] , where far-field and near-field results were val- 

dated against Finite-Element simulations (Comsol) for a dimer of 

losely-spaced spheroids. 

We also recently performed a comprehensive benchmark of nu- 

erical cubature methods for orientation averaging [82] , which 

alidates the analytical formulas implemented in terms for 〈 σext 〉 , 
 σscat 〉 , 〈 σabs 〉 , 〈 σcd 〉 (extinction, absorption and scattering), but 

lso 〈| E | 2 〉 , 〈| B | 2 〉 , and 〈 C 〉 . 
5. Averaged electric and magnetic local field intensity for L and R 

ircular polarisations 

For completeness we briefly summarise below the formulas for 

he calculation of 〈| E tot (k r ) | 2 〉 and 〈| B tot (k r ) | 2 〉 with a specific cir-

ular polarisation. Readers are referred to the calculation of 〈 C 〉 
nd associated references for additional explanations. 

lectric field 

| E | 2 〉 = 4 πE 2 0 ( A 0 + B 0 + C 0 + D 0 ) (A.1) 

with, For R polarisation: 

A 
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= Tr 
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Fig. A2. Validation against mstm . The structure consists of 8 Au spheres, 50 nm in radius, arranged in a helix. We compared the orientation-averaged far-field cross- 

sections obtained with terms and with mstm [51] (version 4). A maximum multipolar order n max = 12 was used in both simulations. 
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r, based on the definition of U , V in Section 3.7.3 : 
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The corresponding formulas for L polarisation read, 
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r, based on the definition of U , V in Section 3.7.3 : 
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agnetic field 

For the orientation average of the magnetic field ( | B | 2 ) we now

onsider: 

 tot = E 0 
−ik 

ω 

( ˜ �(k r ) ̃  a + 

N ∑ 

j=1 

�(k r j ) T 
( j) 

N 
J ( j, 0) ˜ a 

) 

, (A.8) 
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Fig. A3. Validation against our implementation of the coupled-dipole approximation. The structure consists of 2 Au spheroids immersed in water. The spheroids have 

semi-axes c = 25 nm and a = 10 nm, the centre-to-centre separation is 80 nm, and the dihedral angle is ϕ = π/ 4 . We compare the orientation-averaged far-field cross- 

sections obtained with terms (solid line) and with the CoupledDipole package (dashed line) [79,80] . For terms , we mask the individual T -matrices to keep only the n max = 1 

electric-electric multipole, to correspond more closely to the coupled-dipole setting. For reference the full multipolar solution using terms is shown in filled areas. 
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here ˜ � = [ ̃  Z L,mn −˜ Z R,mn ] , and the same convention for � (com- 

osed of irregular VSWFs). Following the same procedure: 
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imilarly, for left polarisation: 
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