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We derive analytic expressions for the reflection amplitudes of s and p polarized electromag- 
netic radiation incident on a planar interface profile of arbitrary form, to second order in the 
parameter qa, where q is the component of the wavenumber perpendicular to the interface, and a 
is a length proportional to the interface thickness. New comparison identities, relating the 
reflection and transmission amplitudes of the p-wave to those for any reference profile, are 
derived. The second-order results are obtained by using one of these identities, and an integro- 
differential form of the p-wave equation. 

I. I n t r o d u c t i o n  

In a recen t  paper  ~) we cons ide red  waves  sa t is fying the equa t ion  

d2~ , 
dz 2 ~- q2(z)@ = 0 (1) 

and  inc iden t  f rom m e d i u m  1, i.e. with the b o u n d a r y  cond i t ion  

e 'q~ + r e 'q '%-@(z)-+t  e iq2~. (2) 

We showed  that  the ref lect ion ampl i tude  r, and  the t r a n s m i s s i o n  ampl i tude  t, 

are g iven by  

r = q l -  q2{1 _ 2qlq212}+ ~7(qa)3, 
ql T q2 

(3) 

t - q,+q22q' {1 + ½(ql - q2)212} + C(qa)  3. (4) 

Thus ,  as may  be expec ted ,  the ref lect ion and  t r ansmis s ion  ampl i tudes  in the 

long wave leng th  l imit  are g iven  by  the ampl i tudes  for a step profile (in which  

the t rans i t ion  f rom m e d i u m  1 to m e d i u m  2 is d i scon t inuous ) ,  plus a cor rec t ion  

te rm d e p e n d e n t  on  the dev ia t ion  of the ac tua l  profile f rom a step profile. This  
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is seen explicitly in the expression for the length I: 

12= 2 f dzz(q 2 2 2 -- qstep)/(ql-  q22) • (5) 
- o e  

The reference step profile is positioned so as to make 

f dz(q2_ 2 q step) = 0 (6) 
- 0 o  

(see fig. I-1). This positioning makes l invariant with respect to the choice of 
origin. The magnitudes Irl and Itl are thus also independent of the choice of 
origin, but the absolute phases are not. Here, as in I, we shall take the origin 
at the step, which is positioned to satisfy (6). 

We saw in I that the above results are immediately applicable to the 
electromagnetic s-wave, in which the electric field is perpendicular to the 
plane of incidence. When the interface lies in the xy plane, and the pro- 
pagation is in the zx plane, E = (0, E ,  0), and E r satisfies 2) 

2 to ~72Ey + E ~ / E y  = 0 (7) 

(c is the speed of light, and to is the angular frequency of the (monoch- 
romatic) wave). The dielectric function E is primarily a function of z, but there 
is some x, y dependence. Part of the x, y dependence exists for the same 
reason that ~ is not constant in the bulk phase: there are fluctuations in 
density, molecular orientation, or composition. In addition, there are surface 
contributions, arising out of surface roughness, or fluctuations in surface 
properties such as adsorption. In this paper we shall neglect the x, y depen- 
dence; this amounts to calculating reflections from an averaged sample. We 
also neglect anisotropy in the dielectric function (which has been shown to 
exist even in the solid-vapour 3) and liquid-vapour 4) interfaces of a monatomic 
system, but is there small). With these assumptions, e = ~(z), and the solution 
of (7) is in the form Ey = eirXE(z), where E(z) satisfies 

d2E ( ,  to2-  K 2 ) E  = O. (8) 
+ c 

K is the x-component of the wavevector in either medium, so if 01 and 02 are 
the angles of incidence and refraction, K = kl sin Ot = k2 sin 02, where k~ = 
~/~  tolc. Eq. (8) is of the form (1), with 

2 
to K 2" q2(z) = ~(z) c--r- (9) 
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Thus q is the normal component  of the wavenumber,  and has the limiting 
forms 

ql = kl cos Ol~--q(z)---~q2 = k2 cos 0~. (io) 

For the s-wave we thus have from (3), (5) and (9) that 

q, q2( f r, ~ 1 -4qlq2 dzz e --estep/+G(qa)3" (11) 
qJ q2 el - e2 J 

Thus the deviation from the step reflection amplitude in the long wavelength 
limit is expected to be of the form 

r - r s t e p  = _ 2klk212 cos 01 c o s  02 + ( ~ ( q a )  3, 
rstep 02) 

and to give information about one length l, where 

(el-e2)e=2 f dzz(e-,s,o0)-- - f (13) 

(subject to f_~ dz(e - estep) = 0). Values of l are given for five profiles in I; 12 is 
positive for montonic profiles, which as expected reflect less than a step 
linking the same e~, e2. 

