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Abstract
The topology of electric field lines in electric dipole radiation of angular
frequency w changes during each cycle. From the beginning of each cycle to
the time 7. given by wt, = J2 — arctan(v2 — 1/+/2) ~ 0.8 there is no
reconnection of field lines. In the time interval = #, to t = 1/w electric field
lines separate from the charges on the dipole and close on themselves, but the
closed loops eventually die away. For times r = 1/w to t = w/2w the closed
loops do not fade away but fly off to infinity as radiation. This sequence is
repeated twice per cycle, with field direction reversal in the second half-cycle.
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(Some figures may appear in colour only in the online journal)

Many authors, beginning with Hertz, have discussed and sometimes illustrated the transition in
dipole radiation from bound fields, with electric field lines originating and ending on charges, to
free fields in which the electric field lines close on themselves [1-13]. (Papers [14—17] deal with
related aspects of field lines.) Hertz describes the phenomenon as ‘a tendency of [field lines] to
contract together; as this inflection contracts nearer and nearer ... a portion of each of the outer
lines of force detaches itself into a self-closed line of force which advances independently into
space...”. A specific time in the cycle at which this occurs was estimated by Zangwill [11], who
characterizes the birth of radiation as ‘a topological process called field line reconnection’. This
note builds on his section 20.5.2, of the same title, but finds agreement with the description given
by Lorrain and Corson [4] and Good [7]: there is a time interval during which radiation is born, not
one event per half-cycle. The beginning of this birth interval is at wt = 1, the end at wr = 7 /2.

Most of what follows is not new. The contributions of Hertz [1], Lorrain and Corson [4],
Good [7] and Zangwill [11] have already been mentioned. Bitter [2] gives a physical
description, in terms of electric and magnetic fields and the Poynting vector, of the breaking
away of loops of electric field. Derby and Olbert [10] stress the key importance of ‘singular
points’ (field zeros) where topological changes can occur. Technically, the only new result is
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(9), which gives the constant in the equation for the field lines. However, this equation
enables the topological critical points of dipole radiation to be located precisely. Analytical
results are obtained, valid at all times during the first half-cycle (the second half is the same
with field directions reversed). All the transitions in electric dipole radiation can thus be
located exactly, from no detachment of field loops, to detachment but evanescence of field
loops, to the radiation interval during which field loops detach and fly off to infinity. The
content is suitable for graduate or senior undergraduate electromagnetism courses.

We shall examine the details of the simplest possible case, that of radiation from a point
electric dipole oscillating at a fixed frequency. Suppose a dipole at the origin oscillates at angular
frequency w = ck along the z axis: p = Z p, cos wt. The electric and magnetic fields at distance r
and polar angle 6 are (we omit the multiplier p, k> in Gaussian units or (1,/47)pyk> in SI units)

E = 7 cos 02(kr)3[cos(kr — wt) + kr sin(kr — wt)]
+ 0 sin 0 (kr)3[cos(kr — wt) + kr sin(kr — wr)
— (kr)? cos(kr — wt)] (1)

B = ¢ sin 0(kr)"2[sin(kr — wt) — kr cos(kr — wi)]. )

These fields follow from the vector potential A = kpr—! sin(kr — wt) (see for example
equations 9.16 of [5] or 9.29 of [8]). The magnetic field is purely azimuthal: the field lines are
circles centered on the dipolar axis. The electric field has no azimuthal component, and the
field lines lie in planes which contain the z axis. (There is cylindrical symmetry about the
dipole direction, and we can think of the electric field lines as lying on surfaces of rotation
about the z axis.) Figure 1 shows the electric field vectors and the electric field intensity at
wt = 1, the time of transition from the creation of field loops which fade away to creation of
loops which propagate out to infinity. The coordinates used are p = r sin 6, z = r cos 6.
Field lines are defined by their tangent being parallel to the field: ds ~ E where ds is an
increment of length along the field line. Thus % = % on an electric field line. The resulting

differential equation is separable: '

2d0 dx C( - X% + XS
tan 6 X C+ XS
[X=kr, C= cos(X — wt), S = sin(X — wr)]. 3)

Integration is elementary since the left-hand side is equal to the differential of In sin? § and the
right-hand side is equal to the differential of In[X/(C + XS)]. Thus electric field lines are
given by

sin2(r, ) =o
C+ XS

kr
ag .
cos (kr — wt) + kr sin (kr — wt)

“

The parameter ¢ is constant for any particular field line (in three dimensions: on its surface of
rotation). Equation (4) for the field lines is equivalent to equation (14.46) of Lorrain and
Corson [4], and the same as equation (6) of Good [7]. Another way of obtaining the field lines
is via the level curves of Zangwill’s function R (p, z) ([11], section 20.5.2, with p the distance
from the z axis).
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Figure 1. Electric field vectors (arrows), electric intensity E? + E7 (contours and
shading, upper part of diagram), and electric field lines (lower part of diagram), of
electric dipole radiation at wt = 1. The immediate neighborhood of the dipole at the
origin has been omitted because the field is so intense as to swamp the outlying regions,
even though we have scaled the field components by the factor r for improved
visibility. The diamonds locate the field zeros, labeled as in figure 2.

