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A wavefunction for liquid He4 with a surface is constructed, and a variational calcula­
tion to minimize the additional surface energy gives an integra-differential equation for the 
function characterizing the surface. The surface structure can be determined in terms of 
bulk properties provided certain approximations are made for the density and pair correla­
tion functions near the surface. 

§ I. Introduction 

In a recent paper/) the problem of bound states of He3 atoms on the surface 

of liquid He 4 is reduced to that of the motion of a particle in an effective potential. 

This potential is defined in terms of correlation functions which depend on the 

surface structure of pure He4
• There are several other problems, for example 

those of surface energy and surface excitations, which depend for their resolution 

on knowledge of surface structure. 

In this paper an attempt is made to calculate this structure by setting up a 

wavefunction with a surface, and minimizing the energy associated with the ex­

istence of the surface. This approach is different from that used in,2
) where exact 

formal expressions for the surface energy are derived in terms of the ground 

state wavefunction, without the latter being specified. The method used here is 

designed to determine the wavefunction, and may thus also be used to calculate 

the surface tension. 

§ 2. Surface energy 

Consider a system of N He4 atoms in a box of side L, with Hamiltonian 

(1) 

ground state wavefunction (/)(r1···rN), and energy E: 

(2) 

By specifying periodic boundary conditions, (/) is defined in all space, but in (2), 
E is understood to be the energy of a system of N He4 atoms. 

We now impose a surface at one face of the box (e.g. the one at z = O) by 

taking the wavefunction 
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?J! = Sr:b, (3) 

This choice of a Hartree product is the simplest possible one g1vmg Bose sym­
metry and a precisely defined surface, and wavefunctions of the type (3), with 
various choices for @, have been widely used in studying Bose systems.8

)-lO) The 
function s (z), which is to be determined, tends to unity deep inside the fluid, 
and goes to zero outside. The energy of the fluid now contains a surface term 
E 8 , which we will define by 

(4) 

The integration in (4) Is limited to [0, L] for each x and y coordinate, but 
extends from - L to + oo for each z coordinate. Using (1), (2) and (3) we 

find 

_ Nh} ~dNr(V1SYr:b2 

E----"----------2-----'---
s 2m ~dNr(Sr:bY 

_ Nh2 ~dNr(s'(z1)/s(z1)Y?JI' 2 

- 2m ~dNr?f! 2 
(5) 

In terms of the number density n (z) defined by 

n (z1) = N S dN-1r?JI'21 f dNr?J!\ (6) 

the surface term can be written 

fi,2 s Es =- drn (z) (s' (z) js(z) )2 

2m 

or (7) 

Thus the energy of the state ?J! is greater than that of (b by a positive-definite 
term proportional "to the surface area. The usual definition of surface energy 
is2),4) 

(8) 

where 

(9) 

is the energy density in the system (tending to E0 in the bulk), and n 0 is the 
bulk number density. The expression for es 1s arrived at by postulating that 
the surface energy is 
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es= s dNr?JI'H?JI'j s dNr?Ji' 2 -NE0jn0• (10) 

Thus Es and e8 are the same if NEo/no is identified with E. 

§ 3. Variational calculation 

We shall take variations m s to minimize E8 • Now n Is a functional of s, 

and is subject to the constraint 

f dzn (z) = n0L. (11) 

Thus for arbitrary L we would need to introduce a Lagrange multiplier cor­

responding to this constraint. However, here we shall consider only the limit 

L~oo, and it is then sufficient to replace (11) by the boundary condition n~n0, 

s~ 1 in the bulk. 
Taking variations in s, and setting oE8 = 0 gives the equation 

f dr{on(s' js)2 + 2n(s' js) [os' js-s'os/s2
]} =0. (12) 

The variation on can be determined in terms of OS from the defining equation 

(6): we have 

on (zl) s dNr?Ji' 2+ 2n (z1) s dNr(~) ?Ji' 2 = 2N s dN-lr(~) ?Ji' 2
• (13) 

Using 

(14) 

and defining a pair density function, 

(15) 

gives the functional relation 

Thus we have 

(17) 

and the equation for s reads 
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It is convenient to define a pair correlation function g in terms of the pair 

density function n 2 : 

(19) 

Then we can write, m the limit of large L, 

(20) 

where 

(21) 

From the definition of the problem we see that g (r1, r2) is a function of 

lx1-x2 l and jy1 -y2 j, apart from regions of negligible volume near the edges of 

the box. It thus follows from the result 

(22) 

that the limit on the right-hand side of (21) exists if g (rh r 2) -1 goes to zero 

faster than the inverse of jx1-x2 l or jy1 -y2 j as one or both of these tend to 

infinity. Thus provided this mild requirement is satisfied, Eqs. (19) rv (21) give 

a formal solution to the problem of the surface structure of a Bose :fluid, subject 

only to the assumption that the surface can be described by a wavefunction of 

the type given in Eq. (3). 

§ 4. An approximate reduction 

It is possible to determine s in terms of the bulk pair correlation function 

of the :fluid provided two further approximations are made. The first of these 

is to assume that g is a function of r12 = !r1 - r2! only. This approximation is 

exact when both r 1 and r 2 are deep inside the :fluid, and thus identifies g (r12) 
with Uo (r12), the bulk pair correlation function. It also holds in the limit of no 

interactions among the particles, i.e. when ({) = 1, ?J! =lis (zi) (in which case g=1). 
Approximating g by Uo (r12), and using (22), 

G (zl- z2) =lim 4 rL dx rL dy [go ( {x2 + y 2 + (zl- z2Y}112) -1] 
L-+<JJ Jo Jo 

(23) 

We note in passing that the Fourier transform G~c of G (z) may be determined 
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directly from the experimentally known liquid structure factor Fk, 

4nn loo =1+--0 dr rsinkr[g0 (r) -1]. 
k 0 

(24) 

For, 

Gk = s:oo dzeikzG (z) 

= 4n loo dz cos kz loo dr r[g0 (r) -1] 

4n loo =- dr rsinkr[g0 (r) -1] 
k 0 

= n 0-
1 (Fk -1). (25) 

It remains to find the relation between n and s. Equation (16) suggests 

the functional form 

n (z) = n0s2 (z) eu(z); (26) 

taking variations of (26) and using (16) and (19), we find that u satisfies 

IJu (z1) = 2 Sdr2 IJs (z2) n (z2) [g (rh r2) -1]. 
s(z2) 

(27) 

An approximate solution of this equation can be obtained by replacing g(rh r2) 

by g0 (r12). Then we have 

which, to lowest order in n0, has the solution 

u (z1) =noS dr2 [s2 (z2) eu<z2
) -1] [go (r12) -1] 

=noS dz2 [s2 Cz2) eu<z2
) -1] G (z1- z 2). 

(28) 

(29) 

With these approximations, s is determined in teams of g0 by the non-linear 

integra-differential equation 

(30) 

This equation has some unexpected properties. For example, it cannot have a 

solution which goes to zero exponentially outside the fluid (as does the most 

obvious trial form for s, namely a Fermi function, or a power of such a function10
)). 

This is because for such functions the left side of (30) tends to a constant outside 
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the fluid, while the right side tends to zero. It is not clear at present whether 
the indicated long-range behaviour is a consequence of the approximations made, 
or whether it is an intrinsic property of the surface of a Bose fluid. 
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