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We derive analytic expressions for the reflection amplitudes of s and p polarized electromag-
netic radiation incident on a planar interface profile of arbitrary form, to second order in the
parameter qa, where g is the component of the wavenumber perpendicular to the interface, and a
is a length proportional to the interface thickness. New comparison identities, relating the
reflection and transmission amplitudes of the p-wave to those for any reference profile, are
derived. The second-order results are obtained by using one of these identities, and an integro-
differential form of the p-wave equation.

1. Introduction

In a recent paper') we considered waves satisfying the equation

2
S @ =0 )

and incident from medium 1, i.e. with the boundary condition

e+ re M h(2)>t !9 (2)

We showed that the reflection amplitude r, and the transmission amplitude t,
are given by

_ Q=G 2 s

r= q1+q2{1 2q,q:1°} + O(qa)’, 3)

— 29114 Y(q,— g1} + O(qa)’. @)
a1+ q

Thus, as may be expected, the reflection and transmission amplitudes in the
long wavelength limit are given by the amplitudes for a step profile (in which
the transition from medium 1 to medium 2 is discontinuous), plus a correction
term dependent on the deviation of the actual profile from a step profile. This
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is seen explicitly in the expression for the length !:

2=2 I dzz(q* - qe)/(qi — ad). &)

The reference step profile is positioned so as to make
[ dza*-ain =0 ®

(see fig. I-1). This positioning makes ! invariant with respect to the choice of
origin. The magnitudes |r| and |t| are thus also independent of the choice of
origin, but the absolute phases are not. Here, as in I, we shall take the origin
at the step, which is positioned to satisfy (6).

We saw in I that the above results are immediately applicable to the
electromagnetic s-wave, in which the electric field is perpendicular to the
plane of incidence. When the interface lies in the xy plane, and the pro-
pagation is in the zx plane, E = (0, E,, 0), and E, satisfies?)

2
VzEy+e%E,=0 )

(c is the speed of light, and « is the angular frequency of the (monoch-
romatic) wave). The dielectric function € is primarily a function of z, but there
is some x, y dependence. Part of the x, y dependence exists for the same
reason that € is not constant in the bulk phase: there are fluctuations in
density, molecular orientation, or composition. In addition, there are surface
contributions, arising out of surface roughness, or fluctuations in surface
properties such as adsorption. In this paper we shall neglect the x, y depen-
dence; this amounts to calculating reflections from an averaged sample. We
also neglect anisotropy in the dielectric function (which has been shown to
exist even in the solid-vapour’®) and liquid-vapour®) interfaces of a monatomic
system, but is there small). With these assumptions, € = €(z), and the solution
of (7) is in the form E, = e ®*E(z), where E(z) satisfies

d’E 2
T (ca-K)E=0 ®

K is the x-component of the wavevector in either medium, so if 6, and 0, are
thg_ angles of incidence and refraction, K = k; sin 8, = k; sin 6., where k; =
Ve wlc. Eq. (8) is of the form (1), with

2
a'(z) = e(z2) 2 - K™, ©)
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Thus g is the normal component of the wavenumber, and has the limiting
forms

q, =k, cos 8,<—q(z2)—q, =k, cos 0,. (10)

For the s-wave we thus have from (3), (5) and (9) that

=ql_q2 _ e_este} 3
rs —q|+q2{1 4q,q2J‘dzz——‘E€l_€2 + 0(qa)’. (1)

Thus the deviation from the step reflection amplitude in the long wavelength
limit is expected to be of the form
r -

r—rS@: —2kyky1* cos 6, cos 6, + O(qa)’, (12)
step

and to give information about one length I, where
2 sz
(1 —e)l>=2 f dz2(e — €gep) = ~ f dz2*$ (13)

(subject to [, dz(e — €yep) = 0). Values of | are given for five profiles in I; I’ is
positive for montonic profiles, which as expected reflect less than a step
linking the same ¢, e,.

