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Abstract— We survey the existing known universal properties of electromagnetic beams, and
discuss the possibility of a new one. The established universal properties are the existence
of beam invariants, which follow from conservation laws, and various non-existence theorems
arising out of beam localization transversely to the direction of propagation. In both cases the
theorems follow directly from Maxwell’s equations. The conservation of energy, momentum and
angular momentum lead to seven beam invariants, the simplest of which is the integral across a
transverse section of an electromagnetic beam of the time-averaged longitudinal component of the
momentum density. This integral is the same for any transverse section: it is an invariant. This
particular invariant comes from the conservation of energy; the conservation of momentum leads
to three invariant integrals over components of the electromagnetic stress tensor, and likewise
three more invariants come from the conservation of angular momentum. The non-existence
theorems show that the properties of the textbook electromagnetic plane wave cannot be realized
for real (transversely finite) beams. They assert the non-existence of: (i) Pure TEM beam modes,
(ii) Beams of fixed linear polarization, (iii) Beams which are everywhere circularly polarized in a
fixed plane, and (iv) Beams within which the energy velocity is everywhere in the same direction
and magnitude c. In addition to these established facts, we give an elementary topological
argument for the universality of rings of zeros of the beam wave function in the focal plane,
leading to wave vortices.

1. INTRODUCTION

This paper is concerned with universal properties of electromagnetic beams, by which we mean
properties that all physical beams must have (or cannot have). It is useful however to have a
summary of the existing exact solutions of Maxwell’s equations representing electromagnetic beams,
which we give in this introduction.

For monochromatic beams, in which the time dependence of the complex fields is contained in
the factor e−iωt, all the components of E and B satisfy the Helmholtz equation,

(∇2 + K2)ψ = 0, K = ω/c (1)

This follows from Maxwell’s equations by expressing the magnetic and electric fields in terms of
the vector and scalar potentials A and Φ,

B = ∇×A, E = −∇Φ− ∂ctA (2)

and choosing the Lorenz gauge
∇ ·A + ∂ctΦ = 0 (3)

In free space, Φ and all components of A satisfy (1) (see for example [1, pp.218ff]), and so do their
derivatives such as E and B.

The textbook solutions of (1) are the plane wave exp(iK·r) and the spherical waves exp(±iKr)/r.
Physical beams are localized transversely to the direction of propagation, in contradistinction to
the textbook solutions. Deschamps [2] noted that a complex shift along the propagating direction
(the z-axis, in this paper) gives an exact solution of (1) localized transversely:

ψ =
eikR

R
, R2 = x2 + y2 + (z − ib)2 = ρ2 + (z − ib)2 (4)

This solution is singular on the circle {ρ = b, z = 0}, and so cannot represent a physical beam. One
can regularize by subtracting the complex-shifted spherically converging wave exp(−iKR)/R [3]

ψ =
sinKR

KR
= j0(KR) (5)
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and generalize to [4]

ψ`m = j`(KR) Pm
`

(
z − ib

R

)
eimφ (6)

but problems remain in the divergence of some invariants (see [5] and Section 3 below), and in the
backward-propagating components associated with the terms proportional to exp(−iKR)/R.

The Helmholtz Equation (1) is separable in cylindrical coordinates (ρ, φ, z): it reads
[
∂2

ρ +
1
ρ
∂ρ +

1
ρ2

∂2
φ + ∂2

z + K2

]
ψ = 0 (7)

This is solved by Jm(kρ)eimφeiqz provided k2 + q2 = K2, and thus also by the generalized Bessel
beams [6]

ψm(r) = eimφ

∫ K

0
dk f(k) Jm(kρ)eiqz, k2 + q2 = K2 (8)

Note that k is restricted to the interval [0,K], so q =
√

K2 − k2 is a real mapping onto [0,K].
These beams are purely forward propagating, by construction. The weight function f(k) can be
complex; it is constrained by the necessary finiteness of integral invariants (Section 3). In the next
section we shall see how f(k) is related to Bateman’s weight function.

