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Abstract. We consider the ground state of a system of three interacting particles of
equal mass. An integro-differential equation is obtained for the optimum pair function
fin the product wavefunction ¥'(123) = f(12)f(13)f(23). The solution for harmonic
forces reproduces the known exact ground state. Approximate analytic solutions are
obtained for inverse-square forces, and for a general force law in the semiclassical
limit.

1. Introduction. We shall consider the ground state of a three-particle system with

the Hamiltonian 72
H=—-%(V§+V§+V§)+v(12)+v(13)+v(23). (1)

The particles are assumed to interact with pairwise, conservative and momentum-
independent forces. The physical systems well represented by this Hamiltonian are
the triatomic molecules of the rare gases, and (to a lesser extent) other triatomic
molecules and the nuclear three-body systems, the triton and the helium three nucleus.
The corrections to (1), for example, three-body forces, and spin and isospin dependent
forces, appear to be small and can probably be treated as perturbations.

We shall obtain a solution to the problem of determining the ground state in the
following restricted sense: considering wavefunctions of the type

W(123) = f(12)£(13)f(23) (2)

we determine the best f, that is, the one minimizing the expectation value of the
Hamiltonian. The general solution is an implicit one, in that f is shown to satisfy a
certain integro-differential equation. An explicit solution is obtained for harmonic
forces, when it checks with the known exact result; approximate analytic solutions
are given for two other cases. The variational method which gives the solution has
previously been used to obtain equations for the ground state of a system of four or
more bosons (1). The three-particle case is mathematically distinct, and is also more
tractable.

The three-nucleon problem has been studied extensively (2-5), while even the
existence of the lighter triatomic rare gas molecules is not yet certain (6-8). Most
of the work on three-body systems has been based on the variational principle: a
parametrized wavefunction of a certain type is chosen, and the expectation value
of the Hamiltonian is minimized numerically by variation of the parameters. This
method yields good results, but can never be completely satisfactory, because there

12 PSP 73



178 J. LERNER

exists a multiple infinity of trial functions, even when one restricts the wavefunction
to be of a given form (e.g. the symmetric product of equation (2)). We shall derive
an equation for the best pair function f which can be solved numerically. Analytic
solutions are obtained in certain special cases.

2. The variational equation. The derivation of the equation to be satisfied by the
best pair function f for the three-body system is similar to that for the N-boson
system (1). We shall therefore abbreviate the discussion.

The expectation value of the Hamiltonian is &/.7, where

& = [d1d2d3VHY,
S = [d1d2d3 2. (3)

To keep the notation of reference (1) we shall work in terms of density correlation
functions defined by

N!
3 — r ar2
Jn(l...s) (AT_S)lf(Z(s+1)...clNF 4)
where N = 3 and s = 1,2 or 3. It is convenient to write " as
W(123) = exp {H(p(12) + #(13) + $(23))}. (5)
The expectation value of the Hamiltonian then becomes
&7 = %fdld?n(l?) [ - :q;b(vg—x_vg) $(12) +v(12)] . (6)

The best ¢ is determined by the variational condition §(&/.#) = 0; taking variations
d¢ in ¢, we obtain the equation

[d1a2{on(12) [(V3+ V3) 4(12) — 8mo(12)/A2] + 84 (12) (Vi + V) n(12)} = 0. (7)

The variation dn(12) in the pair density function is found from the defining equation
(cf. eq. (17) of (1)):

Sn(12) = (3p(12)— 0.5 [.7) n(12) + [ d3(5p(13) + 6¢p(23)) n(123). (8)

Tquations (7) and (8), and the fact that the density correlation functions are com-
pletely symmetric, then lead to the variational equation

[A+0(12) + V34 V3] n(12) + [ d3[0(13) + 0(23)]n(128) = 0, )
where A= %’? (&].7) (10)
and 0(12) = (V24 V2) ¢(12) — Smu(12)/A2. (11)

The equati’on corresponding to (9) for the N-boson problem contains the additional
berm 3[d3d40(34) n(1234).

