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We present a rigorous approach for measuring the throughput of an integrating sphere, from which the so-called 
sphere multiplier M can be derived. The critical ingredients of this approach are: (i) the transmitted power is mea-
sured at the base of an integrating port to avoid non-ideal port effects associated with reflections on the port wall;
(ii) to implement this last point, optical fibers are used for light collection, providing a  well-defined collection 
area and numerical aperture; (iii) the angular-dependent fiber throughput and detector sensitivity are determined 
experimentally and accounted for. We demonstrate in particular that a more realistic theory, accounting for the 
propagation of skew rays through the fiber, is needed to quantitatively model the fiber effect on the measured sphere 
throughput. We show experimentally that failure to fulfill these three points produces erroneous results, by as much 
as 50%. With an accurate experimentally derived sphere multiplier, agreement with theory is then obtained only if 
realistic ports (with non-zero reflectivity) are assumed. This provides experimental evidence for recent theoretical 
predictions of the importance of realistic ports [Tang et al., Appl. Opt. 57, 1581 (2018)]. Using the same exper-
imental techniques, we also present clear experimental proof of two other predictions from that study: that the 
angular distribution exiting the port is strongly altered and that the overall port transmittivity is drastically reduced 
for high aspect ratio ports. This work will provide a solid basis for future quantitative measurements of absolute 
throughput and for further developments of the theory of integrating spheres. © 2021 Optical Society of America

https://doi.org/10.1364/AO.428450

1. INTRODUCTION

Integrating spheres are spherical cavities whose inner walls
are coated with a highly reflecting and diffusing material.
Typically a polytetrafluoroethylene (PFTE) material such as
Spectralon is used for the visible range. They also typically con-
tain ports, i.e., holes on the cavity, where light can be sent inside
or detected, or where a sample can be placed. They are com-
monly used in two main configurations [1,2]: with a light source
inside the sphere for spectrophotometry (to quantify total power
or quantum yield) [3,4] or with a sample on the cavity wall (sam-
ple port) for the measurement of the total reflectance of a sample
(so-called diffuse reflectance) [5–7]. Other applications include
their use as gas sensors [8–11] or for liquid sample absorbance
measurements [12–19]. The theory of integrating spheres was
laid out more than 50 years ago [20,21] and further refined in
the context of diffuse reflectance to account, for example, for
a flat sample or a limited field of view [22–27]. Central to this
theory is the concept of the sphere multiplier M, which relates
the flux8 [W/m2] received by any area of the sphere walls to the
power P0 [W] incident into the sphere (of radius aS ):

8=M
P0

4πa2
S

. (1)

Note that M also quantifies the average number of reflections
a photon experiences inside the sphere before being absorbed by
the wall or escaping through a port. This flux, or the correspond-
ing sphere multiplier, will naturally depend on the presence of
a reflecting/scattering/absorbing sample inside or on the wall
of the sphere. But for the empty sphere, M is related only to the
reflectivity of the cavity walls ρ and the areas Ai of the ports
(relative to total cavity wall area). It is common to define the
port fraction for each port as fi = Ai/(4πa2

S) and the total port
fraction as f =

∑
i fi . M can then be derived to be [1,20,27]

M =
ρ

1− ρ(1− f )
. (2)

This standard expression can also be generalized [21] to the case
where the sphere is composed of N + 1 regions, each of frac-
tional area fi and reflectivity ρi (i = 0 . . . N), and where region
0 corresponds to where the incident light first hits the wall (for
example, the sample in diffuse reflectance measurements):
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M =
ρ0

1− ρ
(
1−

∑N
i=0 fi

)
−
∑N

i=0 fiρi

. (3)

This expression reduces to the earlier one when ρ0 = ρ and
ρi = 0 (i ≥ 1). Note that this expression relates only to an
empty sphere, which is the subject of this work. A number of
extensions have been derived in the context of diffuse reflectance
to account, for example, for the presence of a flat sample at a port
or non-Lambertian effects [20,22–25].

Despite the fact that these expressions are widely used to
account for the absolute throughput in integrating spheres, we
have not found any reports where they are validated experimen-
tally. This is partly due to the fact that an absolute throughput
measurement is in general not necessary for many applications
where a ratio of throughput is measured, for example, a sample
on the wall against a reference sample or the empty sphere to
extract the reflection/absorption/scattering properties of the
sample. Other studies have focused on how the sphere multi-
plier is affected by external parameters such as temperature [28],
but this again does not require a correct absolute measurement.
Yet, the experimental validation of absolute throughput in an
empty sphere should be simple: M can in principle be estimated
by measuring the total power in and total power out through
a port of known radius. We suspect such a study has not been
reported simply because it does not work. For example, we did
this simple measurement in one of our spheres and inferred
Mexp ≈ 30 at 650 nm. Knowing that f ≈ 0.0046, this would
imply from Eq. (2) that ρ ≈ 0.97, which seems quite far off
from the expected value for Spectralon (above 0.99) [29]. Such
large discrepancies cannot be attributed solely to experimental
problems such as the angular dependence of the power meter or
the cleanliness of the sphere wall. It is also in general not possible
to compare the results to an independent direct measurement
of the sphere wall reflectivity, as such absolute measurements,
although possible, are difficult and involve specialist equipment
or reflectance standards.