Field lines cannot cross or merge or recombine except where the vector field amplitude is
zero, since for finite field amplitude the line direction E/|E| is well defined. So we next look
at the locus of the zeros of the electric field. The zeros of interest in the birth of radiation occur
in the equatorial plane of the dipole (§ = 7/2). From (1) we see that in the equatorial plane
the radial component E; is zero, and that Ey is also zero at the points (circles, in the three-
dimensional picture) where C(1 — X?) + XS = 0. This condition is equivalent to
tan(X — wty) = X — X!, or to

wtg = kp — arctan (kp — 1/kp) (mod 7). %)

We have written p rather than r to emphasize that the zeros occur in the equatorial plane.
Equation (5) is equivalent to (39) of Derby and Olbert [10].

Figure 2 shows two of the branches of equation (5) within one half-cycle, 0 < wt < 7.
Att = 0 the electric field zero nearest the origin is at kp ~ 4.48 (point A). At time #. given by
wi, = V2 — arctan(1/+/2) ~ 0.7987 the zero C appears at kp = J2 (this point is noted in
section 3.3 of [10], and is discussed further below). As time increases from . the zero C
bifurcates to the zeros labeled B, D, which move respectively toward and away from the
dipole. In the time interval # = 0 to t = 1/w the zero A has moved to A’. The positions of
B, D and A’ are shown at wt = 1, the transition moment. Another transition moment occurs
half a cycle later, when the field directions are reversed.
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Figure 2. Locus of the equatorial plane zeros of the electric field, as a function of time.
At any given time there is an infinity of zeros. From # = 0 to wt, = 0.7987 the zero
nearest the origin is on the curve AA’. At time . the zero C appears at kp = ~/2 ; this
zero bifurcates as time increases to r = 1/w to the zeros labeled B, D. In the same time
interval 0 < ¢t < w™! the zero A has moved to A’. The horizontal line is drawn at
wt = 1. The point B atz = 0, kp = 1, wt = 1locates in space and time the transition
between closed field loops which fade away (with detachment points on BC), to loops
which propagate to infinity. The latter have field line reconnection on the curve joining
kp=1, wt=m/2 to B.

The point C is special, because (in the cycle beginning at r = 0), for times earlier than ¢,
there are no electric field zeros close to the dipole, and at #. one zero appears at C, to
immediately split into two zeros moving respectively inward and outward. The location of C
is where d(wtg) /d(kp) = 0, which from equation (5) occurs at

kp. = N2, wt. = 2 — arctan (1/42) =~ 0.7987. (6)

Figure 3 shows electric field lines at times r = 0.99¢., 7., 1.017. We see that at these
times the field lines are still bound to the dipole charges, but pass through a cusp form at
P> t. In this plot and in figure 4 the field lines indicate the direction of the electric field, not
its strength. If we were to make the line thickness proportional to the field strength, the
thickness would decrease as the cusp is approached and vanish at the point p = p,, z = 0.

The formation of closed electric field loops begins at t = t., but these loops fade away as
time progresses, until wr > 1, as we shall see. From then on till wr = 7/2 we have real
radiation, with field loops which propagate to infinity. In the transition from bound to free
fields (those with field lines originating and ending on charges, and those closing on them-
selves) the field lines contract towards a neck and touch, at which point a bound loop
reconnects or bifurcates to a bound loop plus a closed free line. Exactly at this space-time
point the field lines cross. This can only happen when the field is zero. So the criterion for the
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Figure 3. Electric field lines in the neighborhood of t = ., drawn according to (4) using
o= 0. = 2/3 (see text, below equation (12)). The cusp line at t = #. terminates at
the point C in figure 2 (kp, = J2), where the field is zero. It is drawn in black. The
other two field lines are drawn at t = 0.99¢, (red), and at r = 1.01¢, (blue). The arrows
indicate electric field directions, for the three neighboring field lines. At the point of the
cusp the field is zero, and the field direction reverses.

formation of loops is that, in the immediate neighborhood of the point r = ry, 6§ = %, t=1
(a circle in three dimensions) two field lines cross at a field zero. From (4) and (5) we have

sin29(r0, ty) =1
kro

— o @

cos (krg — wty) + kry sin (krg — wiy)

wty = kry — arctan (krg — 1/krp). ®)