The remainder of this paper will be concerned with calculating the 
reflection amplitude for the p-wave, in which the B vector  is perpendicular to 
the plane of incidence. Thus, in our geometry,  B = (0, By, 0). We will consider 
non-magnetic materials only, and assume that e = e(z) as before.  Then By-- 
eir'xB(z), where B(z) satisfies 2) 

d2B l d e d B  ( to 2 ) 
e dz dz I- e c~r-  K 2 B = 0, (14) 

with 

e iqlz - rp e-iqlz~---B(z)---~ ~/e2  tp e i°2z. (15) 

The reason for the factors - 1  and ~/E2/E~ multiplying rp and tp is that we wish 
rs and rp, and ts and tp, to refer to the same quantity, here chosen to be the 
electric field. The above factors follow from E =(ic/eto)VxB, the time- 
harmonic consequence of V x B = (e/c)OE/Ot. 
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2. Near-transparency at the Brewster angle 

We showed in section 5 of I that the p-wave equation (11) may be 

t ransformed to 

d2B 
dZ z + Q2B = 0, (16) 

where Q = q/e and the new variable Z is defined by 

z 

= ~ d z ,  Z = t d z e ( z ) .  dZ (17) 

0 

In terms of the dilated new z-variable, the B equation is as simple as the E 
equation, but we now have Z depending on the shape of the dielectric profile. 
We will find the Z, Q notation useful throughout this paper. To begin with we 
will rederive the familiar Fresnel result 

tan(01-  02) (18) 
- rpo = tan(01 + 02) 

for  the step profile 

~ ¢E1, Z d 0 ,  
E0(Z) = I.e2, Z > 0  

= l(El + e2) -- ½(e, -- ~2) sgn(z). 

For  the step (located at the origin), 

Zo(z )  = Z~o(Z). 

Continuity of Bo(Zo) and dBoldZo, and use of (15) in the form 

e iQlz° --  rpo e -iQlz°, z < O, 

B0(Zo) = ffE-~ 
~1 tpO e iQ2z°, z > O, 

gives 

(19) 

(2o) 

(21) 

Q I -  Q2 (22) 
- rVO= Ql + Q 2, 

which reduces to (18). The p-wave has zero reflection amplitude when 
Qt = Qz, i.e. at the Brewster  angle 0a = arctan ~/e2/el. We see directly f rom 
(16) that this angle has special significance not only for the step profile, but  in 
general. This is because the wave equation, in the dilated variable Z, links two 
media with effective wavenumbers  Qi which are equal at this angle (and at no 
other angle). The analogue in quantum mechanics is reflection at an interface 
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b e t w e e n  two media  in which the part icles  have equal  potent ia l  energy.  We 

i l lustrate  the r eason  for the n e a r - t r a n s p a r e n c y  (for the p-wave)  at the Brews-  

ter angle in fig. 1, where  we show q2 vs. z and Q2 vs. Z for the hyperbo l i c  

t angen t  (or Fe rmi  func t ion)  profile 

E ( Z )  ~- ~(E I Jr- ( 2 )  - -  ~(El - -  E2) t a n h ( z / 2 a )  

_ _  el E2 el Jr" (2 e z/a 

l + e - ~ + ~  = l + e  z/" " ( 2 3 )  

For  this profile, 

Z = ~((, + Ez)Z - (El - ez)a log cosh 

At the Brews te r  angle,  

2 2 

El Jr E2 ~ e l  + E2" 

Thus  at 0a, for a general  profile, 

Q2 [¢o'~ 2 1 f _ E,E2 "~ 

= kC,] ~ / (  e , + e 2 J  

and 

(24) 

(25) 

(26) 

Q 2 _ Q ~ = Q 2 _ Q ~ =  e2(e,+e2) " (27) 

This  is the ana ly t ic  express ion  for  the b u m p  in Q2 at the Brews te r  angle seen  

in fig. 1. 

