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The Surface of Liquid 4He, Based on the Idea That 
[L<J(r,j) Describes a Droplet 

J. Lekner and J. R. Henderson 
Physics Department, Victoria University, Wellington, New  Zealand  

( R e c e i v e d  O c t o b e r  6, 1977)  

We argue that the wave function 11 f(rij) describes the ground state of  a 
droplet of  liquid 4He. With this wave function, expressions for the surface 
energy e and the surface tension cr of liquid aBe at T = 0 are derived. 
Choosing particular f(r) and density profile, and the simplest pair cor- 
relation function, we plot the variation of e and cr with surface thickness t. 
For slow variation of density at the surface, e becomes proportional to t. 
The surface thickness is found to be about 4 ~ .  The inclusion of phonon 
zero-point motion correlations in the wave function leads (at T = O) to a 
- R  2 log R term in the energy of  a droplet of radius R,  implying a logarithmic 
divergence in both e and o'. A t  T > 0 the phonon correlations give a log T 
dependence of e and r and a negative bulk specific heat, Suggestions as to 
the reason for these problems are explored, but no definite conclusions are 
reached. 

1. INTRODUCTION 

The  ground state of a drop of liquid helium is usually approximated  by 
a Bi j l -Jas t row product  over  pairs times a Har t ree  factor, namely 

N N 

1-I f(r,j) II  s(r,) 
i < i  l 

The function s(rt) is used to control the density variat ion at the surface, and 
is determined variationally. 1-~ 

In this paper  we put  forward the view that the function 

N 

W(1 . . . . .  N )  = I I  f(r,i) (1) 
i < i  

already describes a droplet,  and thus necessarily has a surface. There  are 
three arguments  to support  this: First we note that W is both  translationally 
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and rotationally invariant, so that it could describe only spherically sym- 
metric self-bound systems. Second, we can argue by analogy with a classi- 
cal fluid consisting of atoms interacting with pairwise central forces. This 
has a probability density proportional to 

} 
1 i'<j 

and thus has the same form as ~2, the quantum probability density. For 
temperatures and pressures lying between the triple and the critical points, 
this probability density will describe a drop in equilibrium with its vapor. 
[We note in passing that this classical analogy implies that the function f(r) 
should not be monotonically increasing (as is usually assumed) if it is to 
describe a self-bound system, since a classical system does not have 
condensation unless the pair potential u(r) contains an attractive part. 
A similar view has been expressed recently by De Michelis and Reatto. 5] 
The third argument in favor of our assertion that [1 f(rlj) describes a droplet 
is provided cumulatively by the results of this paper, where we calculate the 
surface energy and the surface tension of the Bijl-Jastrow product  (1). The 
results, both analytically and numerically, are entirely satisfactory provided 
we leave out the r -2 correlations, which Reat to  and Chester 6 assert must 
exist in the bulk pair function f for all Bose systems that have phonon 
excitations. 

Our calculation of the surface energy and tension with the wave 
function ~ of Eq. (1) can be regarded as the zeroth-order  approach to the 
problem. It is not a variational calculation, because the pair function f is 
determined by minimizing the total energy, which is dominated by the bulk 
energy when the radius of the drop is macroscopic. That  is, we take 
whatever function minimizes the bulk energy, and calculate the consequent 
surface energy and tension. There is no doubt that the inclusion of a 
variational factor such as s(r) will lower the total energy and hence prob- 
ably give a better  description of the surface. We believe, however, that our 
zeroth-order  calculation is simpler and yet both analytically and numeric- 
ally not very far from reality. 

In Section 2 we calculate the surface energy of a spherical drop at 
T = 0 directly from the expectation value of the Hamiltonian in the state 
~ .  By letting the radius of the drop tend to infinity, we discuss the simpler 
case of a plane surface with gravity and wall forces absent. Extensive use is 
made of results previously derived for monatomic classical liquids (Lekner 
and Henderson,  7 referred to below as LH). 

In Section 3 our results for e (surface energy per unit area) together 
with experimental  values for e and the binding energy per atom in the bulk 



The Surface of Liquid 4He "/65 

are used to calculate the surface thickness of liquid 4He. We find a 10-90 
thickness of about 3.9 A, in good agreement  with recent estimates. 

In Section 4 we use the Toda 8 and Brout  and Nauenberg 9 expression 
for the surface tension tr of a quantum fluid to obtain o" for the wave 
function ~ .  Curves of tr and e vs. A (a length characterizing the density 
variation at the surface) are computed, using the simplest approximation 
for the pair correlation function g(r). Since tr = e at absolute zero, the 
curves should intercept at the value of A that corresponds to the actual 
density profile. Despite the crude g(r), this method yields a surface thick- 
ness in good agreement with Section 3 (about 3.4/~). 