We have recently shown [30] using Monte Carlo (MC)
ray-tracing simulations that light propagation in ports and the
associated reflections off the port walls can result in a substantial
fraction being reflected back into the sphere. In other words,
most realistic ports have a non-zero, and sometimes large, reflec-
tivity. According to Eq. (3), this translates to large changes in
the predicted sphere multiplier M (or the sphere reflectivity ρ
derived from it). Another consequence of non-zero port reflec-
tivity is that the port transmission is reduced, which will affect
the value of M inferred from a power measurement through a
port. Reference [30] also showed that the angular profile exiting
a port could also be modified, further affecting the power if
measured through a fiber, as commonly done.

With these improvements in the theory, it should now be pos-
sible to investigate its validity experimentally. It is therefore the
purpose of this paper to demonstrate the possible quantitative
agreement between theory and experimental measurements of
sphere throughput. To this end, we have developed a reliable
procedure for measuring sphere throughput using an optical
fiber for detection, which provides the advantage of a well-
defined collection area (with core radius afib) and numerical
aperture (NA). The standard integrating sphere theory predicts
a sphere throughput for fiber detection [1,30]:

Qport =
Pport

P0
=M fportNA2, (4)

where fport = a2
port/(4a2

S) is the fiber core fraction. This arises
from: (i) a Lambertian illumination at the input and (ii) an ideal
transmission through the fiber up to the angle corresponding
to the fiber NA. We will show that the first assumption is valid
only at the port base because of real-port effects, and the second
is not accurate enough, as it does not account for skew rays in
the fiber. To avoid these issues, we instead developed a method
for careful characterization of the angle-dependent fiber and
detector throughput. This knowledge can then be applied to
deduce the correct sphere multiplier [which is different, by
50% in some cases, from that obtained from applying Eq. (4)].
The fiber imaging method also allows us to experimentally
demonstrate the predictions in Ref. [30] that the angular profile
is modified by the port and more intense for an on-axis ray than
the Lambertian distribution at the entrance of the port. Finally,
we also evidence experimentally the strong port aspect ratio
dependence of the overall port transmission, as also predicted in
Ref. [30].

2. METHODS

A. Experimental

A single integrating sphere of inner radius aS = 25 mm,
depicted in Fig. 1(a), was used for all measurements. It has
two identical deep and narrow cylindrical ports of radius
aport = 1.6 mm and height hport = 16.3 mm, whose axes are
parallel to a sphere diameter but offset by 17.68 mm. The third
port is wider (aport = 3.5 mm) and shorter (hport = 12.5 mm)
and aligned with a sphere diameter. Note that this specific

Fig. 1. (a) Internal view of the integrating sphere showing port
positions and dimensions. When measuring the 7 mm and 3.1 mm
ports, the off-axis and 7 mm ports were used as illumination ports,
respectively. (b) Example of a random photon trajectory inside the port
(here returning to the sphere) as derived from the Monte Carlo simula-
tions. (c)–(e) Schematics showing possible positions of the optical fiber
inside the 7 mm port. For accurate throughput measurements, the fiber
is placed at the port base (c) avoiding real-port effects in collection.
Positions such as (d) and (e) can be used to investigate real-port effects
as a function of port height.
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configuration was not created purposely for this study but for
applications in absorption spectroscopy of liquids [17–19]; it
can nevertheless be used to support our arguments. The two
off-axis ports were not used for the measurements, but need to
be accounted for when modeling the sphere multiplier. For the
purpose of this work, another on-axis port was created, with
radius aport = 1.5 mm and height hport = 20 mm.

Monochromatic low-power (∼5 mW) laser diodes, either
green (532 nm) or red (674.2 nm), were used for excitation to
avoid any complication associated with the wavelength depend-
ence of the integrating sphere or optical components. Light
was directed through either the large 7 mm port or one of the
3.1 mm off-axis ports. In the latter case, a lens was used to reduce
the beam diameter (normally a few millimeters) to ensure it was
not clipping the port walls. Light is collected with an optical
fiber at the base of the port [flush with the inner sphere surface;
Fig. 1(c)] or at precisely measured heights away inside the ports
[Figs. 1(d) and 1(e)] to mimic the effects of ports of different
heights. For the latter, the integrating cavity was placed on a
micrometer stage while the proximal fiber end (fiber end inside
the sphere) was fixed in place. This allowed for the measurement
of multiple port heights with 1 mm intervals and an error of
±0.2 mm. Two fibers of different NAs and sizes were used to
investigate angular-dependent effects, see full specifications in
Table 1. Both fibers were purchased from Thorlabs, and one end
was left flat cleaved with no connector, which meant it could be
easily inserted into narrow ports. Multimode fibers with rela-
tively large core sizes were used to maximize throughput. Both
fibers were of relatively short length, and under the experimental
conditions, we could not observe any losses associated with the
fiber bend radius used.

