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We derive an integral equation for the self-consistent local field EJ°~(z) within an in- 
homogeneous non-polar fluid, with particular application to the liquid-vapour interface. Ap- 
proximate solutions are given for the cases of induced atomic dipoles oriented perpendicular and 
parallel to the interface. For the perpendicular case we relate the average field to the local field 
and thus obtain an equation for the static dielectric constant ~(z) in terms of the density profile 
n(z). The departures of the local field from Lorentz form EeXtl(l+(S/3)Iran(z)) and of the 
dielectric constant from the Clausius-Mossotti form (1 + (813)~ran(z))l(1 -(4/3)~ran(z)) are shown 
to be small. For the parallel case we discuss fringing of the external field and show that the 
dipoles align themselves with the average field, not the external field. The departure of the local 
field from Eivcl(l -(4/3)Iran(z)) is shown to be small. 

Ell ipsometric measuremen t s  of  the surface s tructure of  liquids require for  
their interpretat ion a theory  relating the dielectric funct ions ~ ( z )  and ~ ( z )  to 
the densi ty  profile n(z).  We approach  this problem by  deriving equations for  the 
local field E~°~(z). In our preceding paper  I) we considered the local field near  the 
surface of a crystalline solid. Discussion of topics covered  there will cor- 
respondingly be abbreviated.  

1. Dipoles oriented perpendicular  to the surface: general formalism 

The sys tem under  considerat ion is a non-polar  fluid of  finite but macro-  
scopic depth,  with the l iquid-vapour interface (of very large extent)  lying in 
the x - y  plane. Two  opposi te ly  charged plates,  lying parallel to the interface,  
provide the external  field E ext polarizing the a toms in the liquid. The self- 
consis tent  local field E~°C(z) satisfies the equat ion 

E I°~ = E =xt + E dip, (1) 

where  E dip is the contr ibution to the field at an a tom due to dipoles induced on 
all the other  a toms in the fluid. Consider  the local field polarizing an a tom at 
r~. The conditional probabil i ty  that another  a tom is within drz about  r2, given 
that an a tom is within drl about  rl, is n2(rl,r2)dr~drz/n(rl)drb where n2 is the 
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pair density (see for example ref. 2). As in ref. 2, we introduce a generalised 
pair correlation function g: 

n2(rl, r2) = n(rOn(r2)g(rb r2). (2) 

For the geometry under consideration, the density is a function of z only, and 
g is a function of r = ~/x22+ y122+Z22 and of zl and z2. The conditional 
probability is thus n(z2)g(r, zl,z2)dr2. The z-component at rt of the field due to 
an atomic dipole of magnitude p~ at r2 is p2r-~(3z~2 - r2); by definition of 
E I°~, P2 has the value aE~°~(z,), where a is the atomic polarizability. (We have 
replaced the polarized atoms by point dipoles (this approximation is discussed 
in ref. 1), and assumed that the dipoles are oriented in the z-direction with 
magnitude dependent on the z-coordinate only. The effect of dipole fluctua- 
tions on the dielectric constant  of a homogeneous fluid is discussed by 
Kirkwood3)). 

The self-consistency equation (2) thus reads (c.f. section 3 of ref. 4) 
gt o o  

El°e(Zl) : EeXt + a ldz2n(z2)El°C(z2)Jldxldy2r-5(37.22-r2)g(r, zl,z2), (3) 

Z b --0c 

where zb and zt give the positions of the bottom and top capacitor plates. By 
changing to cylindrical coordinates (see p. 339 of ref. 2) we can perform one 
integration: 

gt o¢ 

E ext + 27rot I dz2n(z2)El°~(z2) I dr r-4(3z~2 - r2)g(r, El°e(Zl) Z l ,  Z 2 ) .  (4) 
f l  

Zb fz~2f 

In appendix A we show that 
oQ 

f drr-'( 3z2- r 2) = -48(z) .  (5) 
171 

Thus in the limit of a structureless fluid (g - 1) we regain the Lorentz local 
field at the local density (see figs. 1 and 2): 

E e X t  

E~(z)  = 1 + (S/3)~ran(z)" (6) 