Finally, in Section 5 we find that the inclusion of Reat to  and Chester 's 
phonon factor leads to unphysical results, namely divergences in e and tr 
and a negative bulk specific heat. We conclude that one of the following is 
incorrect: the phonon factor, or our assumption that the wave function xt t is 
enough to describe a surface. 

2. SURFACE ENERGY OF Hf(rti) 

The expectation value of the Hamiltonian 

h 2 N N 
v, +EE H= ~---~m ~ u(r,i) (2) 

i=1 i<i 

when the wave function is of the form (1) may be written as (see, for 
example, Lekner  1~ 

(H)=2 I drl drE n(rl, r2)[u(rlE)-~(dp"(r12)+r~2q~'(r12))] (3) 

where the two-particle density correlation function is defined by 

n(rl, r2)=N(N-1)  I dr3. . . drN *2/I  drl. . . drN * 2 (4) 

and where we have written 

f(r) = exp [�89 (r)] (5) 

To extract the surface part of (3), we make the approximation 

n (rl, r2) = n (rl)n (r2)g(rl2) (6) 

where n (r~) is the single-particle density measured relative to the center of 
mass, and g(r12) is the pair correlation function. Equat ion (6) really has two 
approximations in it: The  first is that we have broken the translational 
invariance of the system described by xt t of Eq. (1), and have by some 
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means localized the center of mass of the droplet at the origin. The second 
approximation is that we have assumed that the pair correlation function is 
a function of r~2 only, which can only be true inside the liquid. This second 
approximation has been discussed by LH (Section 3) in the classical 
context; for our purposes the disadvantage of its numerical inaccuracy is 
outweighed by the simplicity of the analytic results which it makes possible. 

With the approximation (6), then, the expectation value of the energy 
becomes 

where 

(H) = �89 1 dr1 dr2 n(rl)n(rz)h(r12) (7) 

where 

I? 
I~ "l'rl 

dr2 r2n (r2) (11) Q( r )=  (2~'/r) drl rln(rl) -rll 

The function Q is proportional to the volume overlap of two identical 
spherical density distributions whose centers are separated by distance r. 
The function Q(r) may be evaluated analytically for simple density varia- 
tions. The simplest of these is the step function 

Ino, r l<R (12) 
n ( r l )=  / 0, r l>R 

For the step-function density, Q becomes no 2 times the volume common to 
two spheres of radius R separated by distance r. This function is well 
known (Hill, 11 p. 210): 

I 4  3 2 I" 3/  r \ 1/ r ~3-] 

Oo(r)= J, (r<2R) 
0, ( r > 2 R )  (13) 

h2 n 2 i 

In bipolar coordinates (Hill, 11 P. 203), Eq. (7) reads 

2 2 !Y (H) = (21r) 2 dr1 rln(rl) dr2 r2n(r2) dr rh(r) (9) 
l--r2] 

By successive interchange of the order of integration, the energy may be 
written a.s 

(H) = 2~" | drrEh(r)O(r) (10) 
J0 
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We have thus shown that the expectation value of the energy of a droplet 
with a step-function density (radius R) is 

2R 
(%rR3)2r I0 drr2h(r) (volume E ( R ) =  term) 

- (4erR z)(cr/2)n 2 I 2R dr rah (r) (surface term) 

2R 
J_l 2 210 ,- 61r no dr rSh(r) (constant term) (14) 

When h(r) is short-ranged the upper limit may be replaced by infinity in 
each case, and we regain the usual volume energy 

E / N  = 2r ~ dr r2h (r) (15) 

plus a step-function contribution to the energy per unit area of the surface, 

1 2f0~ e0 = -~Trno drrah(r) (16) 

When h(r)varies as r -4 due to the zero-point vibration of the phonons, the 
separation into volume, surface, and constant terms is lost. We shall return 
to this problem in Section 5. 

Having shown how we can extract a surface energy from ~ for spheri- 
cal symmetry, we turn to the simpler case of a plane geometry, which is the 
R -+ m limit of the spherical case. For the plane geometry we can use our 
work on the surface energy of a classical liquid-vapor interface (LH, 
Section 3), since there is mathematically a one-to-one correspondence 
between a classical system with probability distribution 

N N  

1 E E u(r,;) / exp - T  i<i 

and our quantum system with probability distribution given by 

I V N  

From (3), with the plane surface approximation 

n(rl, r2)= n(zl)n(z2)g(r12) (17) 
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we have for the surface energy per unit area [cf. LH, 7 Eqs. (69), (70)] 

e = Irn~ drrh(r)[-�89 (18) 

with 

ql(r) = - 2 I _ ~ d z z  6f(z ) -  2r[ ~ ~ dz ~ ( z  ) -  I_~ dz 6[(z )] 

qz(r) = dZl 8f(zl) (19) 
o O  

The function 6f is defined by 

n(z )/no = f ( z )  = fo(z )+ 8f(z ) (20) 

where fo is a step function (see Fig. 1). 
The location of the surface is not arbitrary, since the derivation of (18) 

and (19) depends on the property 
a o  

I_dz 8f(z) = 0 (21) 
o o  

which defines the (Gibbs) dividing surface. In the above formulas the 
dividing surface is at z = 0. 