For throughput measurements, the light exiting the fibers
was measured with a butt-coupled Thorlabs PM100D power
meter. The power entering the sphere was measured with the
same power meter, either butt-coupled to the laser (for the 7 mm
port) or after the focusing lens (off-axis port). In all cases, the
laser power was averaged over a 30 s integration time. The ratio
of the two power measurements (before the sphere and after the
fiber) after dark subtraction gives the total system throughput.
No baffles were used, as the combination of the port placement
relative to the input port and the fiber NA were such that the
first reflection was not collected by the fiber. MC simulations
predict that there is a small dependence of throughput on the
exact position of the fiber in the port. This is, however, negligible
unless the fiber face is significantly off center in a large port. In
all experiments, we have nevertheless endeavored to center the
fiber face in the port, which then leaves a gap between the outer
fiber shield and the port wall (except in the 3 mm port where this
is negligible). In our calculation, it is assumed that light entering
this gap is lost, which we believe is a reasonable approximation
given the outer shield of our fiber is a black plastic.

The angular profile at the fiber exit was measured by imaging
it on a CMOS array. As this involves a number of additional

Table 1. Properties of the Two Thorlabs Fibers Used
in This Work

NA Core Size [mm] Length [m] Name

0.22 0.60 1.0 FG600AEA
0.39 1.00 1.5 FT1000UMT

technical and theoretical developments, it is discussed separately
in the result section.

B. Monte Carlo Simulations

MC ray-tracing calculations [12,31] were carried out to predict
the properties of real cylindrical ports as explained in Ref. [30].
These consist of following the trajectory of a photon as it under-
goes stochastic reflection/absorption events when intersecting
the port wall [see illustration in Fig. 1(b)]. From these, the prob-
ability of escape τport (port transmittivity), of return ρport (port
reflectivity), and of absorptionαport were computed. Note that

τport + ρport + αport = 1. (5)

Those parameters depend primarily on the port aspect ratio
defined as ξ = hport/(2aport), with aport and hport the port radius
and height, respectively, and, to a lesser extent, wall reflectivity
ρw. In the general case, the port wall reflectivity ρw may be
different from the sphere reflectivity ρ, but unless the port or
sphere has been soiled, one can expect them to be similar. We
have used ρw = 0.993 for these calculations, but changing it to
ρw = 0.99, for example, had a negligible effect on the results.
Note that MC simulations were adapted to take into account the
off-axis geometry of the two offset ports.

For an integrating sphere configuration with port fractions fi

and reflectivity of each port ρi , we can then deduce the effective
port fraction:

f̄ =
∑

fi (1− ρi ). (6)

Assuming a value for the sphere reflectivity ρ, we may then
deduce M from [see Eq. (3)]

M =
ρ

1− ρ(1− f̄ )
. (7)

Conversely, if M is obtained experimentally, then ρ can be
deduced. Note that in the thin-port limit (ξ = 0 or hport = 0),
the port reflectivity is zero, and this equation reduces to Eq. (2).

3. MEASURING THE ANGLE-DEPENDENT
THROUGHPUT OF AN OPTICAL FIBER

To determine the angular-dependent throughput of the fiber,
we first need a well-defined illumination at its entrance. For
this, we place it in the 3 mm port of the integrating sphere at a
port height of zero (flush with the internal wall) [Fig. 1(c)]. This
ensures that the illumination at the fiber entrance is Lambertian
with radiant intensity proportional to cos θ . The illumination
of the sphere is through the 7 mm port.

A. Fiber Output Imaging

To characterize the light output at the exit, we place it at a dis-
tance L from the CMOS array detector of a Fujifilm X-A20
camera [see Fig. 2(a)]. The CMOS detector is 23.6× 15.6 mm
in size with a pixel size of 4.8× 4.8 µm (2456× 1639 pixels
each for red, blue, and twice green). This detector was placed
on a micrometer stage to allow for accurate control of the fiber-
detector distance L . The link between the intensity profile on
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Fig. 2. (a), (b) Schematics of the fiber profiling experiment
using a CMOS sensor to image the fiber output. (c) Example raw
CMOS images of the fiber output measured at increasing distances
L i = L1 + (i − 1)1L (1L = 5 mm) from the fiber exit. From each
image, the radially symmetric irradiance profile Ii (r ) is extracted and
shown in (d). From these, L1 = 10.3 mm is inferred as described in
the text, and the corresponding fiber profiles R̃i (θ) are derived from
Eq. (10) and shown in (e).

the CMOS array and the angular distribution exiting the fiber
can be established as follows.

First, since L is much larger than the fiber core size, we may
approximate the fiber exit as a point source. We also assume that
the distribution is axially symmetric and therefore defined by a
radiant intensity [W/sr] R(θ). Note that at the fiber entrance,
we have a Lambertian illumination characterized by a radiant
intensity Rin(θ)= I0 cos θ or equivalently a probability dis-
tribution pin(θ)= sin(2θ). Similarly, at the fiber exit, we have
R(θ) or p(θ)∝ R(θ) sin θ .