These two conditions determine possible values of the constant oy:

1+ X2 1]

O'():i
Xt —-X2+1

(X = kry). ©)

To find the slopes of the crossing field lines it is convenient to work in cylindrical
coordinates. From the field line definition, dp/E, = dz/E.. At a singular point where the field
components are both zero, the slopes dz/dp at an intersection of field lines may be found as in
section 3.1 of Derby and Olbert [10], by expanding about the singular point:

dz dpd)E; + dz0,E; _ 0,E; + (dz/dp)d.E,
dp  dpd)E, + dz0.E,  9,E, + (dz/dp)d.E,

(10)

This is a quadratic for the unknown dz/dp. For dipole radiation the partial derivatives 0,E,
and 0,E, are both zero in the equatorial plane z = 0, and evaluation of the other derivatives
gives

dz n 0,E;
dp 0.E,

= +1 — (kp)?/2. (1)

This gives zero slope at the cusp point kp, = V2, as seen in figure 3. For kp > /2 the slopes
are imaginary: there is no crossing of field lines and no field loops closing on themselves. At
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Figure 4. Time evolution of electric field lines in the neighborhood of the transition
from evanescent to propagating radiation: ¢ = 1, wt = 1 (point B in figure 2). The o
value corresponds to kry = 11in (9). The lines are drawn at wr = 1 (black), one percent
below (red), and one percent above (blue). The arrows indicate electric field directions,
for three neighboring field lines. At the birth point kp = 1, z = 0, wt = 1 the field is
zero, and the field direction changes on the upper part of the figure of eight from
inclination at about —35° (at left) to inclination at +35° to the z = 0 plane, coinciding
with the kp axis in the figure. The closed field loop at the right travels outward as time

increases but thins progressively, as explained by (12).

kp = 1 the crossing field lines are inclined at angles F-arctan (1/~/2) ~ 35° to the equatorial
plane.

The asymptotic form of equation (4) places a constraint on the value of |gy| in
equation (9): we have

kr
cos (kr — wt) + kr sin (kr — wr)
(kr > 1). (12)

sin20(r, ) = o

g

sin (kr — wt)

Hence radiation fields must originate in field lines which have |oy| < 1. Those with |gy| > 1

cannot propagate to infinity. This selects the minus sign in the numerator of (9),
log] = (1 — |X? — 1|)/VX* — X% + 1 for radiating fields. However, fields forming loops
which die away can have |og| = (1 + |X? — 1|)/VX* — X% + 1, up to the limiting value
X = V2, which gives |gp| = 2/ J3 =~ 1.1547 (used in figure 3). These statements are in
accord with the observations of Good [7], whose K corresponds to our o. He writes ‘It is
interesting that for 1 < |K| < 1.15, field lines form loops which break away but eventually
dwindle and vanish; whereas for smaller |K | the loops break away and grow, and for larger
|K'| no loops break away’. Lorrain and Corson had previously identified the beginning of
radiation at |o| = 1 ([4], p 608).

Figure 4 shows electric field lines at times wr = 0.99, 1, 1.01, drawn with o = 2/ \/§ .
This value of wt corresponds closely to Zangwill’s birth time 77 ~ 0.159T (T = 2x/w), or
wtz =~ 0.999. We see that at the earlier time the field line is still bound to the dipole charges,
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Figure 5. Detachment of the electric field loop leading to radiation originating at the
electric field zero at kry = %, wty ~ 1.22, as given by (8), to the left of the point B in

figure 2. The field lines are drawn at #y (black), 0.9¢y (red), and 1.1#, (green), and then at
wt = 2 and at wt = 3 (blue and violet, respectively). These snapshots show the time
development of the green just-detached loop drawn at # = 1.1¢y. The small loop at left
draws back to the dipole source, at the origin. The larger loop moves off to the right,
growing as it goes.

at the later time the free field line has separated. The closed loop on the right propagates
outward, but eventually fades away because o = 2/+/3 > 1, as explained above.

Figure 5 shows field line detachment in the radiation interval 1 < wt < 7/2. The
detached field loops move away from the dipole source and expand. This radiation travels off
to infinity unless intercepted.

We note in conclusion that optical vortices, associated with the zeros of complex solu-
tions of the Helmholtz equation, can undergo similar topological reconnection phenomena
[18-21]. There the phase of a complex scalar field (from which vector solutions of Maxwell’s
equations are found) is undefined at the zeros of the scalar field. As in the birth of radiation,
the changes can be large for small changes of parameter.
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