The first term of (18) has already been derived [Eq. (16)]; the spheri- 
cal counterparts of the other terms can also be derived and can be shown to 
be the same as (19) in the limit of large R, as expected. 

For an exponential density variation 
1 z/A _J 'n0(1-~  e ), z < 0  

n ( z ) - ~ l n  ~ e_Z/X, z > 0 (22) 

o r  

8f(z ) = �89 sgn z exp ( - [z ] /A)  (23) 

f f. 

+-+-  
Fig. 1. The functions f and 8f defining the density 
profile. 
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the surface energy becomes (LH~ Section 4) 
oO 

1 2Io e = -g I rno  d r r h ( r ) { r 2 + A 2 [ 4 - e - ' / ~ ( 4 + r / A ) ] }  (24) 

For a Fermi function density variation, 

n ( z )  = no/(e z/8 + 1) (25) 

o r  

8f(z) = (sgn z)/(e Izi/8 + 1) (26) 

it is straightforward to show (compare with Bowley's 1 result) 

q/" 2 t2  X e = - -~no  drrh(r )  +482 (27) 
a0 

As the surface thickness (proportional to )t and 8 in the two chosen 
densities) goes to zero, we regain the step-function result, Eq. (16), from 
both (24) and (27). As the surface thickness becomes large compared to the 
range of h(r), we have the limiting forms 

cO 

3 2Io e ~, eo~ = -~rrnoA dr r2h(r) (28) 

and 
P o o  

-~ coo = -2r J0 drr2h(r)  (29) e 

The fact that in the limit of large surface thickness the surface energy 
becomes proportional to the thickness of the liquid-vacuum interface can 
be shown more generally by a Taylor expansion method (LH, Section 5). 
One finds that, neglecting second-order and higher derivatives of the 
density, the surface energy is given by 

e = 2 z m ~ d r r 2 h ( r ) { I _ ~ d z [ S f ( z ) ] 2 - 2 ~ d z S f ( z ) }  (30) 

When the density variation is characterized by a single length (such as A or 
8) both of the integrals in the curly brackets are proportional to this length; 
in particular, on inserting (23) or (26) into (30), we regain (28) or (29). 

In Fig. 2 we have plotted the integrands of the expressions (16), (24), 
and (28) for the surface energy. The full expression (24) and the slowly 
varying density limit (28) are both plotted for A = d, where d is the 
hard-core diameter of the Lennard-Jones potential 

u (r) = 4v  [(d/r)  12 - ( d / r )  61 
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i ra 

Fig. 2. Integrands of the exponential density expressions for e and e~ at 
A = d, together with the integrand for the limiting expression co. We took 
d = 2 . 6 / ~  and v = 10.3 K. The areas under the curves times 21rn2od4v 
(= 1.431 K/,~ ~ or 1.975 erg/cm 2) give the surface energies. 

T h e  f u n c t i o n  q5 was  t a k e n  to  b e  - 2 ( d / r )  5 [ this  is c lose  to  t h e  o p t i m u m  
a m o n g  f o r m s  of  t h e  t y p e  - a ( b / r )  n t r i ed  by  McMillanX2].  T h e  p a i r  c o r -  

r e l a t i o n  f u n c t i o n  was  a p p r o x i m a t e d  by  e '~. 
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�9 3 1 

Fig. 3. Surface energy and surface tension for the exponential density 
profile., and *oo from Eqs. (24) and (28); (r and o'~ from Eqs. (44) and (45). 

In  Fig. 3 the values of the surface energy  ob ta ined  for  the exponent ia l  
densi ty  var ia t ion are shown as a funct ion of ,X/d. W e  see that  e is greater  
than coo, and increases monoton ica l ly  with A. The  fact that  e does no t  show 
even a local m in im um  at some  physical  value of A/d need  not  surprise us, 
since we are no t  doing a variat ional  calculation. Howeve r ,  we should issue 
a word  of  caut ion that  the choice of g has a large effect on  the curves in Fig. 
3. F r o m  Fig. 2 it can be seen that  the magn i tude  of  g in the region r ~< d 
affects the negat ive par t  of  the integrand,  while the first max imum,  which is 
present  in a realistic g, affects the posit ive part .  I t  so happens  that  the crude 
approx imat ion  

g = exp [ - 2(d/r) 5] 

contains  cancel ing errors  that  lead to a very  reasonable  result. If a more  
realistic pair  corre la t ion funct ion is used in o rder  to include the effect of a 
max imum,  then  equal  care mus t  be exercised in the r ~< d region. 