. 2  

i i 

- I0 I0 - S 
Z / Q  

5 
Z / a  

Fig. 1. Reflection of the s-wave and the p-wave. The figure shows q2(z) and Q2(Z) for the 
hyperbolic tangent profile (23), with Z given by (24). The dielectric constants are chosen to 
approximate the water-air interface: ~t = (4/3) 2, e2 = 1. Water is on the left in both diagrams. The 
upper curve (in each case) is for normal incidence, the middle curve is at the Brewster angle 
(determined by QI = Q2), and the lower curve is at the critical angle for total interval reflection. 
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3. Comparison identities for the p-wave 

In paper I we derived several identities relating reflection and transmission 
amplitudes obtained for equations of type (1), to amplitudes obtained with a 
reference profile. Let  the subscript zero denote a reference profile (in later 
sections this will be taken to be the step profile (19), but here it is arbitrary). 
The main result in section 2 of I, transcribed to the s-wave, reads 

oo 

rs = rs0-2--~l dz(q 2 -  qE)EEo, (28) 

where q2 and qo 2 are given by (9), and q, qo have the same values q~ and q2 
deep inside medium 1 and medium 2. This result leads to (11) when the 
reference profile is taken to be the step profile. We also showed in I that, for 
real q~, q2 and an arbitrary interface, 

qEts = q l [-s (29) 

and 

t s  r, = - ~ r* .  ( 3 0 )  

(The backward-pointing arrow indicates amplitudes for a wave incident from 
medium 2.) These results are implicit in relations derived by Landau and 
Lifshitz5). 

In this paper we will derive corresponding results for the p-wave. We note 
first that (14) is not of the form (1), but may be put in this form in two ways. 
The first transformation (of the space coordinate) has already been indicated 
in section 2. But since the new space coordinate Z is a functional of the 
dielectric profile, each profile has its own Z, and the comparison identities of I 
cannot be transcribed to the B(Z) form of the p-wave. The second trans- 
formation is 

B = b. (31) 

The factor ~ i 1/2 is to make the asymptotic form of b the same as that of B in 
medium 1: 

e iqlz - -  r p  e-iqlz*--b.---->tp e iq2z. (32) 

From (14) and (31), b(z) satisfies the equation 

d2b 1/2 d2E-1/2] L 
~_~+ [ q 2  E -'--d~Z ju  = 0, (33) 
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or 

dEb [q2+ 1 d2c 3 dc'12]b 
~-~ - ~ = 0. (34) 

The techniques developed in I may be applied to this equation. In particular 
we find, as in I, 

q,(1 -[rp] 2) -- q:ltpt: (35) 

q2tp = qlt-p (36) 

and 

t 
~p = - ~p r* (37) 

(these relations are for real ql, q2 only). We will not give all the comparison 
identities from which (35)-(37) follow, since these parallel those in I. It is 
however  interesting to examine the analogue of (28), derived from (33): 

= rpo + ~ f dz((l 2- qo2)bbo, rp (38) 

where 

d2c-1/2 t~2 = q2_ cl/2 = q 2 + !  d2c 3 /1 d&~ 2 
2c Fzz - 4 \3  d-~] " (39) 

When the reference profile c0 is chosen to be the step function, q02 becomes  
highly singular. It is for this reason that we have preferred to work with an 
identity based on the following form of (14); 

d { - l d B ' ~ + ( c  ~) 
d-~ \ e  d z  ] - B = 0. (40) 

We multiply this equation by B0, the solution of 

d {  1 dBo'~ to 2 
  0wj+ K2]B : 0, c0 / 

where 
m 

eiqlz _ rpo e-,q~z~_.Bo___ ~ ~/c2 tpo e iq2z 

and subtract from this B times (41). The result is 

(41) 

(42) 

(43) 
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or 

d (BoC _ BCo) = K 2 ( 1 - 1 ) B B o -  (e - Eo)CCo, (44) 

where 

C l d B  dB Co= 1 d B o _ d B 0  (45) 
= ~ d--z- = dZ '  ~o dz dZ0" 

We now integrate (43) from -oo to +oo; using (15) we find 
o o  

rp=rp°+2"-~l f dz{(1-1)K2BBo+('-e°)CC°}" (46) 
- - o r  

This identity relates the p-wave reflection amplitudes for two arbitrary 
profiles. In the next section we shall apply it to determination of rp to second 
order in the interface thickness. 