In section 3 we show that the dielectric function e = E'Xt/E av" is given by 

e(z) = [1 - 4~'em(z)El°~(z)/E'Xt] -1, 

so that (6) leads to the structureless fluid dielectric function, which has the 
Clausius-Mossotti  form at the local density: 

1 + (8/3)¢ran(z) 
~cM(Z) = ~_ (4/3)¢rem(z)" 
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Fig. 1. Density n ( z )  (upper curve) and structureless fluid dielectric function ~cM(Z)= 
(1 + (8/3)¢ran(z))/(1 -- (413)¢'om(z)) (lower curve), with n(z) = ~nl[l - sgn z(l  - e~r'l/*)], a = 0.415 d, 
ant = 0.03444. This profile and an~ value are used in calculating the results of figs. 2--4. Note that the 
dielectric function has a profile of nearly the same shape as the density profile, shifted to the liquid 
side. (For the Fermi (or tanh) profile ~cM(Z) is exactly a shifted Fermi function. The shift is a fixed 
fraction (approximately (4/3)¢ra(nj - n,))  of the interface thickness). 
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Fig. 2. Local field for a structureless fluid. Upper curve is E ~ : ( z ) l E " ' e = ( l - ( 4 1 3 ) z r a n ( z ) )  -I, 
applicable to the case of atomic dipoles aligned parallel to the surface (the limiting value in the 

EL (z)/E = (1 + (8/3)¢ran(z))  - j ,  applicable to the case of atomic liquid = 1.169). Lower curve is Jo¢ e,, 
dipoles aligned perpendicular to the surface (limiting value in the liquid = 0.776). 
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In the general case, we write g = 1 + (g - 1) to obtain 

EiO~(zl) = EeX, 8 Ioc - gzran(zOE (Zl) 

~, ~ (7)  / *  / *  

+ 2"~0l I dz2~(z2)El°C(z2) I d r r - 4 ( 3 z 2 1 2 - r 2 ) [ g ( r '  zI,  Z2)-- 1]. 
, /  

Zb Izn[ 

At first sight, the final term in (7) appears to be singular at r = 0 when z2 = zl; 
we shall show that it is not. First we replace the limits Zb and zt by - ~  and 
+ ~ respectively (we take the interface to be near zero z, and do not consider 
zl values near the capacitor plates). This step is valid because g(r, zl,zz) can 
differ from unity only when [ z~z I is smaller than the correlation length, which 
is microscopic except at the critical point. The final term in (7) can therefore 
be written as 

~o r 

27ra l drr- '  I dz(3z2 - r2)n(zl + z)El°C(zl + z)[g(r, zl, zl + z) - 1]. (8) 
0 - - r  

Expanding n(zl + z)El°~(Zl + z)[g(r, z,, zl + z) - 1] in a Taylor series about z, and 
using 

i ( 0 i f n = O o r n o d d  
dz(3z2-  r2)z" = 4nr"+Sl(n + 1)(n + 3) otherwise (9) 

- r  

gives: 

EiOC(zi) = Eext 8 Ioc --~lran(zOE (zO 

+--~Ir~ dr r [n(z)El°C(z)(g(r, z l , z ) -  1)]z=~ + . . . .  (10) 
0 

which is manifestly non-singular. 
Within each bulk phase n, E ~ and g each become independent of z. The 

deviation of the local field from the Lorentz value is then zero (in the 
point-dipole approximation, and neglecting fluctuations in magnitude and 
orientation of the atomic dipoles). Thus we have shown in passing that 

E eXt 

E[~ = ( l l )  
1 + (8/3)Tranj,~' 

so that (11) leads to the Clausius-Mossotti  dielectric constant 

1 + (8/3)1ranl,v 
~l.v = 1 - (4/3)lranl,v" ( 1 2 )  
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Using (8) we may rewrite (7) as 

[1 + 8z,'an(zt) ]E'°C(z,) = E ex' 
g 

+ 2~'aldrr-4~dz(3z2 - r2)n(zt + z)E'~(zt + z)[g(r, zt,zt + z) - 1], (13) 

0 - - r  

which determines the local field in terms of the density profile n and the 
generalised pair correlation function g via a linear integral equation. 