The Laplacian of the pair density function can be expressed in terms of derivatives
of ¢. We have Vyn(12) = n(12) V, $(12) + [ d3n(123) V, $(13) (12)
and V,n(123) = n(123) [V, (12) + V, $(13)]. (13)
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Therefore
2n(12) = n(12) [Vip(12) + (V, $(12 2]+fcl3n )[V2¢(13)
| +2V, (12). Y, (13) + (V, (13)) (14)
Substituting in (9), we obtain the equa,tion
n(12) [A+2(V34+V3) ¢(12) + (V ng 12))2+ (Vo (12))% — 8mu(12) [#2]
+ 2f d3n(123) [(2V3 + V2) ¢(13) + (V,¢(13))2+ 2V, ¢(12). V, §(13) — 8mw(13) [fi2] = 0.
15
n(123) _ exp[p(13)+¢(23)] o)
n(12)  [d3exp[p(13)+$(23)]
we have the best ¢ determined as the solution of an integro-differential equation. If

we further assume that v(12) and ¢(12) are functions of 7, only, we can carry out the
integration over the azimuthal angle, and the equation reduces to

8 rts s
[A +=(re(r)" +2(¢"(r))*— e ] J. ds se‘f‘(S)f dites® + QJ ds se?® f dit e?®
fi2 lr—s] fr—s]

Since (16)

< |seser + g g @+ er-22] 0. an)

3. Harmonic forces. The three-body Schrb'dinger equation for particles of equal
mass interacting with harmonic forces can be solved exactly (9, 10), and the ground
state wavefunction is of the product form. Thus our equation should give the exact
results. We shall check that it does. We set ¢ = — (r/a)?, and use the dimensionless
variables ” 2 2ma’

B=os 6= 772 g/ﬂ U=

(18)

Equation (17) becomes

© [ty @ L [ty R
[e—15 +4x2—u(x)]f dyy e’y“f dzze ™ + :?f clyye‘?/"f dzze Y2 —u(y)] =0
0 e~ 0 fe—yl
(19)

We look for a solution of the form u(x) = u(0)+y2% The integrals in (19) may be
derived from the basic integral

+
— ~p — 1} -3 (2B ) e
f dy y e~*v" flx mdzze tmz(e+ f5) xexp{ (oc+,b’)x}' (20)

We find that the harmonic potential does satisfy (19) for v = 3. The eigenvalue is
¢ = 3(u(0)+ 6). We have thus shown that the function

W(123) = exp {— (1§, + 15 +135)/20%} (21)

is the optimum wavefunction of the product type for the pair potential

3]’2 7 2
o(r) = v(0) + 2”;&2 (5) . (22)
Its energy is B = { (0) +§{b——} (23)

These results coincide with those of reference (10).
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4. Inwerse-square law forces. The method of the last section indicates a possible path
to further analytic solutions, namely to consider the inverse problem: given ¢, to
find the potential for which this ¢ is the solution of our variational equation. Instead
of a non-linear integro-differential equation for ¢, we then have to solve a linear
integral equation for v.

The simplest ¢, apart from that of the previous section, is ¢ = —r/a, i.e.

W(123) = exp {— (rp+ 715 +793)/2a}. (24)

This wavefunction is of historical interest, since it was used (with @ as a variational
parameter) in the earliest calculations of the ground state energy of the triton (2).
We shall find that the wavefunction (24) is, to a very good approximation, the optimum
wavefunction for a ! potential.

We set ¢ = —r/a in (17) and use the dimensionless variables defined in (18).
Equation (17) reduces to

2 [5) a-+y
[e+ 1——% -—u(x)]f clyye"?/f dzze™
‘ 0

Jo—yl

o @y 22 2_,2 3
+f clyye"”f dzze‘s{fj-gg—%————-—w(y)} = 0. (25)
0 le—wl .

£r—
The potential w(x) is singular at the origin: u ~ —2/x. We therefore set
w(®) = — 2z +w(x).

