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Abstract
Self-dual electromagnetic fields are those unchanged by the substitutions E→B, B→−E. We
show that the chiral density and the chiral current in self-dual monochromatic beams are
proportional to the energy and momentum densities, respectively. It is also shown that self-
duality of monochromatic fields implies maximal chirality. This property follows from the fact
that self-dual monochromatic electric and magnetic fields are eigenvectors of the curl operator.
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1. Introduction

The chirality of matter, molecules and crystals, leads to
optical activity or rotatory power, the ability of a medium to
rotate the plane of polarization of light. Its discovery dates
back to work by Arago in 1811, Biot (five memoirs between
1812 and 1837) and Fresnel’s 1822 conjecture that on
entering an optically active medium light is split into two
beams of opposite circular polarization which travel with
different phase velocities. In 1848 Pasteur demonstrated that
the rotatory power of a tartrate solution is related to the form
the tartrate crystals take: crystals of opposite handedness
dissolve to give solutions with opposite rotatory power [1].

Here we are concerned with the chirality of light itself,
and with the special properties of self-dual light beams and
of their chiral measures. The free-space Maxwell equations
are unchanged by the duality transformation E→B,
B→−E. However, solutions of the Maxwell equations are
in general changed by the duality transformation into phy-
sically different solutions. For example, a transverse electric
(TE) beam is changed into a transverse magnetic (TM)
beam. The author has previously explored properties of self-
dual electromagnetic beams (those unchanged by the duality
transformation). The first of these were the  iTM TE
beams [2, 3]; the notation is a shorthand for the super-
position of the fields of a TM beam and of a TE beam, in
phase quadrature.

Recent interest in the chiral properties of electromagnetic
fields has interpreted Lipkin’s conserved quantities as the
chiral density c and chiral current C, defined for real fields

( ) ( )E r B rt t, , , as [4–16]

c =  ´ +  ´· ( ) · ( ) ( )E E B B , 1.1

= ´  ´ - ´  ´( ) ( ) ( )C E B B E . 1.2

The geometric meaning of terms such  ´· ( )E E is dis-
cussed in [17–21].  ´· ( )E E is referred to in [19] as the
local helicity density of the vector field E, and ‘helicity’ is
often used [22–27] in this context. We prefer chiral density
and chiral current, since helicity in particle physics is the
projection of the angular momentum onto the momentum
direction. We use the particle physics definition here, in
particular as applied to photons in (1.3) below.

Thus, in the terminology of this paper, c is the sum of the
electric and magnetic field chiral densities. It is clear that the
chiral density is maximum when the fields are eigenvectors of
curl, with the same eigenvalue,  ´ =  ´ =E E B Bk k, .
Self-dual fields are eigenvectors of curl, as we shall see in
section 3. To anticipate results to be derived, it follows from
(1.1) that the chiral density of self-dual fields is maximal, and
proportional to the energy density. Likewise it follows from
(1.2) that the chiral current of self-dual fields is maximal, and
proportional to the momentum density (or the Poynting vector).

Bliokh ad Nori [13] have shown by means of a Fourier
representation of the electric and magnetic fields that the ratio of
the chiral density to the energy density in monochromatic beams
of angular frequency w = ck lies between p k8 (using our
definition of chiral density): see their equation (18), repeated as
(4.6) here. We show in section 4 that for self-dual fields the ratio
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has to be exactly p k8 . This gives an alternative proof of the
chiral density being maximal for self-dual fields.

Coles and Andrews [14, 15] also use a Fourier decom-
position (of the vector potential) and obtain an expression for
the total chiral content of a given electromagnetic field as a sum
over the difference between the numbers of left and right cir-
cularly polarized photons in the field (equivalently: the differ-
ence between numbers of photons of opposite helicity). This
expression, equation (13) of [14] or equation (9) of [15] is

ò åc = -{ ( ) ( )} ( )k kd r c k N N . 1.3
k

L R
3 2

A molecular analog of (1.3) is the statement that the rotatory
power of a solution is proportional to the difference between the
numbers of molecules of opposite handedness in the solution.
Equation (1.3) can be applied in principle to the calculation of
the total chiral content of a given electromagnetic pulse, cal-
culated explicitly in [36]. However, electromagnetic beams
have infinite extent (at least theoretically), and what we need for
beams is the chiral content per unit length of beam, which is a
finite quantity, and related here to the energy content per unit
length of beam ¢U defined by (2.2), and given in (2.3) for TE
and TM beams, for example. We note that the Fourier
decomposition of fields is completely general, and quantities
like the chiral content involve summation or integration over
three wavevector components. In contrast, the expressions
given here apply to directed beams and involve integration over
one wavevector component only (either the longitudinal or the
transverse component; these are linked since the total wave-
number w= /k c is fixed for a given frequency of the mono-
chromatic beams being considered).