The power [W] received on a surface d S ′ on the sensor
at a distance r from the axis [see Fig. 2(b)] is then given by
d P = R(θ)d�, where

d�=
d S ′ cos θ

(L/ cos θ)2
. (8)

The pixel irradiance [W/m2] is therefore

I (r )=
d P
d S ′
= η(θ)

R(θ)cos3θ

L2
, (9)

where we have introduced the angular-dependent detector effi-
ciency η(θ). Together with r = L tan θ , this expression allows
us to derive the angular fiber profile R̃(θ)= η(θ)R(θ) from the
intensity pattern I (r ) on the sensor as

R̃(θ)=
L2 I (L tan θ)

cos3θ
. (10)

What is measured on the CMOS sensor is the irradiance
[W/m2] at each pixel position Ii . The raw CMOS images are
used to avoid any post-processing being applied, and a dark

image is subtracted. Example images are shown in Fig. 2(c),
which confirms the axial symmetry of the fiber profile. From
such images, the center is first found by taking the weighted cen-
troid, and virtual rings of radius 25 pixels wide are drawn around
the center (each of radius 25n, n = 1, 2, . . .). By averaging Ii for
each ring, we obtain the irradiance I (pn) as a function of pixel
distance from center pn = 12.5+ 25(n − 1). This distance
in pixel (p) is converted in millimeters (r ) by multiplying by
23.6/2456≈ 9.6 µm (spacing between pixels). The irradiance
profiles measured at four different distances L (each 5 mm
apart), corresponding to the raw images in Fig. 2(c), are plotted
in Fig. 2(d) for the NA 0.39 fiber. As L increases, the center
irradiance decreases, and the image becomes more spread out.

In principle, measurement at a single L is sufficient to extract
R̃(θ) from Eq. (10), but we here used four equally spaced L
for a number of reasons: (i) it allows us to detect problems asso-
ciated with sensor saturation (more likely at short L) or with
the image being cropped or too weak compared to background
(more likely at large L); (ii) it checks the validity of the point
source assumption (it would create more error at short L); and
(iii) it means that we do not have to rely on an absolute mea-
surement of L , which can be difficult because of proprietary
sensor coatings. For the latter point, we instead accurately
measure the spacing between each measured L :1L = 5 mm in
our case, and L2 = L1 +1L . From Eq. (10), we then see that
L2

1 I1(L1x )= L2
2 I2(L2x ) for all x (we have set x ≡ tan θ ), or

equivalently,

I2

(
y
β12

)
= β2

12 I1(y ), β12 ≡
L1

L2
. (11)

For a given (measured) I1(r ) and I2(r ), we can therefore deduce
β12 from a one-parameter nonlinear least-square fit of Eq. (11).
From it, we then deduce L1 and L2 from

L1 =
β12

1− β12
1L, L2 = L1 +1L . (12)

For the example in Fig. 2, we deduce β12 = 0.67 and
L1 = 10.3 mm. For the method to be self-consistent,
the resulting R̃i (θ) derived from Eq. (10) for each L i =

L1 + (i − 1)1L(i = 1 . . . 4) should be the same, which is
indeed the case within experimental uncertainties, as shown
in Fig. 2(e). We can do this for all pairs of L , and we obtain
very similar R̃(θ) in all cases, which we average to get a single
measured R̃(θ). A more direct method is to enforce all pairwise
conditions L2

i Ii (L i x )= L2
j I j (L j x ) in a one-parameter (L1)

least-square fit. This global fit method gives results similar to
the first method. The latter is preferred, as it allows us to detect
possible problematic measurements (for example, affected by
saturation).

B. Detector Angular Dependence

To characterize the fiber output R(θ), we still need to correct
for the detector efficiency η(θ). CMOS arrays are known to
have a strong angle-dependent efficiency, which can be mea-
sured with a collimated beam incident on the sensor placed on a
rotation stage [32,33]. Example images for this experiment are
shown as insets in Fig. 3(a). As all pixels are irradiated at the same
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Fig. 3. (a) Angular response of the CMOS sensor η(θ) obtained
from imaging a collimated beam for different angles between the beam
and sensor. Example raw CMOS images are shown as insets. A spline fit
is used to smooth this response (blue line). Note that the response was
measured for both negative and positive angles, and was found to be
symmetric. (b) Angular response of the power meter, ηPM (normalized
to one at θ = 0).

incidence angle, the efficiency is simply proportional to the
integrated dark-corrected intensity. The resulting η(θ), normal-
ized such that η(0)= 1, is shown in Fig. 3(a). A spline fit is used
to smooth this response to avoid introducing noise. This then
allows us to correct the measured R̃(θ) and deduce the radiant
intensity at the fiber exit from R(θ)= R̃(θ)/η(θ). A similar
measurement was performed for red excitation (674 nm), and a
much more pronounced angular dependence was found, with
η down to less than 20% at angles of θ = 0.36 only. This makes
fiber profiling at larger angles very difficult, and red excitation is
therefore not suited for such measurements. All measurements
presented in this paper will therefore be with green (532 nm)
excitation.

Finally, a similar measurement was carried out to characterize
the angle-dependent response ηPM of the power meter (used for
sphere throughput measurements), shown in Fig. 3(b).

