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The Surface of Liquid ‘He, Based on the Idea That
[1:<;f(r,) Describes a Droplet
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We argue that the wave function []£(r;;) describes the ground state of a
droplet of liquid *He. With this wave function, expressions for the surface
energy & and the surface tension o of liquid *He at T=0 are derived.
Choosing particular {(r) and density profile, and the simplest pair cor-
relation function, we plot the variation of ¢ and o with surface thickness t.
For slow variation of density at the surface, ¢ becomes proportional fo t.
The surface thickness is found to be about 4 A. The inclusior of phonon
zero-point motion correlations in the wave function leads (at T=0) o a
—R? log R term in the energy of a droplet of radius R, implying a logarithmic
divergence in both = and o. At T> @ the phonon correlations give a log T
dependence of & and o and a negative bulk specific heat. Suggestions as to
the reason for these problems are explored, but no definite conclusions are
reached.

1., INTRODUCTION

The ground state of a drop of liquid helium is usually approximated by
a Bijl-Jastrow product over pairs times a Hartree factor, namely

ﬁ,- f(r.-,-)ﬁ s(n)

The function s{r;) is used to control the density variation at the surface, and
is determined variationally.“
In this paper we put forward the view that the function

N
q’(lx-"!N)=nf(rij) (1)
i<
already describes a droplet, and thus necessarily has a surface, There are
three arguments to support this: First we note that ¥ is both translationally
763
0022-2291/78/0600-0763505.00/0 © 1978 Plenum Publishing Corporation



764 I. Lekner and J. R. Henderson

and rotationally invariant, so that it couild describe only spherically sym-
metric self-bound systems. Second, we can argue by analogy with a classi-
cal fluid consisting of atoms interacting with pairwise central forces. This
has a probability density proportional to

exp | — % Z.},: u(r;,—)}

and thus has the same form as ¥?, the quantum probability density. For
temperatures and pressures lying between the triple and the critical points,
this probability density will describe a drop in equilibrium with its vapor.
[We note in passing that this classical analogy implies that the function f(r)
should not be monotonically increasing (as is usually assumed) if it is to
describe a self-bound system, since a classical system does not have
condensation unless the pair potential u(r) contains an attractive part.
A similar view has been expressed recently by De Michelis and Reatto.s]
The third argument in favor of our assertion that [ f(r;) describes a droplet
is provided cumulatively by the results of this paper, where we calculate the
surface energy and the surface tension of the Bijl-Jastrow product (1). The
results, both analytically and numerically, are entirely satisfactory provided
we leave out the r~” correlations, which Reatto and Chester® assert must
exist in the bulk pair function f for all Bose systems that have phonon
excitations.

Our calculation of the surface energy and tension with the wave
function ¥ of Eq. (1) can be regarded as the zeroth-order approach to the
problem. Tt is not a variational calculation, because the pair function f is
determined by minimizing the total energy, which is dominated by the bulk
energy when the radius of the drop is macroscopic. That is, we take
whatever function minimizes the bulk energy, and calculate the consequent
surface energy and tension. There is no doubt that the inclusion of a
variational factor such as s(r) will lower the total energy and hence prob-
ably give a better description of the surface. We believe, however, that our
zeroth-order calculation is simpler and vet both analytically and numeric-
ally not very far from reality.

In Section 2 we calculate the surface energy of a spherical drap at
T =0 directly from the expectation value of the Hamiltonian in the state
7. By letting the radius of the drop tend to infinity, we discuss the simpler
case of a plane surface with gravity and wall forces absent. Extensive use is
made of results previously derived for monatomic classical liquids (Lekner
and Henderson,” referred to below as LH).

In Section 3 our results for £ (surface energy per unit arca) together
with experimental values for € and the binding energy per atom in the bulk
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are used to calculate the surface thickness of liquid *He. We find a 10-90
thickness of about 3.9 A, in good agreement with recent estimates.