Barnett et al [22] define an ‘optical helicity’ which in
general is distinct from the chiral density defined here, but
proportional to it for monochromatic fields. Their ‘helicity’
(different from the particle physics helicity) is defined in terms
of the vector potential A, the curl of which gives B, and another
vector potential the curl of which gives-E. The same definition
of helicity is adopted by Bliokh et al [27]. The title of their paper
is ‘dual electromagnetism: helicity, spin, momentum and angular
momentum’. The title of [16] by Cameron et al is ‘chirality and
the angular momentum of light’, but the authors note that
‘chirality is the concept of handedness while the angular
momentum of light, in particular spin, is associated with rotation
rather than any form of inversion’. In fact it follows from the
results of [36] that there is no universal relation between chir-
ality and angular momentum: for example, general expressions
applicable to all causal TE and TM pulses, backed up by explicit
calculation for particular waveforms, show that all such pulses
have zero total chiral content, whether or not they carry angular
momentum. What equations like (1.3) show is that chiral content
is related to the difference between numbers of photons of
opposite helicity, defined as the projection of the angular
momentum onto the momentum direction of the photon.

In the following, we summarize the properties of electro-
magnetic beams in sections 2 and 3, and note the special
properties of self-dual beams. Section 4 deals with chiral
measures of electromagnetic waves, and their special properties

in monochromatic self-dual beams. Section 5 discusses three
families of beams as examples.

2. Causal electromagnetic beams

Recent work has explored causal solutions of the Helmholtz
equation y + =( )k 0,2 2 which may be written as super-
positions of Bessel beams [28–30]. By causal we mean
without backward propagation far from the focal region.
(There is in general backflow associated with the zeros of the
beam wavefunction; these zeros lie in the focal region.) The
general expression for monochromatic beams of frequency
w = ck contains the wavenumber weight function k( )f k, :

òy k k kr k= = -f( ) ( ) ( )

( )

r k e d f k e J q k, , , .

2.1

im
k

iqz
m

0

2 2

We are using cylindrical polar coordinates r f( )z, , , with
r = +( )x y2 2 1

2 the distance from the z-axis, andf the azimuthal
angle. The transverse and longitudinal wavenumber components
k = rk and =q kz are constrained by k + =q k ,2 2 2 and

kr( )Jm is the regular Bessel function of order m.

The function k( )f k, , in general complex, is subject only
to the existence of (2.1) and associated integrals, for example
those which give the energy, momentum and angular momen-
tum contained in a transverse slice of a beam constructed from
y r f( )z, , . The form of (2.1) guarantees the absence of
asymptotic backward propagation: the integrand contains the
factor -( )e ,i qz kct with  k q 0. Fory to be dimensionless, the
dimension of k( )f k, is to be that of a length.

Free-space electromagnetic beams may be constructed from
solutions of the Helmholtz equation. In [28] TE and TM beams
were considered, together with the self-dual + iTM TE beams,
and their total energy, momentum and angular momentum per
unit length of the beam were found as integrals over the weight
function k( )f k, . For beams propagating in the z direction (but
spreading or converging transversely, as all transversely loca-
lized beams do) the main conserved quantities are the energy,
momentum and angular momentum per unit length of the beam.
We denote by ¢U the energy per unit length, and likewise for
¢ ¢P J, .z z (The component of interest is J ,z since it is intrinsic to the

beam, unchanged by a shift of origin.) Thus, for example, ¢U dz
is the energy content in a slice of thickness dz of the beam:

ò ò ò ò òr r f¢ = = =
p

-¥

¥

-¥

¥ ¥

( )

U d r u dx dy u d d u

2.2

2

0 0

2

(u is the energy density, defined below in (3.5)). Reference [28]
shows that, for TE and TM beams

ò k k k
¢
¢

¢
=

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )∣ ( )∣ ( ) 2.3

U
cP

cJ

E

k
d f k

k
q
m4

, TE or TM .z

z

k
0
2

3 0

2

(A field amplitude factor -k E1 0 has been inserted to harmonize
the notation of [29] and the present paper.) The results given in
(2.3) are based entirely on classical electrodynamics, but show

2

J. Opt. 21 (2019) 035402 J Lekner



that an electromagnetic TE or TM beams can be viewed as a
superposition of photons with energies ck, z component of
momentum  =k q,z and z component of angular momentum
m, where m is the azimuthal winding number, as defined
in (2.1).

