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Abstract— We survey the existing known universal properties of electromagnetic pulses, and
discuss their consequences. The established universal properties are (i) the time invariance of the
total electromagnetic energy U , momentum Pz and angular momentum Jz of the pulse, and (ii)
the inequality cPz < U . (Pulse propagation is along the z-direction.) In both (i) and (ii), the
theorems follow directly from Maxwell’s equations.
The conservation of energy, momentum and angular momentum is no surprise, but the inequality
cPz < U implies that all localized electromagnetic pulses have a zero-momentum frame (not a
‘rest’ frame, waves are never at rest). The above is of course in contradistinction to Einstein’s light
quantum, for which the momentum P is purely in one direction, and cP = U . The implication
seems to be that we cannot form a model of the photon by any pulse wave-function satisfying
Maxwell’s equations. If the momentum P and energy U formed a four-vector (cP, U), U2− c2P 2

would be a Lorentz invariant. This holds for point particles, but not universally for wavepackets.
We show however that u2 − c2p2 is a Lorentz invariant, non-negative at all space-time points (u
and p are the energy and momentum densities).
We also discuss the helicity of electromagnetic pulses, and the counter-intuitive relation between
the helicity and angular momentum of certain exactly calculable examples.

1. INTRODUCTION

Maxwell’s equations, with the electric and magnetic fields expressed in terms of the vector potential
A(r, t) and scalar potential Φ(r, t) via

E = −∇Φ− ∂ctA, B = ∇×A (1)

and with A and Φ satisfying the Lorenz condition ∇ ·A + ∂ctΦ = 0, lead (in free space) to Φ and
all components of A satisfying the wave equation

∇2ψ − ∂2
ctψ = 0 (2)

Electromagnetic pulses can then be constructed from solutions of (2). For example, the choice
Φ = 0, A = ∇× (0, 0, ψ) = (∂y,−∂x, 0)ψ gives us the transverse electric (TE) pulse with

E = −∂ctA = (−∂y∂ct, ∂x∂ct, 0)ψ, B = ∇×A =
(
∂x∂z, ∂y∂z,−∂2

x − ∂2
y

)
ψ (3)

The wave Equation (2) has an infinity of solutions, for example ψ = f(z−ct), with f an arbitrary
twice differentiable function. These solutions, and the textbook plane wave exp i(K · r − ωt) and
spherical waves r−1 exp [±iK(r ± ct)] (both with ω = cK) are not localized in space-time. The
spherical wave solutions generalize to r−1f(r ± ct), with f again any twice-differentiable function.
These solutions are singular at the origin.

Bateman [1] obtained a general solution of the wave equation in integral form. For solutions with
axial symmetry (independent of the azimuthal angle φ) the Bateman solution is, with ρ = [x2+y2]

1
2

being the distance from the z-axis,

ψ(ρ, z, t) =
1
2π

∫ 2π

0
dθ f(z + iρ cos θ, ct + ρ sin θ) (4)

We outline a proof (different from Bateman’s): the wave equation in cylindrical polars, with no
azimuthal dependence, reads (

∂2
ρ +

1
ρ
∂ρ + ∂2

z − ∂2
ct

)
ψ = 0 (5)

Carrying out the partial differentiations in (∇2 − ∂2
ct)f , and comparing with ∂2

θf gives us
(

∂2
ρ +

1
ρ
∂ρ + ∂2

z − ∂2
ct

)
f = −ρ−2∂2

θf (6)
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Operating on (4) with ∇2 − ∂2
ct therefore gives

− 2πρ2
(∇2 − ∂2

ct

)
ψ =

∫ 2π

0
dθ ∂2

θf = ∂θf
∣∣2π
0 = 0 (7)

On the propagation axis (ρ = 0) the beam wavefunction becomes

ψ(0, z, t) = f(z, ct) (8)

For example, if the on-axis wavefunction takes the form

f(z, t) =
ab

[a− i(z + ct)] [b + i(z − ct)]
ψ0 (9)

the corresponding full wavefunction obtained by integrating (4) is

ψ(ρ, z, t) =
ab

ρ2 + [a− i(z + ct)] [b + i(z − ct)]
ψ0 (10)

This wavefunction has been obtained by other means (see references in [3–6]).