4. QUANTIFYING FIBER THROUGHPUT

For any quantitative measurement of integrating sphere
throughput, it is paramount to carefully characterize the
detector parameters: surface area, NA, and any angular depend-
ence. The latter can be particularly problematic for large NA
detection. To capture all the light coming out of a port, a full
NA= 1 detection is in principle needed, which is difficult
to implement. To overcome this problem, a simple common
approach is to use an optical fiber to collect the light from the
port and couple it into the detector. The main advantages are
that the fiber has a well-defined collection area (core area) and
NA, and since the NA is relatively small, it may be argued that
the effect of the detector angular dependence becomes negligible
(we will show that this is in fact wrong). In the standard theory

of integrating spheres [1], a fiber of given NA is assumed to fully
transmit all rays reaching its core with an angle-to-axis θ smaller
than the critical fiber angle θNA = a sin(NA). For a Lambertian
distribution at its entrance, with an angular probability dis-
tribution p(θ)= sin(2θ), this results in a fiber throughput of
QL

fib =NA2.
We here argue and will show experimentally that this sim-

ple approximation is not suitable to quantitative estimates for
several reasons. First, the simple fiber model implicitly assumes
that all rays are meridional (passing through the fiber center). To
take into account the effect of other rays, known as skew rays,
a more general theory must be used [34,35]. We summarize in
the appendix the more relevant aspects. The main effect of skew
rays is that rays with an angle larger than θNA can be transmit-
ted through the fiber. This results in an additional tail in the
transmittivity T(θ) for θ > θNA, and in the case of Lambertian
illumination, the overall transmission is larger than NA2 by
as much as 50% (see Appendix A). Skew rays must therefore
be taken into account for any quantitative interpretation of
sphere throughput measurement using fiber optics. Second,
in-coupling at the fiber entrance and out-coupling at the fiber
exit are unlikely to be perfect, notably because of possible reflec-
tion at the air/fiber core interface. This can be easily accounted
for with the angle-dependent Fresnel reflection coefficient
(averaging over polarization)

R(θ)=
1

2

[
cos θ − nF cos θz

cos θ + nF cos θz
+

nF cos θ − cos θz

nF cos θ + cos θz

]
, (13)

where sin θ = nF sin θz. nF is the fiber core refractive index, θ is
the incidence angle outside the fiber, and θz is the refracted angle
inside the fiber core. Accounting for both in- and out-coupling,
the transmission is then TIO(θ)= (1− R(θ))2. TIO(θ) is
approximately constant for small angles (of the order of 0.93
for a typical nF of 1.46), but then decreases at larger angles,
which are not negligible given the skew ray contribution and
the Lambertian probability p(θ)= sin(2θ) peaking at θ ≈ 0.7.
Another possible source of imperfections is bending losses: any
bend in the fiber could result in further departure between theo-
retical and real fiber throughput. This will particularly affect
angles close to the critical angle θNA. Only one small-curvature
90◦ bend was present in most of our experiments. When chang-
ing the radius of curvature, we did not observe any noticeable
changes to the transmitted power, so this effect is likely neg-
ligible in our case. A potential additional loss mechanism is
optical absorption in the fiber; however, for short fibers in the
visible (less than a few meters, as used in our experiments), this
is typically negligible. Finally, real fibers also have cladding, and
cladding modes may be present and enhance the transmission at
some angles.

It is clear that at the very least, skew rays and in-/out-coupling
must be accounted for in any quantitative study. But even then,
other effects such as cladding modes may still result in a discrep-
ancy between theory and practice. A more accurate approach
is therefore to experimentally measure the fiber transmittivity
T(θ). As explained in the previous section, this can be achieved
by imaging the fiber output onto a sensor array at different
distances from the output face for a Lambertian illumination
at the fiber entrance. By comparing the exit radiant intensity
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Fig. 4. Transmittivity T(θ) of the (a) 0.22 NA and (b) 0.39 NA
fibers. Four measurements are shown for each fiber along with the
theoretical meridional throughput (simple model) and the skew ray
models.

to that at the entrance, we obtain T(θ) for the fiber up to a
scaling factor. The scaling factor can be measured by a single
throughput measurement with a laser, but we may also assume
that T(θ = 0)= 1, as these rays should not be affected by other
factors. Note that we here define T(θ) as the internal transmit-
tivity of the fiber (ignoring in-/out-coupling), and the overall
transmittivity is therefore TIO(θ)T(θ).

Following this approach, we measured T(θ) for the two fibers
of NAs 0.22 and 0.39, and this is summarized in Fig. 4. These
are compared to the ideal fiber theory and to the improved the-
ory accounting for skew rays. Note that θ denotes the external
angle, not the internal angle (after refraction at the entrance
face). In the ideal theory of Ref. [1] (ignoring skew rays), the
transmittivity is simply

Tideal(θ)=

{
1 if θ ≤ θNA

0 if θ > θNA
. (14)

In contrast, we clearly observe transmission beyond the critical
angle, with a similar dependence as predicted from the skew ray
theory. The agreement is, however, not exact, in particular, for
θ ≈ θNA. Such small discrepancies are difficult to account for in
the theory because the details of the fiber outer structure are not
available from the manufacturers.