2. BATEMAN INTEGRAL SOLUTION OF THE WAVE EQUATION

Bateman [7] considered integral representations of solutions to the wave equation (∇2 − ∂2
ct)ψ = 0.

The simplest case is that where the solution is independent of the azimuthal angle φ, in which case
it takes the form

Ψ(ρ, z, t) =
1
2π

∫ 2π

0
dθF (z + iρ cos θ, ct + ρ sin θ) (9)

We can adapt this to find the general solution of the Helmholtz Equation (1) which is independent
of the azimuthal angle. For time-dependence e−iωt = e−iKct, the function F must take the form

F (z + iρ cos θ, ct + ρ sin θ) = g(z + iρ cos θ) e−iK(ct+ρ sin θ) (10)

and then the spatial part of Ψ in (9) becomes

ψ(ρ, z) =
1
2π

∫ 2π

0
dθ g(z + iρ cos θ) e−iKρ sin θ (11)

We can verify that this is a solution of the Helmholtz equation as follows. Let G(ρ, z, θ) = g(z +
iρ cos θ) e−iKρ sin θ. A short calculation shows that (∇2+K2)G = −ρ−2∂2

θG and so 2π(∇2+K2)ψ =
−ρ−2∂θG|2π

0 = 0. Thus the ψ(ρ, z) of (11) is the most general form of the scalar wavefunction
corresponding to axially symmetric monochromatic beams.

Note that on the beam axis (ρ = 0) we get

ψ(0, z) = g(z) (12)

Thus the amplitude function g in (11) given by the axial value of the beam wavefunction.
There is a one-to-one correspondence between (11) and the m = 0 generalized Bessel beam

solution (8). Since k2 + q2 = K2 we can write ψ0(r) as an integral over q instead of over k:

ψ0(r) =
∫ K

0
dq h(q)J0

(
ρ
√

K2 − q2
)

eiqz h(q) =
q√

K2 − q2
f

(√
K2 − q2

)
(13)

The zero-order Bessel function containing the square root can be rewritten by using Bessel’s integral
([8, Section 2.21]), which transforms (13) into

ψ0(ρ, z) =
1
2π

∫ 2π

0
dθe−iKρ sin θ

∫ K

0
dq h(q)eiq(z+iρ cos θ) (14)
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Comparison of (11) and (14) shows that, for the m = 0 generalized Bessel beams, the amplitude
function g is given by

g(z + iρ cos θ) =
∫ K

0
dq h(q)eiq(z+iρ cos θ) (15)

The axial form of ψ is thus equal to the finite Fourier transform of h(q):

ψ(0, z) = g(z) =
∫ K

0
dq h(q)eiqz (16)

3. CONSERVATION LAWS AND BEAM INVARIANTS

The energy, momentum and angular momentum densities of an electromagnetic field in free space
are, in Gaussian units, given by [1]

u(r, t) =
1
8π

(E2 + B2), p(r, t) =
1

4πc
E×B, j(r, t) = r× p(r, t) (17)

Here E(r, t) and B(r, t) are the real fields. For monochromatic fields it is convenient to work in
terms of complex fields E(r) and B(r) with the real electric field being given by

E(r, t)=Re
{
E(r)e−iωt

}
=Re{[Er(r)+iEi(r)][cosωt−i sinωt]}=Er(r) cos ωt+Ei(r) sinωt (18)

The average of u(r, t) over one period 2π/ω is

ū(r) =
1
8π
{E(r) ·E∗(r) + B(r) ·B∗(r)} (19)

Likewise the cycle-averaged momentum density is

p̄(r) =
1

16πc
[E(r)×B∗(r) + E∗(r)×B(r)] (20)

The conservation of energy equation, ∇·S+ ∂tu = 0, where S = c2p is the energy flux density, has
the cycle-average

∇ · p̄ = ∂xp̄x + ∂yp̄y + ∂z p̄z = 0 (21)

Applying
∫

d2r =
∫∞
−∞ dx

∫∞
−∞ dy =

∫∞
0 dρρ

∫ 2π
0 dφ to (21) gives, for transversely finite beams

propagating in the z direction [9]

∂z

∫
d2r p̄z = 0, or P ′

z =
∫

d2r p̄z = constant (22)

We use the notation P ′
z, since dP ′

z = P ′
zdz is total z-component momentum contained in a transverse

slice of the beam, of thickness dz. Equation (22) states that the momentum content per unit length,
along the direction of net propagation of the beam, is an invariant. Note that the invariance of the
momentum content per unit length is derived from the conservation of energy.