In Section 4 we use the Toda® and Brout and N:.!.uenberg9 expression
for the surface tension ¢ of a quantum fluid to obtain o for the wave
function ¥. Curves of ¢ and ¢ vs. A (a length characterizing the density
variation at the surface) are computed, using the simplest approximation
for the pair correlation function g(r). Since o =¢ at absolute zero, the
curves should intercept at the value of A that corresponds to the actual
density profile. Despite the crude g(r), this method yields a surface thick-
ness in good agreement with Section 3 (about 3.4 A).

Finally, in Section 5 we find that the inclusion of Reatto and Chester’s
phonon factor leads to unphysical results, namely divergences in ¢ and o
and a negative bulk specific heat. We conclude that one of the following is
incorrect: the phonon factor, or our assumption that the wave function ¥ is
enough to describe a surface.

2. SURFACE ENERGY OF [[f(rp)

The expectation value of the Hamiltonian

ﬁZ N ) NN
=5 L_; Vi+XTaly) (2}

i<i

when the wave function is of the form (1) may be written as (see, for
example, Leknerm)

2

1 h 2
(H)y=3 I dr, drz n(ry, rz)[u(ru)——(¢"(r12)+*—¢’(r12))] (3)
2 4m riz
where the two-particle density correlation function is defined by
n(ry, r)=N(N— 1)j drs: - dry \vz/j' dry -« - dey W° @)

and where we have written

fry=exp 3 ()] (5)
To extract the surface part of (3), we make the approximation
n{ry, ) =n(r)n(r2)glr2) %)

where n(ry) is the single-particle density measured relative to the center of
mass, and g(r12) is the pair correlation function. Equation (6) really has two
approximations in it: The first is that we have broken the translational
invariance of the system described by ¥ of Eq. (1), and have by some
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means localized the center of mass of the droplet at the origin. The second
approximation is that we have assumed that the pair correlation function is
a function of ry, only, which can only be true inside the liquid. This second
approximation has been discussed by LH (Section 3) in the classical
context; for our purposes the disadvantage of its numerical inaccuracy is
outweighed by the simplicity of the analytic results which it makes possible.

With the approximation (6), then, the expectation value of the energy
becomes

H) =} [ dry dez () ™)
where ,
b)Y =g u) -] ")+ 200} ®)

In bipolar coordinates (Hill, '* p. 203), Eq. (7) reads
ryhr,

(H)=Qn) f dry ran(r) Lmdrz ran(ra) [ drrh(r) 9)

ri=ral

By successive interchange of the order of integration, the energy may be
written as

(H)=2m Lm drr*h(r)Q(r) (10)

where

r+r,

Q)= 2n/r) L dry rln(rl)j dra rai(r2) (1)
r—rq]
The function Q is proportional to the volume overlap of two identical
spherical density distributions whose centers are separated by distance 7.
The function Q{r) may be evaluated analytically for simple density varia-
tions. The simplest of these is the step function

Hg, N<R

n(h):{ 0, n>R

(12)

For the step-function density, Q becomes né times the volume common to
two spheres of radius R separated by distance r. This function is well
known (Hill,"* p. 210):

s pa2fi 3 _,_) 1 ;)3]
eR nn[l 2(212 +2(2R ., (r<2R)
0, (r>2R)

Qulr)= (13)
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We have thus shown that the expectation value of the energy of a droplet
with a step-function density (radius R) is

2R

E(R)= GmR*Y2mn j- dr*h(r) (volume term)
)

2R
—A7R*w/Dnk j dr r*h(r) (surface term)

&

2R
+ir*nd I dre’h(r) {constant term) (14)
0

When h(r) is short-ranged the upper limit may be replaced by infinity in
each case, and we regain the usual volume energy

E/N =2ang L drr’h(r) (15)
plus a step-function contribution to the energy per unit area of the surface,
£o=—3mn} [ drr*h(r) (16)

0

When A(r) varies as r* due to the zero-point vibration of the phonons, the
separation into volume, surface, and constant terms is lost. We shall return
to this problem in Section 5.