Once the transmittivity is determined, the overall fiber
throughput for a given probability distribution of incidence
angle at the fiber entrance is

Qfib =

∫ π/2

0
p(θ)TIO(θ)T(θ)dθ . (15)

The derived QL
fib for a Lambertian incidence are summarized in

Table 2 for the two fibers investigated in this work and differ-
ent assumptions on T(θ). It is clear that errors as large as 50%
in throughput may arise from using the ideal fiber model. In
contrast, the skew ray theory predicts throughput comparable
to those inferred experimentally. In fact, the experimentally
derived throughput is affected by the larger uncertainties in
the experimental transmittivity at large angles (above 0.6 rad).
It may be more accurate to extrapolate the experimental data
above 0.6 rad using the skew ray theory results (see last row in
the table). In any case, Table 2 and Fig. 4 clearly demonstrate the
importance of carefully characterizing fiber throughput and that
the ideal fiber theory is inadequate. The experimentally derived

transmittivity, or in our case the one obtained from the skew ray
theory, must instead be used to infer accurate throughputs.

Finally, it should be noted that for sphere throughput mea-
surements, the angle-dependent transmittivity of the fiber is
convoluted with the angle-dependent sensitivity of the power
meter, and the throughput of the combined collection apparatus
is then given by

Qfib+PM =

∫ π/2

0
p(θ)TIO(θ)T(θ)ηPM(θ)dθ, (16)

where ηPM(θ) was measured in the previous section. For
Lambertian illumination, p(θ)= sin(2θ), and the derived
Qfib+PM are also summarized in Table 2. The pattern is roughly
similar to that observed for the fiber-only throughputs, but we
do observe that the power meter response has a non-negligible
effect, especially on the larger NA fiber. This further high-
lights the importance of careful characterization of the angular
dependence in collection (both fiber and detector).

5. ACCURATE MEASUREMENT OF THE
SPHERE MULTIPLIER

With the fiber collection carefully accounted for, we are now
in a position to obtain rigorous measurements of the sphere
multiplier. To avoid any influence of the port transmission and
angular redistribution (which will be the subject of the next sec-
tions), we here focus on measurements where the fiber entrance
is placed at the base of the port at the inner sphere surface [see
Fig. 1(c)]. The sphere throughput is then given by

Qsphere =M
a2

fib

4a2
S

QL
fib+PM. (17)

The second term is equivalent to the “port fraction,” here the
ratio of fiber core to inner sphere surface areas. QL

fib+PM accounts
for the fiber and detector response for Lambertian illumination
(which is the case at the base of the port) and was determined
experimentally in the previous section. The sphere multiplier
M can then be determined from a measurement of the sphere
throughput. The results of such measurements are summarized
in Table 3. First, we see that the derived M is relatively large, of
the order of 90. Also, the M derived from two measurements
with different fibers is identical, which provides further support
to the result. In contrast, if we had assumed the ideal fiber trans-
mission QL

fib =NA2, then the resulting Mdirect differ by about
15% for the two different fibers, which further supports the
importance of careful fiber characterization.

Such large M’s have not been previously reported, probably
partly because they seem incompatible with the standard theo-
retical expression [Eq. (2)]. Indeed, the total port fraction for
our sphere is f = 7.8× 10−3, so the resulting Mdirect of 122
would correspond to a wall reflectivity of ρ = 0.9996, much
larger than the highest reported reflectivity of PTFE [36], of
the order of 0.994. (It is important to note that in these mea-
surements of ρ, the relevant quantity is 1− ρ; therefore, a value
of 0.9996 is wrong by an order of magnitude.) This contradic-
tion is not as pronounced but still remains with our improved
measurement of M = 90.2.
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Table 2. Normalized Throughput for Lambertian
Incidence for the Fiber, QL

fib/NA
2, and for Full Collection

System (Fiber and Power Meter), QL
fib+PM/NA

2a

Fiber 1 Fiber 2
NA 0.22 NA 0.39

Core 0.6 mm Core 1 mm
Fib Fib+PM Fib Fib+PM

Ideal 0.94 0.93 0.94 0.88
Skew rays 1.55 1.45 1.5 1.27
Experimental 1.58 1.46 1.43 1.25
Exp.+skew 1.48 1.38 1.47 1.24

aThe fiber transmittivity is taken from the (i) ideal fiber theory, (ii) skew
ray theory, (iii) experimental measurement, and (iv) experimental values up to
θ = 0.45 rad extrapolated with the skew ray values for θ > 0.45 rad (where the
experiment is more uncertain).

Table 3. Experimentally Derived M at λ= 532 nm for
0.22 NA and 0.39 NA Fibers, and Main Parameters
Used: Fiber NA, Core Radius afib, Lambertian
Throughput QL

fib+PM (from Table 2), and Measured
Sphere Throughput Qsphere [M Calculated Using
Eq. (17)]

a

NA afib
QL

fib+PM

NA2 Qsphere M Mdirect

0.22 0.3 1.458 2.27× 10−4 89.2 130.1
0.39 0.5 1.248 1.73× 10−3 91.1 113.7
Ave 90.2 121.9

aFor comparison, we also show Mdirect, computed directly from the common
assumption QL

fib+PM =NA2.