3. T H E  S U R F A C E  T H I C K N E S S  

The  p rob lem of assigning one  length as the thickness of the surface has 
no un ique  solut ion when  one  is compar ing  different densi ty profiles. The  
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length we have found most  useful for numerical comparisons is the 10-90 
thickness, which is the distance in which the density rises f rom 10% of its 
bulk value of 90% of its bulk value. If we call this thickness t, then for the 
exponential  and Fermi function profiles we have 

t = 2A log 5 --- 3.22A 

and 

t = 2 8 log 9 --- 4.398 

In terms of this definition we see that the exponential  and Fermi profiles 
give the same thickness when 

A/8 = (log 9/ log 5 ) =  1.365 

Consider the slowly varying density limiting expressions (28) and (29) 
for the surface energy. From (14) we note that these can be written as 

e ~ = - 3 A E / V  (31) 

and 

coo= - S E / V  (32) 

where 17,/V is the bulk energy per  unit volume. [Note that these expres- 
sions are the same when A = (4/3)8, which compares  well with the 10-90 
equivalence condition A = 1.3658.] We are now in a position to evaluate 
the surface thickness f rom our e (A) curve and experimental  data: Rewrite  
(31) as 

A = 3 \ E / V / e  (33) 

For  the quantities in the parentheses we can substitute the experimental  
values e = 0 . 3 7 3 e r g / c m  2 (Atkins and Narahara  13) and E / N =  
- 0 . 9 9  x 1 0  -15 erg /a tom,  N~ V = no = 2.2 x 1022 atoms/cm3; this gives A -~ 
2 .3 (e~ /e )  A. With d = 2 .6/~ we then find 

e ~ / e  -~ 1.14 ,~/d (34) 

In Fig. 4 we plot this line, together  with the ratio e ~ / e  obtained from 
results of Fig. 3. The line (34) and the curve e ~ / e  intercept at A / d  ~-0.46,  
which gives a 10-90 thickness 

t = 3 . 9 A  

This est imate has the advantage that nature evaluates two very difficult 
integrals for us (e and E / N ) ,  and all we have had to find is the ratio e~ / e ,  
which we expect to be insensitive to the errors in our choice of the pair 
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r=,~/, - I./ ~ ~/~ 

l .O*  . . . . . .  

. (o . 

. ~ .  

J 
o . 5  I 

Fig. 4. Determination of the surface thickness from Eq. (34) and the results 
of Fig. 3. 

correlation function g and the pair funct ion/ .  The agreement with recent 
estimates, based on a comparatively enormous amount  of numerical work, 
is good: Chang and Cohen 3 obtained )t ~-1.4 ~ and 8 ~-1.0/~, giving 
t = 4.6 and 4.4 ~ ,  respectively, while Liu et  al. 4 calculate t -~ 5 ~ .  

We conclude this section by pointing out the physical meaning of the 
slowly varying density limits, Eqs. (31) and (32). Consider Eq. (31) first 
and let A be the area of the surface. Then, according to (31), the surface 
energy is 

A E  = A e  ~-- - ~ 4 A A ( E /  V )  

The 10-90 thickness of the surface is 3.22A, so that the volume AV of the 
interface is approximately 3.22AA. The number of atoms in the interface is 
AN =�89 AV, so that 

AE -- -- �88 / 3.22 )(AN ) E / N  ~- - � 8 9  

The same approximate relation follows from the Fermi-function limiting 
form (32). The physical meaning of (31) and (32) is thus clear: The positive 
surface energy corresponds to the loss of approximately one-half the 
binding energy per atom for every atom in the surface layer. 
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4. SURFACE TENSION OF I][(r u) 

Toda s and Brout  and Nauenberg 9 have derived general expressions 
for the surface tension of a quantum liquid. Their  result is the sum of a 
potential energy contribution cr v and a kinetic energy contribution Ok: 

~r = o-p +o'k (35) 

where, at T = 0, 

f f . .r122 - 3 z ~ 2 d t / ( r l 2 )  1 drx dr2 n t r l , r2)  (36) 
~ = 4L~Ly r12 d&2 

and 

I___L_:_Ns=~I : o 2 \ 
(37) 

~ m ]\Oz 2 o"x-~'/ 

The above formulas have been written for a plane interface in the x - y  
plane, of area LxLy. The potential energy contribution is the classical 
expression evaluated in LH, and the kinetic energy term may be put into 
the same form as the potential energy term when the wave function is a 
product  of pair functions. We have, with 