In the resulting equation for w, the integrals not involving w may be derived from the
basic integral w . = — gz
f CZ:Z/ e~y dze=F = 2 __é_:BT . (26)
0 lz—yl o

We find that w satisfies the Fredholm integral equation

[t +a -+ Ja%] w(w) + 4 fo dy K(@,y)wly) = (€+2)+E+Da+iE+2)a,  (27)
T+Y

where Kz, y) = %ef““yf dzze™>. (28)

Jr—]

We require w to go to zero at infinity at least as fast as 1fz. We seb w(@) ~ ¢/x and
calculate the dominant terms in (27) for large . The only term in 22 is the last, which

determines the eigenvalue: ¢ = —2. The terms in @ give ¢ = }. At the origin, w is
regular. We find "
' w(0) = =8| dwa?e2mw(w),
©) = =8| “dsareuia) \f -
w'(0) = 4.

The first relation implies that w(z) changes sign at least once. Numerical solution of
equation (27) with € = —2 shows that w rises from a value of approximately —0-09
at the origin to a maximum of about 0-06 at » ~ 1-65, and then decreases mono-
tonically. Thus w is always small in comparison to 2/z, the maximum ratio being
attained asymptotically.
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We have thus shown that, to an accuracy of seven per cent in the potential, the
function of equation (24) is the optimum wavefunction of the product type for the
pair potential

A ﬁz p—1 9
'U(’]) = — (m) 7 (OO)
. #?
erlt}.'l energy E = - ln—-zg;é . (31)

5. A semiclassical approximation. Finally, we shall give an approximate solution
of the equation for the pair function in the semiclassical case where the three bodies
are strongly localized near their equilibrium positions. We thus obtain a correction
to the classical binding energy.

Let the pair function have a strong maximum at » = b. The first two terms of a
Taylor expansion of ¢ about » = b give ¢ = constant — (r—b)?/a®. If the maximum
is nearly symmetric about » = b, the next term (r—0)® will have a small coefficient.
Then using the notation of equation (18) and with £ = b/a, (17) reduces to

+
f dg/Je‘(J“WJ dzzeE8° {e- 15 +— 48 =+ 2(x — &) —u(x)
Jo—yl
2 2
2|2y ?—ig;—iw O-8+@-0-u)|=0. @2
For & < 2£, the dominant contribution to the integrals in (32) comes from the region

around y = § = z. A first approximation to the solution is thus obtained by putting
y and z equal to £ in the integrand. This gives the relation

e—b—4(x—E&)[x+2(x— &) —u(r)—2u(f) = 0. (33)
Thus, to this approximation, the appropriate potential is

(@) = u(f) — 4o —E)fv+ 2w — £, (34)

and the corresponding eigenvalue is ¢ = 3u(£) + 5. If the wavefunction is to be well
localized near r = b, we need ¢ much less than b, i.e. large §. The minimum of u(x)
isat @ = E+E1+0(E72) and is w4y = w(&) + O(§~2). The second derivative of w at its
minimum is equal to four. Thus we have shown that, neglecting terms smaller by the

factor (a/b)?, W(123) = exp{—[(r15— )2+ (15— b)2+ (ryy — b)?]/20%} (35)

is an optimum wavefunction for pair potentials »(r) with minimum v, and second
derivative 2/%/ma? at r = b. The ground state energy is
5h2 }

(36)

j7 B
3 {vo t omad

This formula gives the quantum correction to the classical energy 3v, when there is
strong binding, e.g. for the heavier triatomic molecules of the rare gases. For example,
in the case of the 6-12 potential

=)



182 J. LERNER
equation (36) gives the energy

B =3{v0+5 (M)%} (38)

mb?

The second term is about forty per cent of the first for neon, and becomes progressively
smaller for the heavier rare gases. Unfortunately, the formulae derived in this section
are not applicable to the triton or to triatomic molecules of helium. These are weakly
bound (relative to 3v,) and thus cannot be sharply localized.

I am indebted to Dr John Weeks for bringing to my attention some recent work on
the three-body problem, and to Mr Christopher Nex for the numerical work mentioned
in section 4.
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