Having shown how we can extract a surface energy from ¥ for spheri-
cal symmetry, we turn to the simpler case of a plane geometry, which is the
R - oo limit of the spherical case. For the plane geometry we can use our
work on the surface energy of a classical liquid-vapor interface (LH,
Section 3), since there is mathematically a one-to-one correspondence
between a classical system with probability distribution

1 NN
exp { __I:Z E u("ii)}
i<j
and our quantum system with probability distribution given by
2 NN
¥ =exp {2 T b))}
<j

From (3), with the plane surface approximation

n(ry, r2)=n(z1)n(z2)g(r12) a7y
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we have for the surface energy per unit area [cf. LH,” Egs. (69), (70)]

e=mng Lw drrh (1) =3 + qu(r)+ g2(r)) (18)

with

qi{r)=— ZJ-:rdz z 8f(z)— 2r[J-rm dz 6f(z)— J’ O;dz: Sf(z)]

oc

@)= | dzife) | de 6z (19)
The function 8f is defined by
n(z)/no=f(z)=folz)+8f(z) (20)

where fj is a step function (see Fig. 1).
The location of the surface is not arbitrary, since the derivation of (18)
and (19) depends on the property

a0

J dz 8f(z)=0 21)

which defines the (Gibbs) dividing surface. In the above formulas the
dividing surface is at z = 0.

The first term of (18) has already been derived [Eq. (16)]; the spheri-
cal counterparts of the other terms can also be derived and can be shown to
be the same as (19) in the limit of large R, as expected.

For an exponential density variation

_ no(1—3 e™™), z<0
n(z)—{;nn ot J (22)
or

8f(z)=%sgn z exp (—|zI/A) (23)

“H
e

df
i: +

Fig. 1. The functions f and &f defining the density
profile.
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the surface energy becomes (LH, Section 4)

E= —%-rm%j drrh (P2 + A% [4— e @+ r/A)]} (24)
4]
For a Fermi function density variation,
n(z)=rno/(e* +1) (25)
or
8f(z) = (sgn z)/(e""* +1) (26)
it is straightforward to show (compare with Bowley’s' result)
o0 r/8
£=— 2 [ drrh (r){r2+462 L dx—= } 2n
2 ) e _‘1

As the surface thickness (proportional to A and 8 in the two chosen
densities) goes to zero, we regain the step-function result, Eq. (16), from
both (24) and (27). As the surface thickness becomes large compared to the
range of h(r), we have the limiting forms

£ Ex= —3TNEA J drr*h(r) (28)

0
and

£ > Ex= —2rmﬁ§L drr*h(r) (29)

The fact that in the limit of large surface thickness the surface energy
becomes proportional to the thickness of the liquid-vacuum interface can
be shown more generally by a Taylor expansion method (LH, Section 5).
One finds that, neglecting second-order and higher derivatives of the
density, the surface energy is given by

£ =2mnd f dr rzh(r){ Eo dz [6f ()]’ - 2L® dz Bf(z)} (30)

When the density variation is characterized by a single length (such as A or
#) both of the integrals in the curly brackets are proportional to this length;
in particular, on inserting (23) or (26) into (30), we regain (28) or (29).

In Fig. 2 we have plotted the integrands of the expressions (16), (24),
and (28) for the surface energy. The full expression (24) and the slowly
varying density limit (28) are both plotted for A =d, where d is the
hard-core diameter of the Lennard-Jones potential

u(ry=4do[(d/r)*—(d/n°]



770 J, Lekner and J. R. Henderson

.3 o

.1-

.l.

° H 1 3 o
-1 4

-.1.|

Fig. 2. Integrands of the exponential density expressions for ¢ and ex at
A =4, together with the integrand for the limiting expression g, We took
d=2.6 A and v=103K. The areas under the curves times 2mnid*v
(=1.431 K/A? or 1.975 erg/em?) give the surface energies.

The function ¢ was taken to be —2(d/r)’ [this is close to the optimum
among forms of the type —a(b/r)" tried by McMillan'?]. The pair cor-
relation function was approximated by .
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Fig. 3. Surface energy and surface tension for the exponential density
profile. £ and £ from Eqs. (24) and (28); o and & from Eqgs. (44) and {45).