These problems were highlighted theoretically in Ref. [30]
and attributed to the non-negligible port reflectivities. These
can be calculated using MC simulations as summarized in
Table 4 (note that these were also tabulated in Ref. [30], but
do not apply to our ports 2 and 3, as their axes do not cross
the center of the sphere). In the case of our sphere, even the
widest port (7 mm diameter, 11 mm high) has a predicted large
reflectivity of ρP = 0.59. The effective sphere port fraction,
f̄ =

∑
i (1− ρi ) fi , is then dramatically reduced, down to

f̄ = 2.5× 10−3. Together with the measured M = 90.2, we
then deduced a sphere wall reflectivity of ρ = 0.9915. This is in
the expected range for a PTFE sphere that has been used for a few
months (ours had been used for about six months). We note that
without the fiber transmission correction, we had Mdirect = 122,
and the derived ρ would have been 0.9943, which would be
above the maximum expected for a brand new/clean sphere and
is therefore unrealistic.

6. FURTHER EXPERIMENTAL EVIDENCE FOR
REAL-PORT EFFECTS

The non-zero reflectivity of real ports was evidenced in the
previous section indirectly through its effect on M, but the
corresponding reduced port transmittivity can in principle be
observed more directly in a throughput measurement. Our
measurement of the intensity profile at the fiber exit also allows
us to test experimentally another prediction of Ref. [30]: the
port-induced angular redistribution. For this, we use the large
NA fiber to maximize the range of measured angles, and collect

Table 4. Port Properties and Calculated Reflectivities
and Transmittivities Using MC Simulation with ρ = 0.993
(Exact Value of ρ Has Only Minor Influence)

a

Diameter
[mm]

Height
[mm] f P × 10−3 ρP f̄ P × 10−3

Port 1 7.0 11.0 4.90 0.59 2.0
Ports 2 and 3 3.2 16.3 1.45 0.83 0.24
Port 4 3 23.0 0.23 0.83 0.04
Total 7.80 2.50

aThe effective port fraction is f̄ P = (1− ρP ) f P . For ports 2 and 3, the port
axis does not go through the sphere center but half a sphere radius from it.

the light from the integrating sphere at various depths inside the
port [see Figs. 1(c)–1(e)]. At a distance h from the inner sphere
surface, the situation is equivalent to a port of height h or, to
use the notation of Ref. [30], a port aspect ratio ξ = h/2a P .
ξ = h = 0 corresponds to the base of the port (thin-port limit),
discussed earlier. The angular profile at the fiber exit is then
imaged on a CMOS array and analyzed as described in Section 3
to derive the radiant intensity at the port exit Rexit(θ). As evident
from the raw images [Fig. 5(a)], there is a clear angular redistri-
bution with a more localized pattern as the port height increases.
This is also evident in the combined port+fiber transmittivity
inferred from these images [see Fig. 5(b)]. To eliminate the
effect of the transmittivity of the fiber, we can also normalize
Rexit(θ, ξ) for a given port height to that measured at h = 0
(studied in the previous section), Rexit(θ, ξ = 0). This is shown
in Fig. 5(c) and again highlights the angular redistribution
effect, here independently of the fiber transmission.

These experimental results are compared to MC ray-tracing
predictions (following Ref. [30]) [see dashed lines in Figs. 5(b)
and 5(c)]. We see that there is a good qualitative, and even
semi-quantitative, agreement. In particular, the angle at which
the transmission starts to differ from the ξ = 0 case is correctly
predicted by theory. As the angle increases further, the intensity
drop is, however, overestimated in the ray-tracing predictions.

The other, arguably more obvious, real-port effect is the
reduced port transmittivity. This can be measured in the same
configurations as just described, with a power meter at the end of
the fiber. The theoretical sphere throughput takes the form

Qsphere(ξ) =M
a2

fib

4a2
S

Qfib+PM(ξ), (18)

where Qfib+PM(ξ) is given by Eq. (16), this time with a modi-
fied p(ξ, θ), as a result of transmission through the port. The
transmittivity of the fiber T(θ) and power meter response
ηPM(θ) are unchanged and were characterized in Section 4.
For this experiment, we moved the fiber in steps of 2 mm from
the top exit of the port, z= 0, down to the bottom (just inside
the sphere), z= hport. We summarize our results in Fig. 6. We
first compare the throughput dependence on port height for
the two centered ports (3 mm and 7 mm), measured with the
same NA 0.39 fiber [Fig. 6(a)]. As expected, the throughput
decreases with increasing port height as a result of reduced port
transmittivity, and the effect is more pronounced in the narrow
port. This is understandable, since as explained in Ref. [30], the
most important parameter is the aspect ratio ξ . In fact, when
plotted against ξ , Fig. 6(b), the two plots are then approximately
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Fig. 5. Measurement of the port+fiber angular-dependent trans-
mittivity as a function of port height hport, or equivalently, aspect ratio
ξ = hport/(2aport), for the 3 mm port and NA 0.39 fiber. The overall
port+fiber transmittivities T(θ) (normalized to T(0)= 1) are shown
in (b) for different ξ . Example raw CMOS images from which these
curves are extracted are shown in (a). (c) Same data normalized to
T(θ, ξ = 0), to remove any influence of the fiber. All dashed lines are
ray-tracing predictions.

superimposed. These results are also compared to ray-tracing
predictions, and we again observe qualitative agreement, but the
predicted transmittivity is again underestimated at higher aspect
ratios.

