Magforming Chemistry: From Methane Capture to Hydrogen Storage

As A Magnetochemist...

- Set contains the exact number required to build the classic magic ball
- Made with high guality and super powerful magnets
- · Makes a great add-on to any MAGFORMERS collection · Perfect set for traveling, because the pieces stick together
- An educational experience that's also fun

Magforming Polyhedrons

Dodecahedron

Magforming Polyhedrons

Tetrahedron

Magforming 2D Lattices

hexagonal

square honeycomb

kagome

Magforming 3D Lattices

Linking octahedron to form **pcu** (primitive cubic) network

Octahedron Chemical Building Block

H. Koyama & Y. Saito; The Crystal Structure of Zinc Oxyacetate, Zn₄O(CH₃COO)₆. Bull. Chem. Soc. Jpn. **1954**, 27, 112-114.

Metal-Organic Framework-5 (MOF-5)

H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279.

Metal-Organic Framework-5 (MOF-5)

MOF-5 Model at Otago Museum (Te Papa also has a MOF-5 model) MOF-5 $[Zn_4O(BDC)_3]$ Surface Area = 3500 m²/g

H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279.

MOF-5 for Hydrogen Storage

Yaghi and co-workers, *Science* **2003**, *300*, 1127. Matzger and co-workers, *Nat. Commun.*, **2019**, *10*, 1568. Breunig, Long and co-workers, *Energy Environ. Sci.*, **2021**, *14*, 1083.

Breunig, Long and co-workers, Energy Environ. Sci., 2021, 14, 1083.

Why MOFs for Hydrogen Storage?

Hydrogen Storage MOFs for Back-up Power Supply

Breunig, Long and co-workers, Nature Energy, 2022, 7, 448.

Further Cost Reduction?

- Increase Materials Durability
- Increase Storage Capacity

How?

Methane Emissions

Methane is $25 \times$ more potent greenhouse gas than CO_2 (100-year span).

Methane emissions' contribution to global warming: 20% -- US Environment Protection Agency 30% -- International Energy Agency

The **energy sector** is responsible for 38% of humanactivity-related emissions, second only to agriculture (40%).

Methane Emissions by The Energy Sector

Coal Mine Methane Capture

Drainage gas (methane > 6%) utilisation rate reached 45% in China (2020).
Capturing ventilation air methane (methane < 0.75%) remains a challenge.

Selective for CH_4 over other gases in the air (mostly N_2)

Gas	Kinetic Diameter (Å)	Polarisability (Å ³)
CH_4	3.80	2.6
N_2	3.64	1.4

Simulations over 137,000 hypothetical MOFs

https://www.youtube.com/watch?v=bVVvTH_d4hI

Selective for CH_4 over other gases in the air (mostly N_2)

Gas	Kinetic Diameter (Å)	Polarisability (Å ³)
CH_4	3.80	2.6
N_2	3.64	1.4

Selective for CH_4 over other gases in the air (mostly N_2)

Gas	Kinetic Diameter (Å)	Polarisability (Å ³)
CH_4	3.80	2.6
N_2	3.64	1.4

Selective for CH_4 over other gases in the air (mostly N_2)

Gas	Kinetic Diameter (Å)	Polarisability (Å ³)
CH_4	3.80	2.6
N_2	3.64	1.4

Design a material with **both** open metal sites and optimal pore sizes

Design materials with **both** open metal site and optimal pore size

Design a material with **both** open metal sites and optimal pore sizes

Building unit 1 Building unit 2	2-c Linear	3-c Triangle	4-c Square	4-c tet	6-c Hexagon	6-c oct	Building unit 1 Building unit 2	2-c Linear	3-c Triangle	4-c Square	4-c tet	6-c Hexagon	6-c oct
3-c Triangle	srs	bwt, pyo, srs-b, ths-b	fjh , fmj, gee, iab, yac, yao	asn, ept, ofp	cys, dnf*	anh, ant , apo, brk, cep*, cml, czz, eea, qom, rtl, tsx, zzz	8-c cub	bcu	the	scu, csq, sqc	flu	I	CC
4-c Square	nbo, lvt, rhr	pto, tbo	cev, cdl, cdm, cdn, cds, cdz, mot, muo, qdl, qzd, ssd, sse, ssf, sst	pts	nts	myd, ybh	12-c cuo	fcu	sky	ftw	edc	-	-
4-c tet	dia, Ics, qtz, sod	bor, ctn	fgl, mog, pds, pth , pti, ptr, ptt	bnl, byl, cag, cbt, coe, crb, fel, icm, kea, Ion , pcl, qtz-b, sca, tpd, ucn	-	alw, bix, cor, ing, spl, toc	12-c ico	-	_	-	ith	Ι	-
6-c Hexagon	hxg	cys, dnf	she	_	hxg-b	_	12-c hpr	-	aea	shp	_	I	-
6-c oct	pcu, bcs, crs, reo	pyr, spn	SOC	gar, iac, ibd, toc	-	pcu-b, bcs-b	12-c tte	-		-	-	mgc	-
6-c trp	Icy, acs	ceq, dag, fmz, hwx, moo, sab, sit , ydq	stp	fsi, hea, tpt	htp	nia	24-c tro	_	-	-	twf		-