The corresponding results for self-dual + iTM TE
beams are twice those in (2.3) for the energy and momentum,
but with an extra term in the angular momentum integral:

ò k k k k

¢
¢

¢
=

+

+

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( )

∣ ( )∣

( ) 2.4

U
cP

cJ

E

k
d f k

k
q

m
kq

i

2
,

2

TM TE .

z

z

k
0
2

3 0

2
2

A similar result was derived in [29] for self-dual ‘circu-
larly polarized’ beams, namely those that, in the plane-wave
limit, have transverse electric and magnetic field components
of equal amplitude and in phase quadrature. When the field
amplitude is taken to be E ,0 and for the self-dual ‘CP’ beam
defined in [29], the corresponding result is

ò¢

¢
k k k k

¢
= +

+ +
-

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )

∣ ( )∣ ( )

( )
2.5

U
cP

cJ

E

k
d f k k q

k
q

m
kq

8
,

1
2

‘CP’ .

z

z

k
0
2

3 0

2 2 1
2

Thus the ‘CP’ beam can also be viewed as a superposition of
photons with energies ck and z component of momentum q.
However, as in the + iTM TE case, the z component of
angular momentum is no longer simply m.

The results (2.4) and (2.5) rest on some intricate manip-
ulation of highly singular integrals over products of Bessel
functions. This analysis has been checked by the author against
known beam wavefunctions with =m 0, 1 based on the
‘proto-beam’ [29], discussed also in [30]. The proto-beam has
recently been shown to be the most tightly focused of all
possible beams, according to an intensity criterion [31]. The

=m 1 beam is obtained from the proto-beam by differentiation
with respect to r. For both cases we find exact agreement with
the results given in (2.4) and (2.5).

3. Monochromatic electromagnetic beams, self-
duality

Electric and magnetic fields can be expressed in terms of the
vector potential ( )A r t, and scalar potential ( )rV t, via

= - - ¶ =  ´ ( )E A B AV , . 3.1ct

With these substitutions the source-free Maxwell equations
 =  ´ + ¶ =· B E B0, 0ct are satisfied auto-
matically. If further A and V satisfy the Lorenz condition
 + ¶ =· A V 0,ct substitution of (3.1) into Maxwell’s free
space equations (of which the curl equations couple E Band ),
decouples the vector and the scalar potentials:

 - ¶ =  - ¶ = ( )A A V V0, 0. 3.2ct ct
2 2 2 2

We now specialize to monochromatic beams, with time-
dependence w-e i t everywhere. Real electric and magnetic
fields are obtained by taking real or imaginary parts of the
complex amplitudes times w-e ;i t for example taking the real
part of the complex amplitude ( )E r times w-e i t gives

w w
= = +
= +

w w- -( ) { ( ) } {( ) }
( )

E r E r E E
E E

t Re e Re i e
t t

,
cos sin . 3.3

i t
r i

i t

r i

We shall write the angular frequency as w = ck. Then from
(3.2) the complex scalar ( )rV and all components of
the complex vector ( )A r satisfy the Helmholtz equation

y + =( )k 02 2 (satisfied by the causal wavefunctions
(2.1)). The Lorenz condition reads  - =· A ikV 0. Hence
the monochromatic beam complex electric and magnetic
amplitudes ( ) ( )E r B r, can be obtained from the vector
potential only:

= +   =  ´-[ ( · )] ( )E A A B Ai k k , . 3.41

The energy, momentum and angular momentum densities are,
for real fields ( ) ( )E r B rt t, , , and in Gaussian units

p

p

= +

= ´ = ´

( ) ( )

( ) ( ) ( )

r

p r E B j r r p

u t E B

t
c

t

,
1

8
,

,
1

4
, , . 3.5

2 2

The energy density in general oscillates at w2 : from (3.3)
w w w w= + +( )E r E Et E t t t E t, cos 2 . cos sin sin ,r r i i