The remainder of this paper will be concerned with calculating the
reflection amplitude for the p-wave, in which the B vector is perpendicular to
the plane of incidence. Thus, in our geometry, B = (0, By, 0). We will consider
non-magnetic materials only, and assume that € = e(z) as before. Then B, =
e'’®xB(z), where B(z) satisfies?)

d*B 1dedB o’ z)
_ldedB _ = 14
T eh &t ((aK)B=0, (9
with
e’ —r e M B(z)> \/SZ t, e, s
1

The reason for the factors —1 and Ve,/¢; multiplying r, and t, is that we wish
rs and r,, and t, and t,, to refer to the same quantity, here chosen to be the
electric field. The above factors follow from E = (ic/ew)V X B, the time-
harmonic consequence of V x B = (e/¢c)dE/at.
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2. Near-transparency at the Brewster angle

We showed in section 5 of I that the p-wave equation (11) may be
transformed to
d°B | 2p
7t QB=0, (16)

where Q = g/e and the new variable Z is defined by
dZ=edz, Z= f dze(2). an

In terms of the dilated new z-variable, the B equation is as simple as the E
equation, but we now have Z depending on the shape of the dielectric profile.
We will find the Z, Q notation useful throughout this paper. To begin with we
will rederive the familiar Fresnel result

__tan(6,—6,)
Too = tan(61 + 02) (18)
for the step profile
_ €, 2 <0’
EO(Z) - {Ez, z>0
=3(e1 + €) —1(e, — €) sgn(2). (19)
For the step (located at the origin),
Zo(Z) = ZG()(Z). (20)
Continuity of By(Z,) and dBy/dZ,, and use of (15) in the form
iQ]ZO_ rpO e—iQIZO’ 7< 0,
By(Zy) =
\/ 22t e' %5 z>0, (1)
gives
_Q-Q
T Tw= Qi+ Q+0Q; (22)

which reduces to (18). The p-wave has zero reflection amplitude when
Q, = Q,, i.e. at the Brewster angle 6 = arctan Ve,Je,. We see directly from
(16) that this angle has special significance not only for the step profile, but in
general. This is because the wave equation, in the dilated variable Z, links two
media with effective wavenumbers Q; which are equal at this angle (and at no
other angle). The analogue in quantum mechanics is reflection at an interface
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between two media in which the particles have equal potential energy. We
illustrate the reason for the near-transparency (for the p-wave) at the Brews-
ter angle in fig. 1, where we show g° vs. z and Q? vs. Z for the hyperbolic
tangent (or Fermi function) profile

€(2) = 1(e, + €;) — 3(¢, — ;) tanh(z/2a)

€ €2 __€]+€2€Z/a

TTre™ T (4™ (23)
For this profile,
Z =€, + €)z — (€, — €)a log cosh 2. 24)
2a
At the Brewster angle,
2 2
1_ (@) €€ 2_ 2 (@ 1
K —(C> E]+62, QI QZ (C) €|+Ez' (25)
Thus at 03, for a general profile,
2__ (W 2 1 _ €€
Q —(C) ;2{6 €]+Ez} (26)
and
2
2_N2_"_ N2 (@ (e, —€)e — &)
Q-Qi=Q-Qi= (%) o @

This is the analytic expression for the bump in Q at the Brewster angle seen
in fig. 1.

&) )]
2 !

- {0 2/a 10 -5 S Z/a
Fig. 1. Reflection of the s-wave and the p-wave. The figure shows q%(z) and Q%Z) for the
hyperbolic tangent profile (23), with Z given by (24). The dielectric constants are chosen to
approximate the water—air interface: €, = (4/3)%, ¢, = 1. Water is on the left in both diagrams. The
upper curve (in each case) is for normal incidence, the middle curve is at the Brewster angle
(determined by Q, = Q,), and the lower curve is at the critical angle for total interval reflection.
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3. Comparison identities for the p-wave

In paper I we derived several identities relating reflection and transmission
amplitudes obtained for equations of type (1), to amplitudes obtained with a
reference profile. Let the subscript zero denote a reference profile (in later
sections this will be taken to be the step profile (19), but here it is arbitrary).
The main result in section 2 of I, transcribed to the s-wave, reads

1

rs=r50_5ia

j dz(q*~ q})EE,, (28)

where g and g} are given by (9), and g, g have the same values q; and q,
deep inside medium 1 and medium 2. This result leads to (11) when the
reference profile is taken to be the step profile. We also showed in I that, for
real q,, g, and an arbitrary interface,

Qs = aif (29)
and

e _ bty

re=— t—* rs. (30)

(The backward-pointing arrow indicates amplitudes for a wave incident from
medium 2.) These results are implicit in relations derived by Landau and
Lifshitz’).