~ = e  */2 , q5 = E E ~b(r/i ) i<] 
the result 

0 2 
(0@12)--f d r l " " d r N ~ z 2 1 +  

=I erl.., arN t~ ~ :  +~ 0Tx~J 

Integrating the rhs of the first equality by parts, we also have 

. . .  (0+~2 = 1 . 2 ( 0 . ~  2 
(~@1)~"--I dlrl drNkozI] ---4f d r l "  " d'N~If \Oz1] 

Therefore  

02 \ 1 [ 02@ 
~/=-~ j a , l  . . . a r N  ,~2 oz~ 

N -  1 I dr, . . . d r N l l  efb(r12) +z122--~-d r 1_ &b(&2)]} ,2  
= 4 r12 / drl2 drlaLrl2 ~ J (38) 
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Thus 

trk =4LxLy ( - ~ - ) N ( N - 1 )  I drl . . . drN--r12 

4LxLy dr1 dr2 n(rl, r2) 3z22r12 -r22 

For a plane surface we can write 

2 2 [ dqb (r12)].,it2 z12-x12 d 1 
drl2 r12 ~ J 
d r 1 d@(r12)] (39) 

d~12L~2 ~ J 

n(rl,  r2)= n(zl)n(zE)g(r12, z l, z2) (40) 

and then the surface tension reduces to (cf. LH, Section 2) 

oo 

or _ d r  g ( r ,  z l ,  Z2) 

• '] (41) 

If g(r, zl, Z 2 )  is approximated by g(r), we get [cf. Eq. (50) of LH] 

,rr 2 ~ h 2 ' 1  1 
o-=~nOI_odrg(r)[u'+~m(~-)][~r4+pl(r)+p2(r)] (42) 

where 

f pl(r) = - 2  dz 8f(z) z(r 2 - z 2) 
r 

(43) 

p2(r)= dZl g(zl)  dz2 g(z2) (r -3z12) 
oo 1--r 

For the exponential density profile (23) we have from LH, Eq. (77) 

zr 2 ~ h2 ' ' 
o" = ~'no I_odrg(r)[u'+~----mm(-~)] 

r 4 . A4[ . "  2r 2 2 3 
x { ~ -  t l ~ - ~ - - f - e - ' / A ( 1 8 +  �9 7r r \ ' ] /  18~- +-~-~- + ~-3} J / (44) 

which has the large-A limit [cf. LH, Eq. (80)] 

7r 21 I0 drg(r) u'+h2(qb'~']r ' (45) 
~  = 3"0n~ - 2ink r / J 

For the Fermi-function density profile (26) we use the methods of LH 
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(Section 4) to evaluate pl  and p2. We find 

2 oo h2 , , 
~ = ~ n o / o  drg(r ) [u '+~m(~- ) ]  

X I r4 Io r/8 x 2 T2 
(46) 

The large-8 limit is 

tr ~tr~o='~no 8 dr g(r) u' + h2 (d~']']r 5 
2rn\r  l J 

(47) 

_ 3- 8 Note that the exponential  and Fermi profiles give the same o'oo if )t - 2  , 
whereas the surface energies were equal in this limit when A = 48. 

The limiting results obtained above are special cases of the general 
formula  for slowly varying density [cf. LH,  Eq. (83)] 

2rt foo g(r)[u' + h2 (&'y]r5 foo (dn~ 2 
t r = ' i - ~ j  ~ dr 2m \ r l _l 3_oodZ \dz l 08) 

which is obtained by a Taylor  expansion of the density, neglecting fourth- 
order  and higher derivatives of the density. As in the case of surface 
energy, the odd derivative terms in the expansion give zero contribution, so 
that correction terms are two orders higher in the gradient. In Fig. 5 we 
have plotted, in the manner  of Fig. 2, the integrand of the step-function 
limit for the surface tension 

oo 

r 2 I  ~ [ +h 2(~ '~ ' l r  4 
O'o=gno  drg(r) u' 2m\  r ! 3 (49) 

along with integrands of the exponential  density expression (44) and its 
large-A limit (45), at ;t = d. 

The  values of surface tension as a function of A/d, obtained with the 
zeroth-approximat ion pair correlation function g = e ~, are shown in Fig. 3. 
The curves for e and cr intersect at ;t = 0.41d and since e = cr at absolute 
zero, provided the location of the surface is defined by (21) (see Section 3 
of LH),  we have another  est imate of the surface thickness: t = 3.22A-~ 
3.4 ~ .  This value is likely to be less accurate than our previous estimate of 
Section 3, since it is based on a first principles calculation with a crude g 
and no direct experimental  input. Nevertheless,  the intercept energy 0.43 
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-2 

Fig. 5. The surface tension integrands, plotted in the same way as the 
energy integrands of Fig. 2. The areas under the curves times 2~rn2od% 
give the surface tensions. 

e r g / c m  2 is r e m a r k a b l y  c lose  to  the  e x p e r i m e n t a l  va lue  of 0.37 e r g / c m  2, 
imply ing  tha t  the  seve re  a p p r o x i m a t i o n s  tha t  we m a d e  to  ob t a in  the  curves  
of  Fig.  3 con ta in  cance l ing  e r ro r s  (see d iscuss ion  at  the  end  of  Sec t ion  2). 