We believe the discrepancy with theory observed in both
angular dependence and throughput could be related to the
non-ideal-Lambertian diffuse reflection, which can result in a
higher probability of scattering at very large angles (above 75◦–
80◦). This effect has been evidenced experimentally [36,37].
For a long and narrow port, this results in a higher probability of
rays being scattered along or close to the port axis and therefore
of exiting the port without further hitting the wall. This could
explain simply why the experimental results show higher trans-
mission than predicted from the ideal Lambertian reflection.
This suggests that including non-Lambertian reflection in
the ray-tracing theory may be necessary to accurately predict
real-port effects in long or narrow ports.

7. CONCLUSION

We have developed a rigorous experimental protocol to measure
the throughput of integrating spheres and derive their sphere

Fig. 6. Overall sphere+port+fiber+power meter throughput as a
function of (a) port height or (b) port aspect ratio for the two centered
ports. Dashed lines are ray-tracing predictions.

multiplier. This has allowed us to demonstrate experimentally
previously predicted real-port effects: non-zero port reflectivity,
reduced port transmittivity, and angular redistribution. Because
of these, it is crucial to measure the sphere throughput at the
base of the port. A convenient way to achieve this is with optical
fibers. In this case, we have shown that the standard theory of
fiber collection results in a large error in the sphere multiplier.
We have shown that this is due to the non-negligible contri-
bution of skew rays. Our proposed method to measure fiber
transmission overcomes this problem, and we have shown that
the result agrees closely with an improved theory including
skew rays. The derived sphere multipliers, obtained after such
improvements and a careful characterization of the detector
angular dependence, are of the order of 100, much larger than
typically thought. Such values do appear in agreement with the
expected sphere wall reflectivity, but only if the non-zero port
reflectivities are accounted for.

This study therefore provides a comprehensive, quantitative,
and self-consistent experimental and theoretical picture of
integrating sphere absolute throughput. Reassuringly, our con-
clusions should not strongly affect applications where relative
throughputs are measured to infer sample properties, as errors
related to fiber or port transmittivity should equally affect the
sample and reference. Nevertheless, we believe this study will
provide a solid basis for future quantitative measurements of
absolute throughput and for further developments of the theory
of integrating spheres.

APPENDIX A: SKEW RAYS IN OPTICAL FIBERS

The common description of optical fiber transmission implic-
itly assumes that all rays are meridional (passing through the
fiber center). To take into account the effect of other rays,
known as skew rays, a more general theory must be used [34,35].
We summarize below the more relevant aspects; refer to,
e.g., Ref. [35] for full details. Note that the skew ray theory
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summarized here assumes a relatively simple step-index fiber.
Some real fibers may have a graded index, or more steps.

A general skew ray direction (inside the fiber) is characterized
by its angle with the fiber axis, denoted θz following Ref. [35],
and a second angle θφ related to the skewness. Both angles are
conserved at each reflection inside the fiber. Following Ref. [35],
we defined α as the angle between the incident ray and the fiber
surface normal (relevant to refraction/total internal reflection
(TIR):

cos α = sin θz sin θφ . (A1)

Note that for meridional rays, θφ = π/2, and α and θz are
complementary angles (α + θz = π/2). According to Snell’s
law, TIR inside the core of refractive index nF should occur for
α ≥ αc and refraction forα < αc with

nF sin θc =NA and sin αc = cos θc , i.e. αc = π/2− θc .
(A2)

To take into account skew rays, we can therefore simply replace
the transmission condition θz < θc by α > αc , which we will
call the basic skew ray model. Note that this requires defining
all the properties of the fiber: refractive index nF , NA, core
radius a F (although the dependence on the latter is small), and
the full properties of incoming rays (position and direction) to
determine θφ . For a given ray entering at (x0, y0, z0) on the fiber
face with direction unit vector (ux , u y , uz), we have

cos θi = uz,

sin θz = sin(θi )/nF ,

cos θφ =
1

a F

√
x 2

0 + y 2
0 −

(x0ux + y0u y )
2

(u2
x + u2

y )
. (A3)

Assuming a Lambertian illumination at the entrance of the
fiber, we can then calculate the full transmission of the fiber as a
function of external angle θ . This is illustrated in Fig. 4 for the
two fibers used in this work. It is clear that the skew rays dramati-
cally affect the fiber transmittivity. A more elaborate skew ray
model also accounts for the modification of Snell’s law because
of the curved interface, which may allow some otherwise totally
internally reflected rays to tunnel out [35]. It can be shown
that only rays with θz < θc are strictly bound by TIR. Rays
with α > αc and θz > θc are called leaky rays or tunneling rays.
They would be undergoing TIR on a flat surface, but because
of the curvature, they have a small probability of not reflect-
ing. The exact transmission probabilities of leaky rays can be
computed following the treatment in Ref. [35] (not reproduced
here because of the complications) and the fiber transmission
derived for a given entrance illumination. Including those adds
many complications to the theory (and would require detailed
knowledge of the cladding structure), but as a rule of thumb, the
changes are small for short fibers as used in this work.
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