In Fig. 3 the values of the surface energy obtained for the exponential
density variation are shown as a function of A/d. We see that ¢ is greater
than e, and increases monotonically with A, The fact that £ does not show
even a local minimum at some physical value of A/d need not surprise us,
since we are not doing a variational calculation. However, we should issue
a word of caution that the choice of g has a large effect on the curves in Fig.
3. From Fig. 2 it can be seen that the magnitude of g in the region r<d
affects the negative part of the integrand, while the first maximum, which is
present in a realistic g, affects the positive part. It so happens that the crude
approximation

g =exp [—2(d/r)’]

contains canceling errors that lead to a very reasonable result. If a more
realistic pair correlation function is used in order to include the effect of a
maximum, then equal care must be exercised in the r < d region.

3. THE SURFACE THICKNESS

The problem of assigning one length as the thickness of the surface has
no unique solution when one is comparing different density profiles. The
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length we have found most useful for numerical comparisons is the 10-90
thickness, which is the distance in which the density rises from 10% of its
bulk value of 90% of its bulk value, If we call this thickness ¢, then for the
exponential and Fermi function profiles we have

t=2Alog 5=3.22A
and
=26log9=4.398

In terms of this definition we see that the exponential and Fermi profiles
give the same thickness when

A/8 = (log9/log 5)=1.365

Consider the slowly varying density limiting expressions (28) and (29)
for the surface energy. From (14} we note that these can be written as

Ew= —~2AE/V (31)
and
f= —8E/V (32)

where E/V is the bulk energy per unit volume. [Note that these expres-
sions are the same when A = (4/3)8, which compares well with the 10-90
equivalence condition A = 1.3655.] We are now in a position to evaluate
the surface thickness from our £(A) curve and experimental data: Rewrite
(31)as

4/ £ \ex
=) 33

3\E/V/ e (33)
For the quantities in the parentheses we can substitute the experimental
values e=0.373erg/cm’ (Atkins and Narahara'>) and E/N=
-0.99x107 " erg/atom, N/V=no=22X% 10% atoms/cm’; this gives A =
2.3(ew/e) A. With d =2.6 A we then find

tw/e=1,14 A/d (34)

In Fig. 4 we plot this line, together with the ratio £./¢ obtained from
results of Fig. 3. The line (34) and the curve e~/¢ intercept at A/d =0.46,
which gives a 10-90 thickness

r=39A

This estimate has the advantage that nature evaluates two very difficult
integrals for us (¢ and E/N), and all we have had to find is the ratio e«/¢,
which we expect to be insensitive to the errors in our choice of the pair
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Fig. 4. Determination of the surface thickness from Eq. {34) and the results

of Fig. 3.

correlation function g and the pair function f. The agreement with recent
estimates, based on a comparatively enormous amount of numerical work,
is good: Chang and Cohen’ obtained A =1.4 A and §=1.0 A, giving
t=46and 4.4 A, respectively, while Liu et al.* calculate r=5 A.

We conclude this section by pointing out the physical meaning of the
slowly varying density limits, Eqs. (31) and (32). Consider Eq. (31) first
and let A be the area of the surface. Then, according to (31), the surface
energy is

AE = Ae = —3AA(E/ V)

The 10-90 thickness of the surface is 3.224, so that the volume AV of the
interface is approximately 3.22AA. The number of atoms in the interface is
AN =1n, AV, so that

AE = —3(2/3.22)(AN)E/N ~ —3AN)E/N

The same approximate relation follows from the Fermi-function limiting
form (32). The physical meaning of (31) and (32} is thus clear: The positive
surface energy corresponds to the loss of approximately one-half the
binding energy per atom for every atom in the surface layer.
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4. SURFACE TENSION OF ] f(ry)

Toda® and Brout and Nauenbergg have derived general expressions
for the surface tension of a quantum liquid. Their result is the sum of a
potential energy contribution o, and a kinetic energy contribution o :

o=0o, 0 (35)
where, at T =0,

2~ 3232 dd(r12)
12 driz

Op = (36)