Sec t ions  2 - 4  s u p p o r t  ou r  ini t ia l  a s se r t ion  tha t  I-Ii<jf(ro) desc r ibes  a 
d rop le t ,  bu t  we shou ld  r e m e m b e r  tha t  these  resul t s  a re  b a s e d  on  the  
a s s u m p t i o n  tha t  ~b(r) decays  r ap id ly  at la rge  r. 
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5. PROBLEMS WITH [I[(r O) WHEN ZERO-POINT MOTION 
OF PHONONS IS INCLUDED 

In the previous sections we found that the wave function 

17[ e '/'(r')/2 ( 5 0 )  
i<j  

gave good results for the surface energy and thickness of liquid helium 
provided ~b(r) tends to zero rapidly as r ~  oo. In particular, the McMillan 
form 

(r )  = - 2 ( d / r )  5 (51) 

led to reasonable results. 
However,  Reat to  and Chester 6 have shown that the existence of 

phonon excitations in liquid helium implies that a factor of the ground- 
state wave function is of the form (50), with 

dp(r)--> cbp = - (b  E / r  2) (52) 

where 

1 ( mc~ 1/2 
b = ~ \ ~ 0 h ]  -~2 .6A (53) 

The term ~bp leads to a logarithmic divergence (to minus infinity) of both 
our surface energy and surface tension expressions, (18) and (42). This 
divergence has appeared in previous formulations for the surface energy of 
liquid helium, and varying attempts have been made at understanding it 
(see Bowley 1 and Chang and Cohen, 3 both of which are discussed below). 
Note also that the divergence invalidates the derivations of the large- 
surface-width expressions e~o and troo. To see clearly the consequences of 
the phonon  factor, let us return to the droplet of Section 2 and consider 
contributions to the total energy coming from particle separations greater 
than 23, where a is (say) 5 ~ ;  then we can take ~b = ~bp, g = 1, and u = 0 to 
obtain the asymptotic value 

h2b 2 1 
h ( r ) ~  2 m  r 4 (54) 

which can be regarded as an effective repulsive 1 / r  4 interaction. Inserting 
(54) into (14), we find that the direct contribution of the infinite-range 
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correlations arising out of the zero-point  motion of the phonon modes is 

4 3 2R 3 r +1(•  

2 2 R 3 3 l a  2 
=-~(hcno)R [ a - ~ l o g ( R )  4 4 R-2] (55) 

For  a fiat surface of area L 2, (54) similarly leads to a positive volume term 
and a - L  z log (L/a) term. So at T = 0 the long-range part of the phonon 
correlations raises the bulk energy (i.e., from a variational point of view 
they should be left out to lower the total energy), and produces a negative 
R 2 log (R/a) term, as well as a negative R 2 term. The bulk energy is raised 
by hc/2~ra (---0.58K when a = 5 / ~ )  per atom, which is small in 
comparison with the experimental  bulk energy, - 7 . 1 6  K per atom. On the 
other  hand, the "surface" energy is lowered by (hcno/41r)[log (R/a)+�89 
which is approximately 0.63 erg /cm 2 when R = 0.5 mm and a = 5 .~. Thus 
for R large enough we have that at T = 0 the "surface" energy would be 
negative, which seems impossible to accept. 

It is known that at finite temperatures the long-range correlations due 
to the zero-point  motion are exponentially damped, so one might hope that 
the above problems in the ground state would disappear at finite tempera-  
ture. However  we find that this is not so. Reat to  and Chester 6 have shown 
that the diagonal part of the density matrix has the form of a product wave 
function, with the long-range part due to phonon zero-point motion. The 
probability density is thus of the same form as before, with 

b 2 rcTr/hc 
d)~(r, T)-~ - r2 sinh (IrTr/hc) (56) 

and so the kinetic energy term 

-- (h2/4m)V2~p 

in the total energy again has the form of a repulsive interaction. The 
screening length hc/~'T is approximately 5.8/~ at 1 K. Inserting (56) into 
(14) and considering contributions from particle separations greater than 
2a, we find that the finite-temperature phonon zero-point motion con- 
tribution to the bulk energy is (when 27rTR/hc >> 1) 

2 R 3 /2~rTa\ 
AEv=-~(hcno)~a F~--~c ) (57) 

where 
1 x ( x cosh x~ 

F(x) = -  ~ 1 -~ (58) 
2 sinh sinh x ) 
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The low-tempera ture  expansion gives a negative contribution to the 
specific heat proport ional  to T 3, since 