The conservation of momentum equation is expressed in terms of the stress (or momentum flux
density) tensor

∂tpi +
∑

j

∂jτij = 0, τij =
1
4π

[
1
2
(E2 + B2)δij − EiEj −BiBj

]
(23)

Taking the cycle average gives
∑
j

∂j τ̄ij = 0, and operating with
∫

d2r gives ∂z

∫
d2rτ̄iz = 0 (i =

x, y, z). Thus momentum conservation leads to three invariants [9]

T ′xz =
∫

d2r τ̄xz = − 1
4π

∫
d2r

[
ExEz + BxBz

]

T ′yz =
∫

d2r τ̄yz = − 1
4π

∫
d2r

[
EyEz + ByBz

]

T ′zz =
∫

d2r τ̄zz =
1
8π

∫
d2r

[
E2

x + E2
y − E2

z + B2
x + B2

y −B2
z

]
(24)
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Three more invariants follow from the conservation of angular momentum, ∂tji +
∑
`

∂`µ`i = 0,

where the angular momentum flux density tensor µ`i =
∑
j

∑
k

εijkxjτk` is defined in terms of the

momentum flux density tensor τij [10]. These invariants are [9]

M ′
zx =

∫
d2r µ̄zx =

∫
d2r[yτ̄zz − zτ̄yz]

M ′
zy =

∫
d2r µ̄zy =

∫
d2r[zτ̄xz − xτ̄zz]

M ′
zz =

∫
d2r µ̄zz =

∫
d2r[xτ̄yz − yτ̄xz]

(25)

Thus there are seven universal invariants of electromagnetic beams, arising from the conservation
of energy, momentum and angular momentum. Perhaps surprisingly, the energy per unit length
of the beam, U ′ =

∫
d2r ū, is not always an invariant, although it is constant for the types of

generalized Bessel beams discussed in [6], as is J ′z =
∫

d2rj̄z.

4. NON-EXISTENCE THEOREMS

In textbooks a light beam is usually represented by a plane wave, with E, B and the propagation
vector k everywhere mutually perpendicular. This ‘beam’ can be everywhere linearly polarized
in the same direction, or everywhere circularly polarized in the same plane, and its energy is
everywhere transported in a fixed direction at the speed of light. It has been shown in [11] that
none of these properties can hold for a transversely finite beam. We shall just state the theorems,
except for the one relating to linear polarization, for which the proof in [11] is incomplete.

(i) Pure TEM beams do not exist.
(ii) Beams of fixed linear polarization do not exist.
(iii) Beams which are everywhere circularly polarized in the same direction do not exist.
(iv) Beams or pulses within which the energy velocity [12] is everywhere in the same direction and

of magnitude c do not exist.

Proof of (ii): Suppose E = (F (x, y, z), 0, 0), so the beam is linearly polarized along x̂, everywhere.
Then from the Maxwell curl equations, with e−iKct time dependence, we have iKB = ∇ × E =
(0, ∂z,−∂y)F , and iK∇×B =

(−[∂2
y + ∂2

z ], ∂x∂y, ∂x∂z

)
F = K2E. Hence (∂2

y +∂2
z +K2)F = 0 and

∂x∂yF = 0 = ∂x∂zF . The last two equations imply F (x, y, z) = f(x)+ g(z)+h(y, z), which cannot
represent a beam localized transversely in the x direction.