2 2 2 2 2

which cycle-averages to +( )E E
1

2
.r i

2 2 Likewise the energy

density derived from w-{ ( ) }E rIm e i t averages to the same. For
the momentum density we find the time average of ´E B to

be ´ + ´( )E B E B
1

2
,r r i i when either the real or the ima-

ginary parts are used. Hence whether we take the real or
imaginary parts of the complex fields, the cycle-averaged
energy and momentum densities in free space, in terms of the
complex space-dependent amplitudes = +( )E r E Ei ,r i

= +( )B r B Bi ,r i are given by

* *

* *

p

p

p

p

= + + +

= +

= ´ + ´

= ´ + ´

( ) ( )

( · · )

( ) ( )

( ) ( )

r

E E B

p r E B E B

E B E B

u E E B B

B

c

1

16
1

16
1

8
1

16
. 3.6

r i r i

r r i i

2 2 2 2

The duality transformation   -E B B E, leaves the
energy and momentum densities unchanged. The more general
transformation is q q q +  -E E B B Bcos sin , cos

qE sin ; here we shall use only the values q p=  /2. It is
known [32, 33] that invariance of Maxwell’s equations under
the general duality transformation leads to a conservation law,
namely that of the difference between right and left polarized
photons in a given electromagnetic field; [33] relates this to the
chiral measures of the next section.
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Self-dual electromagnetic fields are unchanged by the
duality transformation. Complex field amplitudes which
satisfy = E Bi are self-dual. They have particularly simple
properties because of the symmetry between the electric and
magnetic fields. In self-dual monochromatic (or ‘steady’)
beams the electromagnetic energy and momentum densities
do not oscillate in time ([3], section 4), whereas as we saw
above they normally oscillate at twice the angular frequency
of the beam. When = E Bi we have

+ =  + = = ( ) ( )E E B B E B E Bi i i , , . 3.7r i r i r i i r

The energy and momentum densities of self-dual mono-
chromatic beams are thus time-independent, and simplify to

* *
p p

p p

= =

= + = +

( ) · ·

( ) ( ) ( )

r E E B Bu

E E B B

1

8

1

8
1

8

1

8
, 3.8r i r i

2 2 2 2

* *
p p

p p

= ´ =  ´

= ´ =  ´

( )

( )

p r E E B B

E E B B

i

c

i

c

c c

8 8
1

8

1

8
. 3.9r i r i

We note finally that in monochromatic self-dual beams
both the electric and magnetic amplitudes are eigenvectors
of curl in free space [3]:  ´ + ¶ =E B 0ct becomes

w ´ = =( )/E Bik k c because the time dependence is in
the factor w-e .i t Then when = E Bi for complex ampli-
tudes, for the real fields ( ) ( )E r B rt t, , , we have

 ´ =   ´ =  ( )E E B Bk k, . 3.10

The real and imaginary parts of the field amplitudes are
separately eigenvectors of the curl operator: for monochro-
matic fields the Maxwell equation  ´ + ¶ =E B 0ct reads

w w
w w

 ´ +
+¶ + =
( )

( ) ( )
E E

B B
t t

t t
cos sin

cos sin 0. 3.11
r i

ct r i

For self-dual fields substitution of =  = B E B E,r i i r

gives us, on equating coefficients of w wt tcos , sin ,

 ´ =   ´ =  ( )E E E Ek k, . 3.12r r i i

Hence real and imaginary parts of the electric field complex
amplitude are eigenvectors of curl. Likewise the real and
imaginary parts of the magnetic field amplitude are eigen-
vectors of curl, with the same eigenvalue. (Various aspects of
eigenstates of curl are discussed in [17–21].) The fact that for
self-dual beams the fields are eigenvectors of curl has con-
sequence for chirality, as we shall see next.

4. Chirality

Lipkin’s ‘zilch’ [4–10] has been suggested as a measure of the
chirality of light, important in the interaction of light with
chiral matter [11–16]. There are two quantities, a chiral
density c( )r t, and a chiral current ( )C r t, . For real fields

( ) ( )E r B rt t, , , these are defined as

c =  ´ +  ´
= ´  ´ - ´  ´

· ( ) · ( )
( ) ( ) ( )

E E B B
C E B B E

,
. 4.1

The free-space Maxwell equations imply that c( )r t, and
( )C r t, satisfy the conservation law

c¶ +  =· ( )C 0. 4.2ct

We can replace the curls in (4.1) by time derivatives,
from Maxwell’s free-space curl equations  ´ + ¶ =E Bct

 ´ - ¶ =B E0, 0.ct For monochromatic fields with time
dependence as in (3.3) the time derivatives will bring down a
factor of w= /k c. The consequence is that c and C are
independent of time, as noted in [4, 13]. This is in contrast to
the energy and momentum densities, which in general oscil-
late at twice the angular frequency w of the fields.