Design a material with **both** open metal sites and optimal pore sizes

Building unit 1 Building unit 2	2-c Linear	3-c Triangle	4-c Square	4-c tet	6-c Hexagon	6-c oct	Building unit 1 Building unit 2	2-c Linear	3-c Triangle	4-c Square	4-c tet	6-c Hexagon	6-c oct
3-c Triangle	SIS	bwt, pyo, srs-b, ths-b	fjh, fmj, gee, iab, yac, yao	asn, ept, ofp	cys, dnf*	anh, ant, apo, brk, cep*, cml, czz, eea, qom, rtl, tsx, zzz	8-c cub	bcu	the	scu, csq, sqc	flu	-	ocu
4-c Square	nbo, lvt, rhr	pto, tbo	cev, cdl, cdm, cdn, cds, cdz, mot , muo, qdl, qzd, sd, sse, ssf, sst	pts	nts	myd, ybh	12-c cuo	fcu	sky	ftw	edc	-	_
4-c tet	dia, lcs, qtz, sod	bor, ctn	fgl, mog, pds, pth , pti, ptr, ptt	bnl, byl, cag, cbt, coe, crb, fel, icm, kea, lon, pcl, qtz-b, sca, tpd, ucn	-	alw, bix, cor, ing, spl, toc	12-c ico	-	_	-	ith	-	_
6-c Hexagon	hxg	cys, dnf	she	-	hxg-b	_	12-c hpr	-	aea	shp	_	-	-
6-c oct	pcu, bcs, crs, reo	pyr, spn	SOC	gar, iac, ibd, toc	-	pcu-b, bcs-b	12-c tte	-		-	_	mgc	_
6-c trp	Icy, acs	ceq, dag, fmz, hwx, moo, sab, sit , ydq	stp	fsi, hea, tpt	htp	nia	24-c tro	-	-	-	twf		-

Deriving The 12-c Building Block

Methane Capture Performance

CH₄/N₂ Selectivity Comparison

Further Cost Reduction for Hydrogen Storage?

- Increase Materials Durability
- Increase Storage Capacity

How?

Further Cost Reduction for Hydrogen Storage?

- Increase Materials Durability
- Increase Storage Capacity

How?

- Increase Materials Durability Stronger Bonds
- Increase Storage Capacity Higher Surface Area

Metal-Organic Framework-5 (MOF-5)

H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279.

Octahedron Chemical Building Block

H. Koyama & Y. Saito; The Crystal Structure of Zinc Oxyacetate, Zn₄O(CH₃COO)₆. Bull. Chem. Soc. Jpn. **1954**, 27, 112-114.

From Weaker Coordination Bonds to Stronger Covalent Bonds

Covalent organic frameworks

Further Cost Reduction for Hydrogen Storage?

- Increase Materials Durability
- Increase Storage Capacity

How?

- Increase Materials Durability Stronger Bonds
- Increase Storage Capacity Higher Surface Area

Vastly Underexplored Geometries

Building unit 1 Building unit 2	2-c Linear	3-c Triangle	4-c Square	4-c tet	6-c Hexagon	6-c oct	Building unit 1 Building unit 2	2-c Linear	3-c Triangle	4-c Square	4-c tet	6-c Hexagon	6-c oct
3-c Triangle	STS	bwt, pyo, srs-b, ths-b	fjh, fmj, gee, iab, yac, yao	asn, ept, ofp	cys, dnf*	anh, ant, apo, brk, cep*, cml, czz, eea, qom, rtl, tsx, zzz	8-c cub	bcu	the	scu, csq, sqc	flu	-	ocu
4-c Square	nbo, lvt, rhr	pto, tbo	cev, cdl, cdm, cdn, cds, cdz, mot, muo, qdl, qzd, ssd, sse, ssf, sst	pts	nts	myd, ybh	12-c cuo	fcu	sky	ftw	edc	-	-
4-c tet	dia, Ics, qtz, sod	bor, ctn	fgl, mog, pds, pth, pti, ptr, ptt	bnl, byl, cag, cbt, coe, crb, fel, icm, kea, lon, pcl, qtz-b, sca, tpd, ucn	-	alw, bix, cor, ing, spl, toc	12-c ico	-	-	-	ith	-	-
6-c Hexagon	hxg	cys, dnf	she	_	hxg-b	_	12-c hpr	-	aea	shp	-	_	-
6-c oct	pcu, bcs, crs, reo	pyr, spn	SOC	gar, iac, ibd, toc	-	pcu-b, bcs-b	12-c tte	-		-	-	mgc	-
6-c trp	Icy, acs	ceq, dag, fmz, hwx, moo, sab, sit , ydq	stp	fsi, hea, tpt	htp	nia	24-c tro	-	-	-	twf	-	-

Computational Screening

H₂ Stores at 77 K, 100 Bar, Releases at 160 K, 5 Bar

Simulated Usable Gravimetric Capacity (wt. %)

Acknowledgement

Porous Materials Group Victor Zhang

Mai Fernandez Shae Patel Ben Watts Rachel Wallace Emily Stephens Ethan Wait

Collaborators Yiming Zhang Dr Subo Lee

Special Thanks to Prof Shane Telfer Dr Mat Anker Jan Vorster David Flynn

Funding

MARSDEN FUND

TE PŪTEA RANGAHAU A MARSDEN