2. Dipoles oriented perpendicular to the surface: an approximate solution 

The last term in (13) (which we have demonstrated to be an interface or 
inhomogeneity term) is small, because g -  1 has a negative part (the cor- 
relation hole) at small r, and is mainly positive at intermediate r. Thus a large 
amount of cancellation occurs in the integral; this will be confirmed by 
numerical calculation. We shall therefore make simplifying approximations in 
the evaluation of this correction to the Lorentz value (6) of the local field. 
First we note that while n(z) varies by a factor of several hundred or more in 
passing from vapour to liquid near the triple point, E I°c varies by 20 to 30% 
(~ranl is small, of order 10 -I, for most liquids). Thus, in the interface term of 
(13), we can approximate E~°~(z~ + z) by E~°~(zO and obtain a linear algebraic 
equation for the local field, giving 

8 El°c(Z1)  = EeXt/{1 +~Tran(zO 

- 2 1 r a f d r  :4 p z ( 3 Z 2  r2)n(zl + z)[g(r, zl,gl + z) --1]}. (14) 
0 - - r  

Correction terms to the analogous approximation in ref. 1 were shown to be 
insignificant. 

Second, we are forced to approximate g(r, zt, z2), since this function has not 
been determined either theoretically or experimentally. We know that g tends 
to g~(r) in the liquid and to gv(r) in the vapour, and that g~ and g, are 
qualitatively similar. The simplest approximation is to take g equal to g~ or g~ 
or some combination of these. Taking it to be purely a function of r will 
enable us to perform the z integration analytically for a simple profile. For an 
arbitrary density profile we can write 

n(z) =.~nl + n,,) --½(nl- n,,)O(z), (15) 

where O ranges from - I at z = -~ to + I at z = + oo. In terms of 0 (and with 
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E~°C(z~ + z) ~- E~°C(zO, g ~ g(r) in the interface term), (14) can be written as 

E ~xt 8 f ~ ~ -  l +-j~ran(zO + lra(nj-  nO drr-4[g(r)-  l ] dz(3z2-r2)O(zl+z) .  
0 - r  

(16) 

In our numerical estimate of the interface term, we shall use the exponential 
profile 

O(z) = sgn z(1 - e-lZl/a). (17) 

That this functional form is correct for large ] z I (at least near the critical 
point) has been shown by Fisk and Widom ~) from a generalised van der Waals 
theory. For 0 given by (17), the z integration is carried out in appendix B. Our 
numerical calculations (shown in fig. 3) are for this profile, with ;t = 0.415d, 
where d is the atomic diameter defined in (19). This value of A is the average 
of 0.40d and 0.43d obtained by comparing theory with experimental data on 
the surface tension and energy of At, Kr and Xe near their triple points6). The 
corresponding 10-90 thickness of the interface is (2 log5)A, i.e. about 1.3 
atomic diameters. In the interface term we have used 

g(r) = g~(r) = e x p [ -  u(r)/T], 

with the interatomic potential given by 

d 12 -(-")'] 

(18) 

(19) 
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Fig. 3. Local fields plotted as departures from those for structureless fluids. Continuous curve is 
, E ~ , z  • E l °~ ' z~ /E  ave (parallel case). ( E t ° C ( z ) -  E~L°~(z))/E e't (perpendicular case); broken curve is ~ ~ j -  .f ~ . 
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As in refs. 2 and 6 we use 4 v / T  = 5.69, this being the average for Ar, Kr and 
Xe at their triple points. For the product of density with polarizability we 
have used an, =0.03444, appropriate to liquid argon near its triple point 
(nl = 0.02126 ,~-37) and a = 1.62 ~3 s): these values give a Clausius-Mossotti  
dielectric constant of 1.506, in agreement with experimentg)). 

3. Average field, dielectric function, and potentials 

In the previous section we related the local field to the external field. To 
determine the dielectric function we need to relate these to the average field, 
in order to use the electrostatic definition 

Eave(z) 
e - l ( z ) =  EOXt. (20) 

The average field is the average of the microscopic field over all positions at a 
given depth z, whereas the local field is the electric field at the centre of an 
atom in the fluid, excluding the contribution from its own dipole. 