2. CONSERVATION LAWS, ENERGY-MOMENTUM INEQUALITIES

The energy, momentum and angular momentum densities of an electromagnetic field, in free space
and in Gaussian units, are [2]

u(r, t) =
1
8π

(
E2 + B2

)
, p(r, t) =

1
4πc

E×B, j(r, t) = r× p(r, t) (11)

E(r, t) and B(r, t) are the real electric and magnetic fields at position r and time t. The total
energy, momentum and angular momentum at time t of an electromagnetic pulse are

U =
∫

d3r u(r, t), P =
∫

d3r p(r, t), J =
∫

d3r j(r, t) (12)

It will come as no surprise that these are all conserved quantities: the integrals in (12) are all
independent of time.

The energy and momenta of electromagnetic pulses based on the solution (10) of the wave
equation were evaluated in [3]. Proofs of the constancy of U and of P were sketched in [4]. The
conservation of angular momentum was proved in [5]. In all cases, the proofs follow from taking
the time derivatives of the quantities U , P and J defined in (12), applying Maxwell’s free-space
equations

∇ ·B = 0 ∇ ·E = 0
∇×E + ∂ctB = 0 ∇×B− ∂ctE = 0 (13)

and using elementary analytical techniques.
In order for the quantities U , P and J to exist (let alone be conserved), the corresponding

electromagnetic pulse has to be localized. The first evaluation of U for any localized pulse was
in [6]; later evaluation of energy, momentum and angular momentum for various electromagnetic
pulses found [3] that all had U > cPz, with the transverse momenta Px and Py zero. Thus these
pulses could be Lorentz-transformed into their zero momentum frames, in which the pulse converges
onto its focal region and then diverges from it, maintaining zero net momentum at all times. The
proof that U > cPz for all localized electromagnetic pulses is elementary [4]: let the total momentum
vector P point along the z direction, and consider the energy and momentum densities u(r, t) and
pz(r, t). From (11), we have

8π(u− cpz) = E2 + B2 − 2(E×B)z

= E2
x + E2

y + E2
z + B2

x + B2
y + B2

z − 2(ExBy −EyBx)

= (Ex −By)2 + (Ey + Bx)2 + E2
z + B2

z ≥ 0 (14)
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Equality of U and cPz would require u − cpz to be zero everywhere and at all times, which
from (14) requires Ez = 0 = Bz (purely transverse fields) and also Ex = By and Ey = −Bx. The
divergence equations in (13) then give

− ∂xEy + ∂yEx = 0 and ∂xEx + ∂yEy = 0 (15)

Thus Ex and −Ey would be a Cauchy-Riemann pair in the variables x and y, and satisfy
(
∂2

x + ∂2
y

)
Ex = 0,

(
∂2

x + ∂2
y

)
Ey = 0 (16)

Such harmonic functions cannot have a maximum except at the boundary of their domain, and
thus cannot be localized in x and y (for any z and t). For localized electromagnetic pulses we
therefore always have the total energy greater than c times the net total momentum

U > cPz (17)

U and P are defined by (12) as spatial integrals, independent of time in any given inertial frame.
If together they formed the four-vector (cP, U), U2− c2P 2 would be a Lorentz invariant, the same
in all inertial frames.

Such four-vectors exist for point particles, but cannot be associated (in general) with extended
wavepackets. Consider however the squares of the volume densities, u2(r, t) and p2(r, t). From (11),
we have

(8π)2(u2 − c2p2) =
(
E2 + B2

)2 − 4 (E×B)2

=
(
E2 + B2

)2 − 4E2B2 + 4(E ·B)2

=
(
E2 −B2

)2 + 4(E ·B)2 (18)

Hence u2−c2p2 is everywhere non-negative, and further it is a Lorentz invariant, since E2−B2 and
E ·B are Lorentz invariants. The Appendix has further discussion of the Lorentz transformation
of wavepackets.