2
r
ALL, [ dry _{ dr; n(r, r2} !
and
2

1 N# 3
o (N L) @

The above formulas have been written for a plane interface in the x—y
plane, of area L,L, The potential energy contribution is the classical
expression evaluated in LH, and the kinetic energy term may be put into
the same form as the potential energy term when the wave function is a
product of pair functions. We have, with

V= B=T T ()

i<jf

the result
2

a &
(32‘) = I dry -+ drn ‘I‘m‘l’

ab\?2 14a°d

] . +_ —r—

Idn drn ‘I’[ (621) 2 aﬁ]
Integrating the rhs of the first equality by parts, we also have
& v 1 oD\ 2
2=~ a2

<azf> J’drl v dz, 4 f T~ 9z

Therefore

1
('—6—2> = I dl'l dI'N 11’28 CD

Zl

d¢(712) 2 d1 d¢‘(f12)]}w

-1 J- {
_ . 1 38
4 dry drx rizt dra T d’12lr12 driz G
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Thus
1 n J’ zi2—xi2 d [ 1 d‘f’(flz)] 2
= —_—— N— P —_ e | ——_ ’\If
Tk 4L,L,( m)N( 1)) drye - dew rz drialnz dro
1 —h* J' j 3232-ri2 d ri d¢(’12)]
AL.L, (2m) T | drzn(e,r) ro  drislra dra @9)
For a plane surface we can write
n(ry, r2)= r(z)n(22)g(r12, 21, 22) (40)
and then the surface tension reduces to (cf. LH, Section 2)
- [ =] [=.2] a0
o =-5J- dz, n(z,) J dzz n(z2) [ drg(r, z1, z2)
oo o 232l
2 Ny
x [r2—3z%z][u'+h—(£) | (41)
Zm\r

If g(r, z;, z,) is approximated by g(r), we get [cf. Eq. (50) of LH]

o= gnﬁ f; dr g(r)[u’ +£—(%)f} [%r“ +pul(r)+ Pz(")] (42)

where

pi(r)=-2 j‘r dz 8f(z) z(r* = 2%)
. (43)
paAr) = J.‘ dzq 6f(z1) I B dz: 8f(z2) (r* —3z%2)

For the exponential density profile (23} we have from LH, Eq. (77)

_7a (T , ﬁ_zsﬁ_’)']
d ZnoJ‘_Ddrg(r)[u +2m(r
r 4 2rt -.-/.\( r 77 r3)]}
g L -5 - R
{2 [18 e (1818745 05) || @)

which has the large-A limit [cf. LH, Eq. (80)]

=121r° [rﬁﬂ’]s
000 =30n0y X drg(r)|u +2m(r) r 45)

For the Fermi-function density profile {26) we use the methods of LH
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(Section 4) to evaluate p; and p,. We find

0'=an J:o drg(r)[u'+—hf!—(£)’]

2 2m\r
r4 ) . /8 X . I'2
X { =+ —
{4 5L d"e"—1(3“‘C 52)} (46)
The large-& limit is
[l (8 )
T >0 45”08 X drg(r)l u +2m L 47)

Note that the exponential and Fermi profiles give the same oo, if A =325,
whereas the surface energies were equal in this limit when A =38.

The limiting results obtained above are special cases of the general
formula for slowly varying density [c¢f. LH, Eq. (83)]

2wl )

which is obtained by a Taylor expansion of the density, neglecting fourth-
order and higher derivatives of the density. As in the case of surface
energy, the odd derivative terms in the expansion give zero contribution, so
that correction terms are two orders higher in the gradient. In Fig. 5 we
have plotted, in the manner of Fig. 2, the integrand of the step-function
limit for the surface tension

gl wofe SO

along with integrands of the exponential density expression (44) and its
large-A limit (45), at A = d.

The values of surface tension as a function of A/d, obtained with the
zeroth-approximation pair correlation function g = e®, are shown in Fig. 3.
The curves for £ and o intersect at A =(.414 and since € = o at absolute
zero, provided the locatiun of the surface is defined by (21) (see Section 3
of LH), we have another estimate of the surface thickness: t=3.22A =
3.4 A. This value is likely to be less accurate than our previous estimate of
Section 3, since it is based on a first principles calculation with a crude g
and no direct experimental input. Nevertheless, the intercept energy 0.43
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Fig. 5. The surface tension integrands, plotted in the same way as the
energy integrands of Fig. 2. The areas under the curves times 2mnad v
give the surface tensions.

erg/c:m2 is remarkably close to the experimental value of 0.37 erg/ cm?,
implying that the severe approximations that we made to obtain the curves
of Fig. 3 contain canceling errors (see discussion at the end of Section 2).