From (4.2) we see that the fact that c is independent of
time in monochromatic fields implies that the divergence of C
is zero. It follows that the integral of the chiral current comp-
onent along the beam direction through a section of a mono-
chromatic electromagnetic beam is constant along the beam.
The proof is the same as for the other invariant quantities
which follow from conservation laws [28, 34]. Since the chiral
density and current in monochromatic beams are independent
of time, there is no need for a cycle average of (4.2).

For self-dual beams the chiral density and current are
strictly proportional to the energy and momentum densities,
respectively: from (3.10) to (4.1) we have

c p
p

= + = 
= ´ =

( ) ( )
( ) ( )C E B p

k E B k u
k k c

8 ,
2 8 . 4.3

2 2

Another route to (4.3) is via the real and imaginary parts of
the complex field amplitudes. Self-dual beams have complex
amplitudes related by = ( ) ( )E r B ri or + =E Eir i

 +( )B Bi ir i and so =  = B E B E, .r i i r In terms of the
real and imaginary parts of the complex amplitudes

c = -
= ´ + ´

( ) ( · · )
( ) ( ) ( )
r B E E B

C r E E B B
k
k

,
. 4.4

r i r i

r i r i

For self-dual field amplitudes with = ( ) ( )E r B ri there is a
further reduction of (4.4) to

c = + =  +
= ´ = ´

( ) ( )
( ) ( ) ( )C E E B B

k E E k B B
k k

,
2 2 . 4.5r i r i

r i r i
2 2 2 2

Comparison with the self-dual densities in (3.8) and (3.9)
verifies (4.3).

Hence self-dual monochromatic fields have chiral density
and chiral current strictly proportional to the energy density
and c times the momentum density, with the same pro-
portionality constant ( pk8 for the Gaussian units used here).
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Note that the sign of the chiral density is that in the complex
amplitude relation = ( ) ( )E r B ri , while the chiral current is
directly proportional to p.

The similarity between c and u and between C and p has
been noted before [13]. What we have shown is that for self-
dual monochromatic beams the relationship is strict pro-
portionality, for both pairs of quantities. In electromagnetic
pulses the pk8 factor also converts energy content to chiral
content, but occurs inside the wavenumber integral (appendix
B of chapter 3 in [35], [36]).

It is clear from (4.1) that c will be maximum for given
field strengths when the curls are parallel to the respective
fields, or in other words, when the fields are eigenstates of the
curl operator as in (3.10). It follows from the definitions of the
chiral densities in (4.1) that self-duality of monochromatic
fields implies maximal chirality, in the following sense: at any
point in space the fact that the fields are eigenvectors of curl
maximizes the local chiral density. The global maximum of
both the energy and the chiral densities will be in the focal
region. Different types of electromagnetic beams will have
different forms of energy density, and self-dual beams will
have chiral density everywhere proportional to the energy
density.

The maximality of the magnitude the chiral density also
follows from the work of Bliokh and Nori [13], who have
shown by means of a Fourier representation of the electric and
magnetic fields that the ratio of the chiral density to the
energy density lies between p k8 . Their equation (18) reads
(using our definition of chiral density)

 c
p

c
p

=
-
+

-+ -

+ -
( )

u

u u

u u u8
, so 1

8
1. 4.6

The symbols + -u u, denote energy densities for fields with
positive and negative helicities, respectively, cycle-averaged.
We have shown above that for self-dual fields the ratio has to
be exactly p k8 . Thus, we have a second proof of the the-
orem that the chiral density is maximal for self-dual fields.