In this paper we will derive corresponding results for the p-wave. We note
first that (14) is not of the form (1), but may be put in this form in two ways.
The first transformation (of the space coordinate) has already been indicated
in section 2. But since the new space coordinate Z is a functional of the
dielectric profile, each profile has its own Z, and the comparison identities of I
cannot be transcribed to the B(Z) form of the p-wave. The second trans-
formation is

B=+/%b. 31

€

The factor €;'? is to make the asymptotic form of b the same as that of B in
medium 1:

e —r, e Meb—>t, ', 32

From (14) and (31), b(z) satisfies the equation

2 2_-1f2
e Gt ) 2
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or
&b 2 1 d% 1de ]
@*[‘”ze&z (edz) b=0. (34)

The techniques developed in I may be applied to this equation. In particular
we find, as in I,

(1= r) = qult )’ (35)

@ty = qit, (36)
and

Pt 37)

(these relations are for real q;, g, only). We will not give all the comparison
identities from which (35)-(37) follow, since these parallel those in 1. It is
however interesting to examine the analogue of (28), derived from (33):

L gt
+3iar | 42 = adbbe (38)

where

2_ o _pde” 5 1 d% 3<1de>2 (39)

R e A PR AT
When the reference profile €, is chosen to be the step function, 3 becomes
highly singular. It is for this reason that we have preferred to work with an
identity based on the following form of (14);

1dB K

dz (e dz)+ (?——>B 0. (40)
We multiply this equation by B,, the solution of

d (1 dB(,) ( P K? )

dz (eo )P\ g )B=0 “n
where

e — rpe e~ By> \/? too €97 (42)

1

and subtract from this B times (41). The result is

d/1dB\ ., d l%)_ z(l_i)
Bg; (@) B (eo iz )= K¢~ )BBo 3)
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or
4 (BC-BCY=K (Ll)BBo (€ — ) CCo, (44)
where
_1dB_dB . _1dBy_dB,
C_edz_dZ’ Co= € dz dZy 3)

We now integrate (43) from — to +; using (15) we find
1 1 I\,
r=ratzg | @ (G—O— Z)K BB, + (€ — e CCol. 46)

This identity relates the p-wave reflection amplitudes for two arbitrary
profiles. In the next section we shall apply it to determination of r, to second
order in the interface thickness.

We close this section by noting two more interesting identities, obtained by
comparing the p-wave with the s-wave. In the first we multiply (14) by the
solution of (8) (for the same profile €), and subtract from this B times (8). The
result, integrated from —c to +o, gives

®

rp+rs=—2+ql j dz(g—;)(%%)E @7

—o0

The second identity, obtained from (8) and (33) by the same method, also
gives the sum of the reflection amplitudes:

_ —\/61 d2 -12
rptrs= %, I dz P EB
\/61 —l/2 d
~ 2iq, [ dz dz dz (EB). (48)

4. The p-wave to second order in the interface thickness
We shall apply (46) with the reference profile being the step profile €, (given

by (14)). The s-wave results are conditional on the positioning of the step
profile to satisfy (6), or

j dz(e — &) = 0. (49)
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We shall continue to use this positioning, which makes the phase of the
s-wave zero to second order in ga (when the step is at z = 0).