We close this section by noting two more interesting identities, obtained by 
comparing the p-wave with the s-wave. In the first we multiply (14) by the 
solution of (8) (for the same profile ~), and subtract from this B times (8). The 
result, integrated from - ~  to +~ ,  gives 

1 f dz/de '~(1 dB~E (47) rp+ rs = 2iq~ J \-~]\-~-~] " 
- - o o  

The second identity, obtained from (8) and (33) by the same method, also 
gives the sum of the reflection amplitudes: 

o o  

d2e-l/2 
- V E  f dz ---~r- EB r p + r s =  2iq~ 

- - o o  

f de -t12 d 
= " k / ~  d z  - -  ( E B ) .  (48) 

2iql dz dz 
- - o o  

4. The p-wave to second order in the interface thickness 

We shall apply (46) with the reference profile being the step profile ~o (given 
by (14)). The s-wave results are conditional on the positioning of the step 
profile to satisfy (6), or 

o o  

f dz(e - Co) = O. (49) 
- - e e  
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We shall continue to use this positioning, which makes the phase of the 
s-wave zero to second order in qa (when the step is at z = 0). 

To use (46), we need B and C = dB/dZ  to first order in the interface 
thickness in order to get rp to second order. The factor  e - ~0 in the integrand 
is non-zero within the interface region, which (according to (19) and (49)) is 
centred at z = 0. Thus we need the expansions of B and C about z = 0. The 
functional form of these expansions can be obtained by converting the 
second-order differential equation (16) to two coupled first-order differential 
equations: 

~ = c , d B  dzdC = _ Q2B. (50) 

From (50) we obtain the integral equations 

Z 

B(Z)  = B(O) + J dZ 'C(Z ' ) ,  (51) 
0 

Z 

C(Z)  = C(0) - f dZ 'Q2(Z' )B(Z ' ) .  (52) 
0 

The leading terms in the expansion around the origin are 

B(Z)  = B(0)+  C ( O ) Z + . . . ,  (53) 

Z 

C(O) - B(O) I dZ'Q2(Z')  +" " "" (54) C(Z)  
0 

These equations give the required functional input into (46), but the constant 
B(0) has to be evaluated to first order in qa for rp to be known to second 
order (C(0) may be replaced by C0(0) to this order,  because of (49)). In the 
appendix we show that B satisfies the integro-differential equation 

f ,dBI } oG (55) B(z)  = B o ( z ) -  d~ - K2B(~)G(z,  ~)+ ( e -  ~o) E d~ eo a~ " 

The Green 's  function G(z, ~) is defined and evaluated in the appendix. From 
(55) and (A.3) we find 

K2B(0) f d s r ( 1 - 1 ) - C ( 0 )  f d~[(~-Eo)qo(~[)sg n(sr) B(O) = Bo(O) i(Q, + Q2) 

+ ~(qa)  ~" (56) 
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The term multiplying C(0) is, using (49), 

Q1 f dC(,o-,)+ o2f dC(,-,o)= (Q,+ 02)f dC(,-,o). (57) 
- o ¢  0 0 

Also, from (21) and (22), 

2Q1 Co(0) = 2iQIQ2 Bo(0) = Q~ + Q2' Q~ + Q2 (58) 

and B(0), C(0) differ from Bo(0), Co(0) by (at least) terms of order qa. Thus 

B (0) = Q2Q~2 {1+ Q,iK2D+ O~ iO2A}+(~(qa) 2, (59) 

where the lengths D and A are given by 

D= f d~(±--~5- - ± f dz ("-')('-'~), (60) 
\ E 0  E /  E l l S 2  

- ~  - o e  

Qo 

dz(~ - %). (61) A 
0 

(The second form of D is obtained using (49)). We now have sufficient 
information to evaluate rp to second order. The expansion of rp in powers of 
qa is written as 

rp = rvo + rpl + rp2 +" • ". (62) 