5. FOCAL PLANE ZEROS, AND DISCUSSION

We have seen that electromagnetic beams can be constructed from solutions of the scalar Helmholtz
Equation (1). In particular the TM, TE, ‘LP’ and ‘CP’ beams have their vector potentials propor-
tional (respectively) to

(0, 0, ψ), (∂yψ,−∂xψ, 0), (ψ, 0, 0) and (−iψ, ψ, 0) (26)

(The quotation marks indicate that the ‘LP’ and ‘CP’ beams are fully linearly and circularly
polarized only in the plane wave limit: compare theorems (ii) and (iii) of the previous section.)

What are the universal properties of physically acceptable solutions ψ? We have already seen
that seven beam invariants must exist. We also saw that certain textbook properties of electro-
magnetic beams cannot hold for laterally finite beams. Here we argue that an infinity of zeros of
ψ must occur in the focal plane.

The solutions ψ(r) of the Helmholtz equation are, in general, complex functions of position,
ψ = ψr + iψi. The real and imaginary parts ψr and ψi are (in free space) smooth functions of
position. These functions are zero on surfaces Sr and Si, and where these surfaces meet (on curves
C in space) both ψr and ψi are zero. If we write

ψ(r) = M(r)eiP (r) =
[
ψ2

r + ψ2
i

] 1
2 exp

(
i arctan

ψi

ψr

)
(27)
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Figure 1: Isophase surfaces (blue) of the j0(KR) beam, Equation (5), plotted for Kb = 6, at intervals of π/6.
(The three-dimensional picture is obtained by rotating about the z-axis.) The surfaces with phase equal to
an integer multiple of π converge onto the circles ρ = [(X/K)2 + b2]

1
2 , where tanX = X. The other isophase

surfaces converge onto the zeros of j0(KR) in the z = 0 plane, namely on the circles ρn = [(nπ/K)2 + b2]
1
2 .

Surfaces of constant modulus are shown in black.

we see that, on any such curve C, the modulus M(x) is zero, and the phase P (r) is indeterminate.
Nye and Berry [13] called these curves wave dislocations; Chapter 5 of Nye’s book [14] gives
illustrations of such phase singularities.

We give a topological argument for the existence of zeros of ψ in the focal plane, on the assump-
tion that the isophase surfaces intersect the focal plane. At the zeros of ψ the phase can be any
real number, but we exclude integer multiples of π, as explained below.

The focal plane is a plane of symmetry for an ideal beam; we can take it to be the z = 0 plane,
and can also take the phase of ψ to be zero at the origin. Then the isophase surfaces correspond
to negative P (r) for z < 0 and positive P (r) for z > 0. The surfaces P = −nπ and P = nπ can
meet where ψ is not zero, since the phase difference is an integer (n) multiple of 2π. These isophase
surfaces are concave toward the origin, since a physical beam is converging toward the focal region
for z < 0 and diverging from it for z > 0. The other isophase surfaces can only meet on the focal
plane if on it there exist curves where ψ is zero. On such curves (circles, in the simplest case) the
phase surfaces P = −π/2 and P = +π/2 can meet, for example. The surfaces with 0 < |P | < π
meet on the first zero curve, π < |P | < 2π meet on the next, and so on. Figure 1 illustrates
phenomenon, which I conjecture to be universal at the focal plane. Because of the topological
nature of the above argument, we expect the zeros to persist even when the beam is perturbed (for
example, focused by an imperfect lens or mirror). The focal plane would then be distorted to a
nearly-planar surface, and the circles of zeros to approximately circular closed curves, where the
perturbed phase surfaces ±P meet.

One counter-example to the above conjecture (of the universality of rings of zeros in the focal
plane) appears to be separable spheroidal beams, for which ψ(ξ, η, φ) = R(ξ)S(η)eimφ, with ρ =
b[(ξ2 + 1)(1− η2)]

1
2 , z = bξη. The focal plane z = 0 corresponds to ξ = 0 for ρ ≤ b and η = 0 for

ρ ≥ b. Thus if S(η) is zero for η = 0, ψ = 0 for ρ ≥ b in the focal plane, and the −P and +P
isophase surfaces can meet anywhere on the focal plane outside of the central disk ρ ≤ b. However,
such spheroidal wavefunctions have been shown to be non-physical [15].
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