To calculate the average field we shall find the potential at an arbitrary 
position at depth z~, and differentiate with respect to z~. Since the potential at 
rl due to a dipole P2 at r2 is r l E ' p 2 / r ] 2  , which is zl2P2/r~2 when P2 points in the 
z-direction, we have 

Zt a ~  

u a v e ( z l )  ~ .  - zlE,Xt + a f dz2n(z2)El°¢(z2) zl2 f f dx2dy2r -3 
Z b --oo 

Z t oo 
P 

= - zlE°~'+ 21raJ dz~n(z2)El°~(zgzl2 J drr -2 (21) 
Zb Izl2l 

Z t 

/ = - zIE "~' + 21ra dz2n(z2)El~(z~) sgn z12. 
zb 

Since 
0 

sgn zt2 = 28(z~2), (22) 
aZl 

E a'e = aUaV"(zl) = E eXt-4rran(zOE'~(z l ) .  (23) 
3zl 

This has been proved with no approximations other than those involved in 
setting up eq. (3). Baym and Brown ~°) have given an elegant proof of (23) for a 
homogeneous fluid by Fourier transform methods. From (20) and (23) we have 
the static dielectric constant in terms of E'° ': /E"':  

e- l(z l)  = 1-41rt~n(zl)EJ°~(zl)/E ~xt. (24) 
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Fig. 4. Dielectric function for the perpendicular case, plotted as a departure from the structureless 
fluid value: e(z)- ecM(Z). 

Using our calculations of E ~°~ of the previous section, we find that the 
departure of e(z) f rom the Clausius-Mossott i  form at the local density (eq. 
(6)) is small, at the most 1% (see fig. 4). This small departure may nevertheless 
have an appreciable effect on the surface thickness calculated f rom ellip- 
sometric measurements") .  

While the potential is a useful quantity for  calculating the average field, it 
cannot  be used for calculating the local field, as the following argument 
shows. Suppose we have a local potential function U ~ ( r 0 ,  meaning "poten-  
tial at r~, given that there is an atom centred on r f ' .  Differentiation of this 
function gives 

- V1U~(rl) = - lira {(potential at r~ + Ar~, given atom at rl + Zir0 
A r I - ~  

- (potential at rl, given atom at rO}/Arl. 

This is not the local field, which is 

- l i m { ( p o t e n t i a l  at r~ + Arl, given atom at r0  

- ( p o t e n t i a l  at rl, given atom at rO}/Ar~. 

Thus 

El°~(rl) # - VI Ul°C(rl), (25) 

and so this local potential function cannot  be used to calculate the local field. 
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4. Dipoles oriented parallel to the surface 

For this case we adopt the geometry of fig. 2 in ref. 1: the liquid half-fills a 
container, the sides of which (at x = -+ X) are capacitor plates which when 
charged provide the external field which orients the atomic dipoles parallel to 
the surface. The liquid-vapour interface is again near z = 0, and extends to 
- ~  in the y-direction. This case is more complicated than that for dipoles 
perpendicular to the surface, because the external field is no longer constant: 
the density of charges on the capacitor plates will vary with depth. There will 
also be fringing of the external field (i.e. it will have a non-zero z-component); 
this fringing, as we shall see below, is cancelled exactly by fringing in Edip; the 
field due to the atomic dipoles. The local field EeXt+ E dip will thus be parallel 
to the surface at all points. To calculate E ext and E dip we shall assume that E~ °~ 
is a function of z only, and that E~ °¢ = 0, and show that this local field is 
self-consistent. 

We begin by calculating the field due to the atomic dipoles [cf. (3)]: 

o0 

E d i p ( z I , X I )  = O l f  dz2n(z2)El°C(z2) 
X o o  

f dx2 f d)/2r--~[3(p2" r ) r - r 2 p 2 ] g ( r ~ z | , Z 2 ) o  

- s  _oo 

(26) 

By our assumption about E l ° c , f f 2  = ,~; the x and z components of (26) there- 
fore have 3x~2 - r 2 and 3x~2z12 in the integrand. In E~ ip, the integral over x2 and 
Y2 can be written as 

f dx f dyr-'(3x2-r2)g(r,z,,z2)-{ f 
--~ - ~  X - x  I 

+ 

oo o¢ 

f }dx f dyr- (3x -r 
X+x I --~ 

(27) 