From (46), using (49), (53), (54) and (59), we find the weU-known 6'7) result 

2iQIK2D 
rpl = - (Ql + Q2) 2 (63) 

and 

2Q, " K4D2 _ ,2)[2K2L 2 - 002 /2]}, 
rp2 = (Ql + Q2) 2 t ~  + Q2(E1 ~-~ (64) 

where 

c~ ~ z 

2(,,-,=)L2= f dz~('--'-°5+ f dz(,-,o)f dC 
- o ~  - ~  0 

oo z 

--oo 0 
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This combina t ion  of  integrals may  be simplified by using (49) to 

E-~}"  (66) 

0 

Also of in teres t  is the second-o rde r  term in rp/rs8); f rom (62) and rs = r~o+ 
rs2 + ~(qa)  3 we have  

~ = to0 +_[p_! + __1 [rp2_ rs~ rP°] + ~(qa)3. (67) 
rs rso rso rso - rsoJ 

F rom (11) we find 

rr~rs2= - 2QIQ2 (~02 , ,+~_2K2)(e_,2)12" (68) 
r~0 ( q l +  Q:)2 c-r ele2 / 

Thus ,  combin ing  (64), (67) and (68), 

(r )2-1 [r _r 2 l 
- -  rs 0 r s o J  

q l - q 2 ( Q , + Q 2 ) 2 [ G - - + Q 2  +Q2(e ' - e2 )  2L2 e'+e212e,e2 " (69) 

This term goes to zero  at normal  inc idence ,  as it must  since there  is then no 
physical  d i f ference  be tween  the s and p waves ,  so that  ro/r~ = 1, identically.  

5. An example 

We shall c o m p a r e  the results  der ived  above  with the exac t  solut ion for  the 
h o m o g e n e o u s  dielectr ic  layerg); for  this p rob lem the dielectr ic  func t ion  is a 
two-s tep  

E l ,  Z ~ - -  a ,  

e ( z ) =  a e l + b e 2  a + b  ' - a < z < b ,  (70) 

E2, z > b. 

The  p-wave  ref lect ion ampl i tude,  found  by  imposing the cont inui ty  of  B and 
E -I dB/dz  (implied by  (40)) at - a and b, is 

- rp = e -2iq'a Q(QI - Q2)c + i (Q 2 - QIQ2)s (71) 
Q(QI + Q:)c - i(Q 2 + QIQ2)s '  

where  

{7} cos,. 
= s i n t q t a  + b)}, a + b (72) 
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The corresponding s-wave reflection amplitude is given by I(31) 

rs = e -2iqlq q(ql  - q2)c + i(q 2 -  qlqE)S (73) 
q(ch + q2)c - i(q 2+ qlql)s" 

The integrals required for rp2 are (with e representing the value (ae~+ 

beE)/(a + b)) 

12 = ( a  + b ) 2 ( e l -  e ) ( e  - eg/(el- e9 2, (74) 

D = (a + b) (el - e)(e - e2), (75) 
eele2 

( E l -  e)(e  - e2) (76) 
L 2 = ( a  + b )  2 e ( E l -  e2) 2 " 

Thus the second-order contribution to rp is 

2Ql(a + b)2(el -  e)(e - e2) j ' K 4 ( e l  - E)(e  -- e2) , Q2 
rp2 = ( Q I  + Q2) 2 [ ( Q I  + Q2)(EEIE2) 2 1- el -- E2 

This expression checks with the second-order part of (71). 