F(x) = 1 - (7/360)x 4 + O(x  6) (59) 

In fact, the slope of F is always negative, so the screened zero-point  motion 
contributes a negative specific heat, with a maximum magnitude at T = 
0.45hc/a. This result is in accord with our s ta tement  above that the 
correlations due to the zero-point  motion of the phonon  modes are 
equivalent to an effective repulsive r -a interaction which is screened ther- 
mally, because the higher the temperature ,  the bet ter  the screening, and so 
the energy due to the zero-point  motion of the phonons decreases with T. 
For  a of order  of the atomic d iameter  or greater,  this negative T 3 specific 
heat  is an order  of magnitude larger than the normal  T 3 term due to 
thermal  excitation of phonons,  so the total bulk specific heat  is negative up 
to T ~ hc/a ~ 1 K. This indicates an instability in the system, since if the 
energy decreases with tempera ture  in any region, a spontaneous positive 
t empera ture  fluctuation will decrease the total energy and thus release 
heat, further increasing the temperature ,  which will in turn decrease the 
energy, and so on. Similarly, a negative tempera ture  fluctuation will induce 
a continual decrease in temperature .  

The  surface energy contribution of the zero-point  motion of the 
phonon modes is readily obtained f rom (56) and (14). We find 

= - - -  + 2 F ( x ) -  2 log tanh (60) 
8zr 

where x = 2,rrTa/hc. The derivation of this expression is valid only when 
the total surface energy is greater  than zero, since a spherical shape is 
assumed in (14). The  low-tempera ture  (2~-T << hc/a) expansion is 

hcno[l / hc '~ 3 _/.z'Ta\2"l 
A e =  ~-~-[  o g ~ a a ) + ~ + O ~ - - ~ c )  J (61) 

The above expressions are again limited to the region 2~TR/hc >> 1. From 
(61) we see that the surface contribution to the specific heat  is positive, 

1 varies as T -  , and will become larger than the previously noted negative 
T 3 bulk contribution when T <- (hc/3a)(a/R) 1/4. This tempera ture  is of 
the order of 10 -2 K for a droplet  of mill imeter size. 

The consequences of the long-range correlations arising out of the 
zero-point  mot ion of the phonons thus appear  to be (i) a negative bulk 
specific heat;  (ii) a term in the energy varying as - R  2 log (R/a)at T = 0; 
and (iii) a logarithmic tempera ture  dependence  of the surface energy at low 
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temperatures,  with measurable temperature  variation at about  10 -1 K and 
zero e at about  10 -3 K. 

Bowley, 1 who first met one of the difficulties associated with the 
long-range phonon correlations (he found a divergence to minus infinity in 
the surface energy at T = 0 when these correlations were included), has 
postulated that the inclusion of the zero-point  motion of the surface modes 
would remove this problem. The correlations due to surface-mode zero- 
point motion have yet to be evaluated explicitly, though Chang and 
Cohen 14 have written down an expression for their contribution to the 
ground-state wave function. We feel that it is unlikely that the surface- 
wave zero-point  motion can remove a problem that arises from the exis- 
tence of bulk modes, since we expect the correlations due to the surface 
modes to be of a different kind, and additional to the phonon modes, rather 
than canceling them in a substantial part of the interior. 

Another  approach to these difficulties is that of Chang and Cohen, 3 
who use the wave-function 

= 1-I exp [�89 ] l-I exp [�89 (62) 
i < j  k 

where the function t(r) is optimized variationally, as in Bowley's work. 
However,  instead of parametrizing t, as Bowley did, they eliminate t in 
favor of the density n, and parametrize n. [We note in passing that 
Bowley's assumption that n = hoe' leads to the same expression for e as 
our work based on I-Ie ~/2, plus a small term - (h2/8m)~ dr n (r) V2t(r)]. We 
will generalize Chang and Cohen's  result for the energy and give a similar 
t reatment  for the surface tension. The expectation value of the Hamil- 
tonian (2) taken with the trial function (62) is readily shown to be [of. (3)] 

(H) = �89 1 dr1 dr2 n (rl, r2){u (r12)- (h2/4m) V2~b (r12)} 

- (h2/8m) I dr1 n(rl)  V2t(rl) (63) 