(we have put g = 1 in the second term since r ~>lx~21 and we avoid wall 
effects by keeping I xl [ less than X by at least a correlation length). Now (cf. 
eq. (A.4) of ref. 1) 

f dx f d,r'(3x2-r2)= -2 f dx[l +x Jf d,r-3 
X -~ X 0 

f [ = - 2  dx l + x  ( x 2 + z Z ) - ' = - ~ + z  2. (28) 
X 

In the first term of (27) we use the x - y  symmetry to replace 3x~2-r  2 by 
- (3z~2 - r2)/2. Thus 
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f f drr-'(3z212-r2)g(r,z , ,z2)  
- ~  Iz121 

o¢ 

f { x  x, X+Xl 1 
- 2a dz2n(z2)El°~(z2) ( X  - Xl) 2 "~ z212 --I- ( X  "I- X l )  2 + 7.212 " 

(29) 

The second term is the fringing term. Before showing that this is cancelled by 
the fringing term in the external field, we shall consider E~iv: we have 

X X - x  I X+x I 

f dx2xl2r-Sg(r, Zl,Z2) = -  f dxxr-Sg(r, zl,Z2) = f dxxr -5 (30) 
- X  - X - x  I X - x  I 

(we have put g = I again). Thus, after elementary integration, 

E~ip(zbxO = 2a [ dz2n(z2)El°'(z:)z~2{[(X - x0  2 + z212] -l 

- [(X + xl) 2 + z~2]-1}. (31) 

We shall now calculate /~ext from E ave, using potentials as in section 3. 
Analogously to (21), we have 

c c  X 

U av¢~  UeXt-~o/  fdz2n(z2)El°C(z2)fdx2 f dy2x ,2  r-3 

-~ - x  -~o (32)  
c c  X+Xl 

= U ext + 2 a  dz2n(z2)Et°C(z2) d x  x 2  ..[_ z 2  2. 

- ~  X - x  I 

N o w  U ave= - x ~ E  av~ where E av~ is the x-component of the average field, and 
is independent of x~ and z~ (this solution satisfies the boundary conditions on 
U ~v~, and by uniqueness is thus the correct solution). Thus 

e c  

cxt - - -  ~ 
E~ (zl,xl) = Ozl --~1 a dz2n(z2)E'°C(z2)l°g - x02+  z22 

---- -- 20t f dz2rl(z2)El°C(z2)Zl2 
-oo 

x { [ ( X  - x02  + z22] -1 - [ ( X  + Xl) 2 + z~2]-I}. (33)  

This cancels exactly with (31), showing that the dipoles experience no field in the 
z direction. Differentiating (32) with respect to xl, we obtain 
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~x~'tt't,~l,.'-Ip~ "~ -- ~,~'~ + 2a dz2n(z2)El"~(z2) ( X  - Xl) 2 + z~2 -t 
-oo 
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X + x t  ] 
( X  + x,)  2 + z h  " 

(34) 

The second term cancels exactly with the second term in (29), leaving no 
fringing in the local field: 

E l O C  _ ] ~ , e x t  4 .  ~ " d i p  

= E ave- ~l'a f dz2n(z2)E'OC(z2) f dr  r-'(3z~2 - r~)g(r, zl,z2). 
-® Iz12f 

(35) 

For this geometry, the average field has emerged as the useful quantity, in 
place of the external field: E "~c is directly linked to the potential difference 
across the capacitor plates, and is not subject to fringing. 

Returning to (35), we note that the second term on the right is -½ times the 
second term in (4), and so we can use the results of the perpendicular case to 
immediately write down the results for the parallel case. Using (5) in (35) we 
obtain 

4 loc  El°~(Zl) = Ea~e +~lran(zOE (z~) 
oo 

- f dz2n(z2)El°~(z2) 
-oo 

dr r-4(3z]2- rZ)[g(r, z l , z2 ) -  1]. 

fz,:l 
(36) 

The structureless fluid approximation to E ~°~ is thus 

EaVe 
1 - (4/3)1ran(zO" 

(37) 

Since the last term in (36) is purely an interface term, as before, the local field 
within either bulk phase is given by 

EI,~ = Ear° 
l - (4/3)¢romt.v" (38) 

Deep inside either phase (on the scale of X), (34) gives 

ECXt _ 1ETave A IL:' loc 
I , v  - -  z . ,  - -  - , ' / ' r o t n l , v Z : , l ,  v .  (39) 

Together with (38) this shows that the local field takes the Lorentz value (1 I) 
deep in either phase. 