Sections 2—4 support our initial assertion that [];<; f(r;) describes a
droplet, but we should remember that these results are based on the
assumption that ¢(r) decays rapidly at large r.
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5. PROBLEMS WITH [] f(r;) WHEN ZERO-POINT MOTION
OF PHONONS IS INCLUDED

In the previous sections we found that the wave function

H e¢(’")/2 (50)

i<j

gave good results for the surface energy and thickness of liquid helivm
provided ¢ (r) tends to zero rapidly as r—> ¢0. In particular, the McMillan
form

$(r)=—2d/r)’ (51)

led to reasonable results.

However, Reatto and Chester® have shown that the existence of
phonon excitations in liquid helium implies that a factor of the ground-
state wave function is of the form (50), with

dr)=> b= — (/7% (52)
where
1 me 1/2
b-;(n—oh) ~26A (53)

The term ¢, leads to a logarithmic divergence (to minus infinity) of both
our surface energy and surface tension expressions, (18) and (42). This
divergence has appeared in previous formulations for the surface energy of
liquid helium, and varying attempts have been made at understanding it
(see Bowley' and Chang and Cohen,” both of which are discussed below).
Note also that the divergence invalidates the derivations of the large-
surface-width expressions £« and o«. To see clearly the consequences of
the phonon factor, let us return to the droplet of Section 2 and consider
contributions to the total energy coming from particle separations greater
than 2a, where a is {say) 5 A; then we cantake ¢ =¢,, g=1,andu =0to
obtain the asymptotic value

Be* 1
h
(ry— m P (54)

which can be regarded as an effective repulsive 1/ r* interaction. Inserting
(54) into (14), we find that the direct contribution of the infinite-range
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correlations arising out of the zero-point motion of the phonon modes is

AE= g(hcno)Rs Lm dr '72{ 1- é("r“) + (Lﬂ

2\2R/ " 2\2R
2 2[12 3 R) 3 1a2]
== Y P ) PR 55
SthenaR’| - —Zlog () -3-2 %2 (55)

For a flat surface of area L7, (54) similarly leads to a positive volume term
anda —12 log {L/a) term. So at T =0 the long-range part of the phonon
correlations raises the bulk energy (i.e., from a variational point of view
they should be left out to lower the total energy), and produces a negative
R?log (R/a) term, as well as a negative R> term. The bulk energy is raised
by #c/2ma (=0.58K when a=5A) per atom, which is small in
comparison with the experimental bulk energy, —7.16 K per atom. On the
other hand, the “surface” energy is lowered by (hcno/4m){log (R/a)+%],
which is approximately 0.63 erg/cm” when R = 0.5 mm and a = 5 A. Thus
for R large enough we have that at 7 =0 the “‘surface” energy would be
negative, which seems impossible to accept.

It is known that at finite temperatures the long-range correlations due
to the zero-point motion are exponentially damped, so one might hope that
the above problems in the ground state would disappear at finite tempera-
ture. However we find that this is not so. Reatto and Chester® have shown
that the diagonal part of the density matrix has the form of a product wave
function, with the long-range part due to phonon zero-point motion. The
probability density is thus of the same form as before, with

b>  wTr/he

¢ (n T~ =7 S TR

(56)

and so the kinetic energy term
— (W /Am)V ¢,

in the total energy again has the form of a repulsive interaction. The
screening length #fic/#T is approximately 5.8 A at 1 K. Inserting (56) into
(14) and considering contributions from particle separations greater than
2a, we find that the finite-temperature phonon zero-point motion con-
tribution to the bulk energy is (when 2o TR/Ac > 1)