The Yvon equation 

Vln (rl) = n(r l)  Vl t ( r l )+  I dr2 n(rl ,  r2) V1&(r12) (64) 

obtained by differentiating the defining relation for the density 

n ( r l ) =  N I d r 2 . . ,  drN ~ 2 / I  dr1..,  drN ~2 (65) 

can now be used to rewrite the last term in (63) in terms of the density n 
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and the pair function ~b. Then, defining 

n (rl, rE)= n (rl)n (rE)g(rl, rE) (66) 

and 

g(rl, rE) = exp [~b(r12)+ V(rl, rE)] (67) 

the expectation value of the total energy becomes 

h E 
(H)=  1 1 drl drE n(rx, rE)(U(rl2)+-4--m{[Vldp(rl2)] 2 

h 2 
+Vl~b(rlE)Viy(ra, rE)}) +~mmm I dr1 n(rl)[V1 log n(rl)] 2 (68) 

In a uniform fluid, the HNC and PY equations for the pair correlation 
function may be used to evaluate y (see, for example, Feenberg, ~5 p. 695) 

(P(rlE) (HNC) (69) 
y(rl, rE) 

=Oog [1 + P(rlz)] (PY) 

where 

and 

1 [" , , [S(k) -  1] 2 
P(r) = (20r)an0 J dk[exp ( -  ik.  r)]  

1 oo , , IS(k) -  1] 2 
=2~-~norlo d k k ( s i n x r )  S (k )  (70) 

S(k  ) = 1 + no ] dr [exp(ik �9 r)][g(r)-  1] (71) 

is the structure factor. The large-r variation of P(r) (and hence of y) is 
determined by the small-k variation of S(k).  If we accept the correctness of 
the usual form, S(k)--> lik/Emc, 15"16 then integrating the right-hand side of 
(70) by parts and substituting for S(k)  gives for the asymptotic form of P(r) 

mc 1 1 h 1 
P(r)-> 7rEhno rE 2~---~no mc r 4 +" " " (72) 

Thus we have that 

y(r)-> P(r) = (bE~rE)+ O(r -4) = -- ~bv(r) + O(r -4) (73) 

i.e., using the HNC or PY equations, the contributions of the zero-point 
phonon correlations cancel in the first term of (68), at least deep inside the 
liquid. [We should, however, note that the equivalent classical fluid (u = 
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-T~b) corresponding to the product  wave function (1) when d~ ~ -b2/r 2 
has energy per particle and pressure both proportional  to the size of the 
system, and thus the validity of the HNC and PY equations needs to be 
reexamined for this very singular case.] In fact, provided y goes to zero no 
slower than r -1, (68) will not diverge. 

A similar result follows for the surface tension. We find, for the wave 
function (62), that the surface tension is given by (42), the expression 
derived for the wave function (1), plus the term 

1 / \ h  2 t 
Act = ~ [-'-~m) J dr1 t"(zt)n(zl) (74) 

(in this case we find it simpler to work with a plane surface). When we again 
eliminate t by using the Yvon equation, we find 

Acr = ~ I dz n(z )[J~ log n(z )] 2 

h 2 1 
• surface part of f dr1 dr2 n (rl, r / )  + 4m LxLy 

X {V2t~ (r12)+ Ira'(r12)]2 + ~lt~ (r12) �9 Vly(r l ,  r2)} (75) 

The singular part of the second term in (75) has the form [cf. (3) and (18)] 

7/- n2h  2 
f drr3g(r)(d/~ + rb'p) (76) 

4 m Jo 

while the singular part of (42) is 

f'~ --~ drr4g(r) (77) 

and when d~p varies as r -2, these cancel. 
Thus it appears that by using the wave function (62) instead of (1), the 

divergence in the surface tension and the surface energy has either been 
removed,  or has been shifted to the density gradient term 

I dr  n (r)[V log n (r)] 2 (78) 

Chang and Cohen 14 argue that when a physically reasonable density is 
chosen, this term will not be divergent. However,  it is not clear whether the 
long-range correlation d~p in the ground state gives such a physically 
reasonable density. 
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T o  sum up,  we have  shown tha t  g o o d  resul ts  for  the  energy ,  tens ion ,  
and  th ickness  of the  sur face  of  l iquid  4He a re  o b t a i n e d  wi th  the  wave  
func t ion  I-If(rli), p r o v i d e d  r -2 co r re l a t ions  due  to  p h o n o n  z e r o - p o i n t  
m o t i o n  a re  lef t  out .  W h e n  the  p h o n o n  co r re l a t ions  are  i nc luded  se r ious  
p r o b l e m s  ar ise  tha t  m a y  on ly  be  o v e r c o m e  by using the  m e t h o d  of  C h a n g  
and  C o h e n  and  the  wave  func t ion  I-I f(rii)  1-] s fit). T h e  ques t ion  of w h e t h e r  
it  is the  wave  func t ion  I-If(rij) or  the  p h o n o n  co r r e l a t i on  fac tor  tha t  is at  
faul t  r e m a i n s  u n a n s w e r e d ,  however ,  s ince the  exac t  dens i ty  prof i les  tha t  
fo l low f rom the  sugges ted  wave  func t ions  are  no t  ye t  known.  
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