5. Examples

As the simplest example of (null) chirality, consider the
TM monochromatic beam, with vector amplitude along the
beam axis, y y= =[ ] ( )A 0, 0, 0, 0, .TM We shall give
expressions in both Cartesian [ ]x y z, , and cylindrical
r f( )z, , coordinates; in general the f dependence of y
is in the factor fe ,im as in (2.1). We shall assume at first that
the beam wavefunction does not depend on the azimuthal
angle, and set y y r y r y r= = +( ) ( ) ( )z z i z, , , ,r i =m 0 in
(2.1). Then the complex magnetic amplitude is =  ´ =B A

y-¶r( )0, , 0 , and the magnetic field is everywhere azimuthal
and is linearly polarized, since the real and imaginary parts are
collinear. The magnetic field lines are circles, with centers on
the beam axis. The complex electric amplitude has radial and
longitudinal components, y= ¶ ¶ ¶ +r

- ( )E ik k, 0, ,z z
1 2 2 and

the electric field is elliptically polarized in general. The electric

and magnetic fields are everywhere perpendicular. The azi-
muthal component of the momentum density is zero, and
therefore so is the angular momentum. The chiral density c is
zero, being proportional to the winding number m. This
statement is true also for electromagnetic TE and TM pul-
ses [36].

The chiral current of =m 0 TM beams is everywhere
azimuthal, with fC proportional to

y y y y¶ + ¶ ¶ - ¶ + ¶ ¶r r[( ) ]( ) [( ) ]( ) ( )k k . 5.1z r z i z i z r
2 2 2 2

In the plane-wave limit, y  e ,ikz the one non-zero chiral
component fC vanishes. In fact the whole beam vanishes in
this limit.

In contrast, the self-dual + iTM TE beams are based on
the vector amplitude [2, 28]

y

r y

= + = ¶ -¶

= ¶ -¶f r

-

- -

[ ]
( ) ( )

A A Ai k k

k k

, ,

, , . 5.2

y xTM TE
1

1 1

With =m 0 as in the TM beam example, the complex
field amplitudes are

y=  ´ = ¶ ¶ - ¶ ¶ + =r r
- ( )

( )
B A E Bk k k i, , ,

5.3
z z

1 2 2

( -TM iTE beams have = -E Bi ). Because this beam is
self-dual, the results (4.5) give the maximal (for this kind of
beam) chirality measures c and C, respectively proportional
to the energy and momentum densities. The chiral density and
current are not zero even when there is no azimuthal
dependence in the scalar beam wavefunction.

The  iTM, TE and TM TE beams all vanish in the
plane wave limit. Out final beam family does not. These are
the ‘circularly polarized’ beams, which we expect to have the
largest angular momenta and the largest chiral content, for
given energy content. (We do not have proof for these
intuitive expectations.) There is also an intrinsic interest to
this family of beams, given that the textbook circularly
polarized electromagnetic beam does not exist, except as a
theoretical limit: a beam of infinite breadth. To put it more
precisely, a beam which is everywhere circularly polarized in
the same plane cannot be transversely localized ([37]
section 2, [38] section 20.1.3). As soon as we constrain light
transversely to its net propagation, interesting structures
appear. Most prominent among these are the phase singula-
rities in the focal region [39–42]. There are also consequences
of transverse localization on the degree of polarization, and
these were explored in [29], with emphasis on the focal
region. It is a remarkable fact that a transversely localized
beam which would have perfect circular polarization in the
plane-wave limit, has rings of perfect linear polarization
surrounding the circular polarization region in the focal plane.

Although ‘circularly polarized’ beams are (in vector
potential and electric and magnetic fields) superpositions of
beams polarized linearly along perpendicular transverse axes
and in phase quadrature, the resultant energy and momentum
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densities, chirality measures and polarization measure are not
superpositions, because all of these quantities are quadratic or
bilinear in the fields.

The vector potential corresponding to that of a self-dual
‘circularly polarized’ beam is given in [29, 37], and in
equation (5.6) below. We shall give expressions in both
Cartesian [ ]x y z, , and polar r f( )z, , coordinates; it is
assumed that the f dependence of y is in the factor fe ,im as in
(2.1). In that case we have

f r f f r f

f r f f r f

r r

¶ = ¶ - ¶  ¶ -

¶ = ¶ + ¶  ¶ +

¶ + ¶ = ¶ + ¶  ¶ -

r f r

r f r

f
r f

f
r

- -

- -

- -( ) ( )
( )

im

im

i e i e m

cos sin cos sin

sin cos sin cos

.