3. ANGULAR MOMENTUM, HELICITY

We have seen that the energy U , momentum P and angular momentum J are all conserved (do not
change with time) for any electromagnetic pulse. The energy and momentum are also independent
of the choice of origin of the spatial coordinates (which are integrated over, see (12)). However, the
angular momentum does depend on the choice of origin: in the translation r → r−a, J → J−a×P.
Textbooks make statements such as ([7], p569) ‘the photon has vanishing mass and cannot be
brought to rest in any Lorentz frame of reference’. As we have seen, any localized electromagnetic
pulse satisfying Maxwell’s equations does have a zero momentum frame (not a ‘rest’ frame). In the
frame where P is zero the angular momentum is independent of the choice of origin, and thus we
can associate an intrinsic angular momentum with a localized electromagnetic pulse.

Suppose (as we have in this paper) that the net momentum of a pulse is along the z-direction,
P = (0, 0, Pz). A Lorentz boost at speed c2Pz/U , along the z-axis, will bring the pulse to its
zero momentum frame. The component Jz of the angular momentum is unchanged in this Lorentz
transformation. This is because the four-tensor of angular momentum Jij = XiPj − XjPi (Xi

and Pi represent components of the space-time and momentum-energy four-vectors) has the same
structure as the electromagnetic field four-tensor composed of E and B ([8], Section 2–6)

[Jij ] =




0 Jz −Jy J14

−Jz 0 Jx J24

Jy −Jx 0 J34

J41 J42 J43 0


 (19)

where

J41 = −J14 = i(ctPx − xU/c)
J42 = −J24 = i(ctPy − yU/c)
J43 = −J34 = i(ctPy − zU/c)

(20)
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For comparison, the field four-tensor, also in the Minkowski notation, is

[Fij ] =




0 Bz −By −iEx

−Bz 0 Bx −iEy

By −Bx 0 −iEz

iEx iEy iEz 0


 (21)

Since Bz is unchanged by a Lorentz boost along the z-axis, Jz will also be unchanged by such a
transformation. Thus we can regard the component of the angular momentum along the momentum
(Jz, in this paper) as the intrinsic angular momentum of the pulse.

The helicity of the pulse is +1 if the sign of Jz is the same as that of Pz (in a frame with Pz 6= 0),
−1 if the signs are opposite. There is no helicity (or the helicity is zero) if Jz is zero.

We shall give some examples of results for electromagnetic pulses based on the wavefunction (10).
The first is for the TE+iTM pulse for which

A = ∇× (0, 0, ψ) = (∂y,−∂x, 0)ψ (22)
B = ∇×A + i∂ctA, E = iB (23)

(Here B(r, t) and E(r, t) are complex; their real and imaginary parts are separately solutions of
Maxwell’s equations.) The energy, momentum and angular momentum found in [3] are

U =
π

8
a + b

ab
ψ2

0, cPz =
π

8
a− b

ab
ψ2

0, Jz = 0 (24)

For this pulse, a Lorentz boost at speed βc, β = cPz/U = (a − b)/(a + b), will bring the pulse to
its zero-momentum frame [3].

If instead we take the vector potential to be

A = ∇× [iψ, ψ, 0] (25)

with B and E defined by (23) as before, we obtain [3]

U =
π

8
a + 3b

a2
ψ2

0, cPz =
π

8
a− 3b

a2
ψ2

0, cJz =
π

4
b

a
ψ2

0 (26)

Figure 1: The energy density isosurface at u =
1
2umax, ct = −b for the wavefunction given in the
text. The pulse is travelling upward, and has neg-
ative angular momentum about the propagation di-
rection. In contrast, the energy isosurface consists
of two short right-handed screw threads.

Figure 2: The energy density (contours) and the
transverse momentum densities px, py (arrows) in
the z = 0 plane, for the same pulse and at the same
time as in Figure 1. The pulse is travelling up out
of the page.
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This example shows that non-zero angular momentum can result from a wavefunction without
azimuthal dependence: the curl operator supplies the twist.

More complex exact solutions of the wave equation have been tried, and the energy, momen-
tum and angular momentum evaluated [9, 10]. There we find the surprising result that when the
wavefunction ψ has an eimφ azimuthal dependence, the helicity is opposite to the sign of m. Since
Jz is represented by the operator −i~∂φ in quantum mechanics, Jze

imφ = ~meimφ, so there the
eimφ dependence produces Jz = ~m, the same sign as m. It is not understood physically why
electromagnetic pulses do the opposite.