2 R?® (2nTa
AEy —g(hcno);F( > ) (57)
where
1 x (.  xcosh x)
== +
Flx) 2 sinh x\l sinh x (58)
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The low-temperature expansion gives a negative contribution to the
specific heat proportional to T°, since

Fix)=1—(7/360)x"+ 0% (59)

In fact, the slope of F is always negative, so the screened zero-point motion
contributes a negative specific heat, with a maximum magnitude at T =
0.45x¢c/a. This result is in accord with our statement above that the
correlations due to the zero-point motion of the phonon modes are
equivalent to an effective repulsive  * interaction which is screened ther-
mally, because the higher the temperature, the better the screening, and so
the energy due to the zero-point motion of the phonons decreases with T.
For a of order of the atomic diameter or greater, this negative T specific
heat is an order of magnitude larger than the normal T’ term due to
thermal excitation of phonons, so the total bulk specific heat is negative up
to T=#hc/a=1K. This indicates an instability in the system, since if the
energy decreases with temperature in any region, a spontaneous positive
temperature fluctuation will decrease the total energy and thus rclease
heat, further increasing the temperature, which will in turn decrease the
energy, and so on. Similarly, a negative temperature fluctuation will induce
a continual decrease in temperature,

The surface energy contribution of the zero-point motion of the
phonon modes is readily obtained from (56) and (14). We find

__hcno[ X B £]
A = B sinhx+2F(x) 21(:rgtanh2 (60)

where x = 27 Ta/hc. The derivation of this expression is valid only when
the total surface energy is greater than zero, since a spherical shape is
assumed in (14). The low-temperature (27T « hc/a) expansion is

_ _ﬁcno[ he ) 3 ﬂ_q)z]
Ae = 47 log(wTa +24-0( he (61)

The above expressions are again limited to the region 27TR/#kc » 1, From
(61) we see that the surface contribution to the specific heat is positive,
varies as T, and will become larger than the previously noted negative
T? bulk contribution when 7 =< (fc/3a)a/R)"*. This temperature is of
the order of 10 ° K for a droplet of millimeter size.

The consequences of the long-range correlations arising out of the
zero-point motion of the phonons thus appear to be (i) a negative bulk
specific heat; (ii) a term in the energy varying as — R’ log (R/a)at T =0;
and (iii) a logarithmic temperature dependence of the surface energy at low
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temperatures, with measurable temperature variation at about 107'K and
zero ¢ at about 10 K.

B(:)wley,1 who first met one of the difficulties associated with the
long-range phonon correlations (he found a divergence to minus infinity in
the surface energy at T =0 when these correlations were included), has
postulated that the inclusion of the zero-point motion of the surface modes
would remove this problem. The correlations due to surface-mode zero-
point motion have yet to be evaluated explicitly, though Chang and
Cohen’* have written down an expression for their contribution to the
ground-state wave function. We feel that it is unlikely that the surface-
wave zero-point motion can remove a problem that arises from the exis-
tence of bulk modes, since we expect the correlations due to the surface
mades to be of a different kind, and additional to the phonon modes, rather
than canceling them in a substantial part of the interior.

Another approach to these difficulties is that of Chang and Cohen,’
who use the wave-function

i<j

¥ =] exp [3 ()] Ikl exp [z¢(re)] (62)

where the function t(r) is optimized variationally, as in Bowley’s work.
However, instead of parametrizing ¢, as Bowley did, they eliminate ¢ in
favor of the density n, and parametrize n. [We note in passing that
Bowley’s assumption that r = nge’ leads to the same expression for ¢ as
our work based on [Te®?, plus a small term — (5%/8m)f dr n(r) V2¢(r)]. We
will generalize Chang and Cohen’s result for the energy and give a similar
treatment for the surface tension. The expectation value of the Hamil-
tonian (2) taken with the trial function (62) is readily shown to be [cf. (3)]

(Hy=} [ dry drs n(es, E)u(r) — 7/ 4m) Vi (ri))

—(#*/8m) J dry n(e) Vie(r,) (63)