I 
_ ~ _ _  O32 

(77) 

7. The Brewster  angles 

We saw in section 2 that one would expect  near-transparency at the angle 
of incidence defined by Q~ = Q:, i.e. determined purely by the bulk properties 

of the two media: 
/ 

0n(bulk) = arctan x/e2. (78) 

There are other operational definitions of Brewster  angles, reducing to (78) in 
the limit of a step profile, but in general dependent  on the interfacial profile 
characteristics. These are determined by minima in Irpl or [rJrsl, or by the 
location of the zero of the real part of rp/rs. We shall give an expression, to 
second order in qa, for  the angle at which Re(rJr~) = 0: from (67) and the fact  
that rpl is pure imaginary, we see that this condition requires 

rpo + rp2- rs2 O. (79) 
/'sO 

We let 

OB(Re(~) = 0)= arctanJ~2+.,l AOn. (80) 

It is apparent  from (79) that A0B = ¢~(qa) 2, so the difference in the Brewster  
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angles, to second order in interface thickness, is given by r¢~ = - rv2, or, with 
QB = (tolc)/~/E, + e:, 

Q1 - Q2 _ rp2(oB) + C(qa) ~. 2QB (81) 

This implies 

A0B = 2rp2(0B) + (~(qa) 3. (82) 

From (64), 

rp2(0a) -- el + e2 C (~1 -- e ' ) L 2  + D 2 1 E ~ - - e ~ 1 2  (83)  
2 EI~ 2 " 

The sign of zlOB is thus determined by the relative size of the terms in the 
square bracket.  

7. Conclusion 

We have developed a variety of techniques for dealing with the elec- 
tromagnetic p-wave. The second-order  ellipsometric formulae derived here 
appear to be the first explicit results for a general profile expressed as 
convergent  integrals, although there are implicit results in the work of 
Maclaurinl°), Rayleigh 6) and Abel6sn). The results show that there is a wealth 
of information in the angular dependence (contained in Q~, Q2 and K 2) of rp 
and rp/r~. Three lengths characterising the profile can be determined from rp2, 
one of these being obtainable from rs2 (see eqs. (11) and (64)), and one (D) 
from rp,. Two lengths can be determined from (rp/r~)2, one of which is D. 
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Appendix 

An  integro-differential equation [or the p -wave  

The results given here are closely related to those given in the appendix of 
I; the discussion will correspondingly be abbreviated. We shall work with the 
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p -w ave  equa t ion  (40), wi th  v = 1/~: 

d ( v d B ' ~ +  ¢o 2 
d z  

We cons t ruc t  a G r e e n ' s  func t ion  G(z,  ~) sa t i s fying 

aG co 2 
oz 

and incorpora t ing  the required  b o u n d a r y  condi t ions.  This  is (cf. I, (A.6)) 

ei(q2~-qlz) 

i(Q1 + Q2) 

-iq z 
e ~ (~ iq l¢  - -  rpo e_lql~. ) 
2iQ1 "- 

J 
J 

G(z, ~) - 
J 

J 
J 

J 

e -iqx~" • 
2iQi (e'q'~ - rpo e -iq'~) 

e tq2~ _iq2z 
(e + rp0 e iq:z) J 

J 
J 

/ 
/ 

iq2z / 
(e -iq2~ + rpo e iq2~) 

f ~ ~,~2 
i -  

(a.3) 

ei(q2z-ql~) 

i(Qi + Q2) 

N o w  wri te  v = Vo + Av, B = Bo + AB. F r o m  (A.1) and the  co r re spond ing  equa-  
t ion for  Bo, z~B satisfies (with p r imes  denot ing  d/dz)  

(voAB')' + (~-r-  voK2)AB + ( AvAB' ) ' -  K2AvAB = Ao, (A.4) 

where  

Ao = K2AvBo-  (AvBO'. (A.5) 

N o w  e x p a n d  AB as a ( funct ional)  p o w e r  series in / iv: 

AB = B I + B 2 + .  • ". (A.6) 

We  get  an infinite se t  of  coup led  equat ions :  

(voB')' + ( - ~ -  voK2)B, = A,_,, (A.7) 
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where  A, is ob ta ined  by  rep lac ing  Bo by  B, in (A.5). Each  of these  is fo rmal ly  

solved in te rms  of G(z, if): f rom (A.7) and (A.2) 

B.(z) = f d~G(z, ~)a~ I(~). (A.8) 

S u m m i n g  these to n = 2 ,  we find 

a B ( z )  = f (A.9) 

or 

B ( z )  = Bo(z)  + f d~av(O{K2B(OO(z,O+-~-~}, (A. 10) 

which  p roves  (55). 
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