When E~°~(z2) is approximated by EJ°~(Zl) in the last term of (36), 
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E~°C(zl) = EaVe/{1--(413)Tran(zl) 

f z.z / + r r .  f d r  r -4 dz (3z  2 - r2)n(zl + z)[g(r, + z) - 11 • (40) 

0 - r  

Using  the  exponen t i a l  profile,  and  g as def ined by  (18) and  (19), g ives  the 
resul ts  for  E ~'~ s h o w n  in fig. 3. 

Appendix A 

Proof of f dr r-4(3z 2 -  r 2) = - (4/3)~(z) (A. 1) 
Izl 

This  integral  is ze ro  fo r  z # 0  and  s ingular  at z = 0 .  T o  see  tha t  the 
s ingular i ty  is a del ta  func t ion  we  cons ide r  

L ~ L ~ 

f f f I= dzf(z) dr r-4(3z2- r2) = ~Jn--~v dzzn dr r-4(3z~- r2)" 
-L Izl -L [z[ 

(A.2) 
N o w  

L 

f d z z n f  dr r-4(3Z 2 -  r 2) 

-L Izl 

f f = [ d r r  -4 dzz'(3z ~-F)+ drr  -4 dzz'(3z 2-F).  (A-3) 
,J 

0 - r  L - L  

This  is ze ro  fo r  n odd.  Fo r  n = 0 the  first t e rm  is zero ,  the  second  is - 4 / 3 .  
Fo r  n e v e n  and non -ze ro  (A.3) equals  

Z 

2 drr'-I n+ 3 n + l  + 2  urr [,n-+-3 n'+--1] 
0 L 

= 0 .  

Thus  I = - ( 4 / 3 ) f ( 0 ) ,  wh ich  p r o v e s  (A.1). (We have  used  s y m m e t r i c  l imits 
_+ L in (A.2) fo r  s impl ic i ty ;  a rb i t r a ry  limits g ive  the  s a m e  result . )  

Appendix B 
r 

Evaluation of K(r, zO = f dz(3z  2 - r2)O(zl + z) 
- -r  

For  the  exponen t i a l  profi le ,  O(z) is equa l  to 
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sgn z(1 - e -I'1/*) = ~z(lZ[ + A e-I'll*). 

Us ing  

1 d ,  z = h ~ z [ S g n z ( 1  Izl = ~ - ~ t z  sgn z) ,  e -I'll* - e-I~//*)] 

and  

we find, on s u c c e s s i v e  in tegra t ion  b y  par t s ,  

(B.1) 

(B-2) 

K(r ,  zO = J ( r  + 21) - -  J ( r  - zO, (B-3) 

w h e r e  

J ( z )  = (2r  2 + 6A2)(Iz[ + A e -I'1/*) - 3r  s g n z [ z  2 + 2A2(1 - e-lZl/*)] + Iz[ 3. 

Note added in proof. A genera l  defini t ion of  the  die lect r ic  func t ion ,  used  in the  
genera l i za t ion  of  M a x w e l l ' s  equa t ions  to  die lect r ic  med ia  [see fo r  e x a m p l e  
L a n d a u  and  Lifshitz~2), §68] is 

~(z) = 1 + 4~ran(z)E'°~(z)/EaVe(z). 

In  the  pe rpend i cu l a r  case ,  this r educes  to (20). In  the  paral le l  case ,  EaVe(z) is 
i n d e p e n d e n t  o f  z. Us ing  (37) fo r  E~°~(z) yie lds  the  C l a u s i u s - M o s s o t t i  f o r m  of  the  
die lect r ic  func t ion ,  so fo r  a s t ruc tu re less  fluid, and  [see (38)] deep  inside e i ther  
phase ,  ~±(z) and  ¢ : ( z )  are  identical .  T o  first o rde r  in the  in te r face  t e r m  in (13), 

~:(Z)--~cM(Z) = - - ½ [ ~ ( Z ) - - ~ c M ( Z ) ] .  
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