5.4

x

y

x y
i i

1 1

1 1

1 1

Consider first the complex vector amplitude =A1

y y- = -f- -[ ] ( )k E i k E e i, 1, 0 , 1, 0 .i1
0

1
0 Note the addi-

tional factor fei which appears in the polar coordinate form.
The field amplitudes derived from this vector potential are

y

r y

y

r r

r r

r y

= -¶ - ¶ ¶ + ¶

= -¶ - ¶ ¶ -

= ¶ ¶ + ¶ + ¶ ¶ + ¶

+ ¶ + ¶ ¶

= ¶ - ¶ + +

+ ¶ + - +

¶ ¶ - ¶

f
r

f
r r

r

r

-

- -

-

- - -

- -

-

[ ]
( )

[ ( ) ( )
( ) ]

(
[( ) ( ) ]

) ( )

B

E

k E i i

k E e i m

k E i k i

ik i

k E e m k m

i m k m m

m

, ,

, ,

,

,

,

1 1 ,

. 5.5

z z x y

i
z z

x x y y x y

x y z

i

z z

1
1

0

1
0

1

1
2

0
2

2

2
0

2 1 2 2

1 2 2

1

In the plane wave limit y  e ,ikz  -[ ]B E i e, 1, 0 ,ikz
1 0

 [ ]E E i e1, , 0 .ikz
1 0 This is the textbook circularly polarized

plane wave (of positive helicity), in which the electric and
magnetic fields and the propagation direction are mutually
perpendicular, and the electric and magnetic fields are in
phase quadrature. Theorem 2.3 of [37] shows that this only
possible in the plane wave limit: transversely finite beams
which are everywhere circularly polarized in a fixed plane do
not exist.

The beam derived from the vector potential A1 has B1

with different polarization properties to that of E .1 Also the
electromagnetic energy and momentum densities defined in
(3.5) oscillate in time, at angular frequency w = ck2 2 . Self-
dual beams (section 3), in which the complex field amplitudes
satisfy = E Bi and the energy and momentum densities do
not oscillate in time, may be constructed from the above
complex vector amplitude. We take

y

r y

= +  ´

= - ¶ + - ¶ + ¶ + ¶

= - ¶ + - ¶ + ¶ -f
r

-

-

- -

( )

[ ( ) ( ) ]

( ( ) ( ) )
( )

A A Ak

k E ik i ik i

k E e ik i ik m

1

2
1

2
, ,

1

2
, , .

5.6

z z x y
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2
0

2
0
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The corresponding complex magnetic amplitude =  ´B A
is

y

r r

r r

r y

= ¶ ¶ + ¶ + ¶ + ¶

- ¶ ¶ + ¶ - ¶ + ¶
- ¶ + ¶ ¶ +

= + ¶ - + ¶ + ¶
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- ¶ - ¶ +
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r r
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- - -
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-

[ ( ) ( )

( ) ( )
( )( )]
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5.7

y x y z z

x x y z z

x y z

i
z z

z z

z

2
0

2
0

1 1

2 1 2

1

The complex electric amplitude is =E Bi , for waves
satisfying the Helmholtz equation. This may be verified from
the free-space, time-harmonic version of Ampere’s law,

=  ´E B
i

k
. In the plane wave limit we regain the textbook

circularly polarized plane wave, as we had before:

y   - [ ] [ ]
( )

B Ee E i e E i e, , 1, 0 , 1, , 0 .
5.8

ikz ikz ikz
0 0

The real parts of the limiting amplitudes given in (5.8) give
´ = [ ]E B E 0, 0, 1 ,0

2 and p= ´ ´ =-( ) [ ( )]r E Bj c4z z
1

0. A finite z component of the angular momentum can result
from a transversely finite beam. When the beam is nearly a
plane wave but transversely localized one finds ¢ » ¢ckJ Uz
([43], problems 7.20 and 7.21). Hence we can associate a
positive helicity with beams that approach the limit (5.8)
within a transversely localized region.

6. Summary

We have shown that the chiral density and the chiral current
in self-dual monochromatic beams are proportional to the
energy and momentum densities, respectively. The pro-
portionality constants are p k8 and pkc8 , where w= /k c. It
follows that the chiral contents per unit length of beam are
respectively proportional to the energy and momentum con-
tents:

òC p p¢ =  ¢ ¢ = = ¢ ( )kU C d r C kcP8 , 8 . 6.1z z z
2

The electric and magnetic fields in self-dual monochromatic
beam are eigenvectors of curl, ensuring that the chiral density
and current are maximal. Thus such beams are, theoretically
at least, the best candidates for studying interactions of light
with chiral matter.
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