The Yvon equation

Vanler) = n(en) Vaten)+ | dez nen, 1) Vi (r12) (64)
obtained by differentiating the defining relation for the density
n(r1)=NIdr2---drN \1'2/] dry - drg W (65)

can now be used to rewrite the last term in (63) in terms of the density »
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and the pair function ¢. Then, defining

n(ry, r2)=n(r)n(r)gr, r2) (66)
and

g(r, r2)=exp [ (ri2) +y(r, r2}] (67)

the expectation value of the total energy becomes

<H> =% I dl‘1 dl‘z n(rl, l’2)(L¢(f’12)+ Zﬁ—;’n‘{[vlqﬁ(fu)]z
2

tom I dey n(e)[Vilog n@®)l”  (68)

+V1¢(r12)Viy(ry, 1'2)})

In a uniform fluid, the HNC and PY equations for the pair correlation
function may be used to evaluate vy (see, for example, Feenberg,'” p. 695)

{P(hz) (HNC)
‘)‘(l'lg P)= (69)
log [1+ P(r12)] (PY)
where

__1 o [St)-1]

P(r)= (27r)3no j dklexp (—ik r)]mS(k)

1 = ., IS(k)—1)?

= Inar J; dk k(sin kr}—S(IT (70}
and

Sk)y=1+ng I dr [exp(ik - Difeg(r)—1] 71

is the structure factor. The large-r variation of P(r} {and hence of y) is

determined by the small-k variation of §(k). If we accept the correctness of

the usual form, S(k)- #k/2mc,"”"® then integrating the right-hand side of

(70) by parts and substituting for S{k) gives for the asymptotic form of P(r)
me 1 1 nol

. [ 72
P(r)= 7 hng £ 2wing me rt (72)

Thus we have that
¥(r)= P(r)= (5% /1) + O(r )= —p(n)+ O(r™ (73)

i.e., using the HNC or PY equations, the contributions of the zero-point
phonon correlations cancel in the first term of (68), at least deep inside the
liquid. [We should, however, note that the equivalent classical fluid (u =
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—~T¢) corresponding to the product wave function (1) when ¢ » —b>/r”
has energy per particle and pressure both proportional to the size of the
system, and thus the validity of the HNC and PY equations needs to be
reexamined for this very singular case.] In fact, provided y goes to zero no
slower than r~', (68) will not diverge.

A similar result follows for the surface tension. We find, for the wave
function (62}, that the surface tension is given by (42), the expression
derived for the wave function (1), plus the term

AU:Lley (—;—1:-:—) J- dry "{z)n(z1) (74)

(in this case we find it siinpler to work with a plane surface). When we again
eliminate £ by using the Yvon equation, we find
n d 2
Ao =— -‘- dz n(z)[;— log n(z)]

dm z
ﬁZ

+_
amL.L,

X {Vid{ri2)+ @' (rna)] + Vid(riz) - Viy(rr, r2)} (75)

x surface part of J dry dro n(ry, r2)

The singular part of the second term in (75) has the form [cf. (3) and (18)]

24,2
ﬁnoh

4

* 7 2 !
| arrtstxss+ 7o) (76)
while the singular part of (42)is
242 a0 i
T noh s ﬁ)'
- L drr g(r)( . 7N

and when ¢, varies as r >, these cancel.

Thus it appears that by using the wave function (62) instead of (1), the
divergence in the surface tension and the surface energy has either been
removed, or has been shifted to the density gradient term

J' dr n()[V log n(r)]* (78)

Chang and Cohen'* argue that when a physically reasonable density is
chosen, this term will not be divergent. However, it is not clear whether the
long-range correlation ¢, in the ground state gives such a physicaily
reasonable density.
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To sum up, we have shown that good results for the energy, tension,
and thickness of the surface of liquid *He are obtained with the wave
function [] f(r;), provided r~* correlations due to phonon Zero-paint
motion are left out. When the phonon correlations are included serious
problems arise that may only be overcome by using the method of Chang
and Cohen and the wave function [] f(r;) [1s(r;). The question of whether
it is the wave function [] f(r;) or the phonon correlation factor that is at
fault remains unanswered, however, since the exact density profiles that
follow from the suggested wave functions are not yet known.
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