Figure 1 illustrates a pulse based on ψ equal to ρ eiφ/[b + i(z − ct)] times the wavefunction
in (10), with A given by (22) and E and B by (1) (with Φ zero). The resulting energy, momentum
and angular momentum are [10]

U =
π

16
3a + b

b2
ψ2

0, cPz =
π

16
3a− b

b2
ψ2

0, cJz = −π

8
a

b
ψ2

0 (27)

Note that energy isosurface has positive helicity (right-handed), opposite to that of the angular
momentum.

4. DISCUSSION

The established universal properties of localized electromagnetic pulses are the constancy of their
energy, momentum and angular momentum in time, and the fact that their energy is always greater
then c times their momentum. As a consequence, localized electromagnetic pulses have a zero-
momentum frame. A further consequence is that we can define an intrinsic angular momentum for
such pulses.

Localized solutions of the classical Maxwell equations thus stand in contradistinction to Ein-
stein’s light quantum [11], for which U = cP , and which cannot be transformed to a zero momentum
frame.

APPENDIX: LORENTZ TRANSFORMATION OF WAVEPACKETS

For point particles of mass M , the energy and momentum are related by U2 = M2c4 + P 2c2, and
the combination (cP, U) is a four-vector, meaning that it transforms in the same way as (r, ct). It
follows that U2 − c2P 2 is a Lorentz invariant, in this case M2c4.

Electromagnetic wavepackets are extended objects, evolving in space-time, and the transfor-
mation between inertial frames is more complicated. However, as we have seen in Equation (18),
u2 − c2p2 is a non-negative Lorentz invariant, for any electromagnetic pulse.

Consider the transformation of a scalar wavefunction such as (10). A Lorentz boost along the
direction of motion (i.e. along the z-axis) at speed βc leaves the transverse coordinate ρ unchanged,
and changes z and t to z′ and t′:

z = γ
(
z′ + βct′

)
, ct = γ

(
ct′ + βz′

)
, γ = (1− β2)−

1
2 (A1)

The effect is to change the weight of the z ± ct components of ψ:

z + ct =

√
1 + β

1− β

(
z′ + ct′

)
, z − ct =

√
1− β

1 + β

(
z′ − ct′

)
(A2)

For the wavefunction in (10), a Lorentz boost with β = (a − b)/(a + b) or (1 + β)/(1 − β) = a/b
transforms ψ to [3]

ψ
(
r′, t′

)
=

abψ0

ρ2 +
[√

ab− i (z′ + ct′)
] [√

ab + i (z′ − ct′)
] (A3)

in which the forward and backward propagations are balanced. Such a choice of β brings the
TE+iTM pulse to its zero momentum frame, as we have seen in Equations (22) to (24). Moreover,
the energy in the zero momentum frame, U0 = π

4 ψ2
0/
√

ab, is equal to the square root of U2− c2P 2
z ,

so in this respect the pulse momentum and energy behave as four-vector components.
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However, other pulses constructed from the same wavefunction require a different β to bring
them to their zero momentum frame, as in the example specified by (25) and (26) for which
β = (a− 3b)/(a + 3b). For this β the wavefunction (10) is transformed to

ψ
(
r′, t′

)
=

abψ0

ρ2 +
[√

ab− i/
√

3 (z′ + ct′)
] [√

ab + i
√

3 (z′ − ct′)
] (A4)

The transformed momentum is zero, and the transformed energy is

U0 =
π

4
ψ2

0/
√

3ab (A5)

This is not (unless a = 3b) equal to the square root of U2 − c2P 2
z , for which the values in (26) give

√
U2 − c2P 2

z =
π

4
ψ2

0

√
3b

a3
(A6)

Thus the same solution of the wave equation can lead to pulses for which the energy and momenta
may or may not behave like four-vectors. In general, the Lorentz transformation of electromagnetic
wavepackets is more complicated than that of point particles, as may be expected.
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