To use (46), we need B and C =dB/dZ to first order in the interface
thickness in order to get r, to second order. The factor € — ¢, in the integrand
is non-zero within the interface region, which (according to (19) and (49)) is
centred at z = 0. Thus we need the expansions of B and C about z = 0. The
functional form of these expansions can be obtained by converting the
second-order differential equation (16) to two coupled first-order differential
equations:

dB _~ dC_
7=-C z="QB (50)

From (50) we obtain the integral equations

4

B(Z) = B(0)+de’C(Z’), )
0
V4
C(Z)y=C)— I dZ'QXZ")B(Z"). (52)
(]
The leading terms in the expansion around the origin are
B(Z)=BO)+ C(O)Z+- - -, (53)
zZ
C(Z)=C(O)—B(O)de'QZ(Z’)+- - 54
0

These equations give the required functional input into (46), but the constant
B(0) has to be evaluated to first order in ga for r, to be known to second
order (C(0) may be replaced by Cy(0) to this order, because of (49)). In the
appendix we show that B satisfies the integro-differential equation

x

- _ 1_Nge _ ey 14B 139G
B()=Bu()~ [ de{( - )KBWOG D+ (-0 1T LEL (59)

1
€ €
The Green’s function G(z, {) is defined and evaluated in the appendix. From
(55) and (A.3) we find

3

K? .
BO = B0~ 5205 [ de(L-1)-co [ aze - enQue) sen)

+ 0(qa)~. (56)
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The term multiplying C(0) is, using (49),

Q jo d(eo—e)+ Qs j dite—e) = (Qi+ Q) f di(e ~ eo). 57
Also, fr:m (21) and (22), 0 0

B0 = 5ot Cl0)= o2& (58)
and B(0), C(0) differ from By(0), Co(0) by (at least) terms of order ga. Thus

B(0) = 012?102 {1+ Qif(:%; iQ:A } + 0(a)’, (59)

where the lengths D and A are given by

o

o b (e1—€)(e — &)
D= j (_ e) €1€2 . dz € > (60)
A= J' dz(e — €). 61)

(The second form of D is obtained using (49)). We now have sufficient
information to evaluate r, to second order. The expansion of r, in powers of
qa is written as

r,= rpo+rp1+rp2+-". (62)
From (46), using (49), (53), (54) and (59), we find the well-known®’) result

_ _2iQK’D
T ©

and

2Q, K‘D? B 2@ 5
=G g ot e @K -G ], 9

where

©

2(e,—ez)L2=J'dzz( ) fdz(e e(,)J' 5

+ f dz f dze(?) - DA. (65)



516 JOHN LEKNER

This combination of integrals may be simplified by using (49) to

(e, — )L = f dz(e—eo){§+ f %} (66)

0

Also of interest is the second-order term in rp/rsg); from (62) and r,=ro+
ro+ 6(ga)’ we have

r, r r 1 r
Piirat et [rpl T ﬁ] +0(qa)’. (67)
rs Tso Fso rso Fso

From (11) we find

o ___2QiQ, o ete L\, g
T'so 2 Qi1+ Q) <?7 €1€; K >(€l el (68)

Thus, combining (64), (67) and (68),

r 1 r,
(3, Sl
rs/2 Fso Tso

_qi+q 2QK? ( K'D? € +e
- ol ot @a-er - E el @)

This term goes to zero at normal incidence, as it must since there is then no
physical difference between the s and p waves, so that r,/r, = 1, identically.

5. An example

We shall compare the results derived above with the exact solution for the
homogeneous dielectric layer®); for this problem the dielectric function is a
two-step

€y, z<—a,
— ae;+ b€2 _
e(2) 7D a<z<b, (70)
€7, z>b.

The p-wave reflection amplitude, found by imposing the continuity of B and
¢ ' dB/dz (implied by (40)) at — a and b, is

2ige QQi— Qyc + i(Q*— QiQys (71)
Q(Qi+ Q)c —i(Q*+ Q,Qys’

—-r,=e
where

c] _ cos »__aqgi+bq;
{}=a@+py, q'=d2d 72
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The corresponding s-wave reflection amplitude is given by I1(31)

: 2
_ —2ia;0 9(q1— g)c +1(q° = q19))s 73
=€ n .
a(a, + a)c —i(a* + qia)s (73)

¥y

The integrals required for r,, are (with € representing the value (ae, +
bey)/(a + b))

1= (a+ b)(e;— €)(e — e)l(€, — €)', (74)
D=(a+b)yle=Ne—€) (75)
€€1€y
_ (e1—€)(e —€)
L= (a+ b)2 W (76)

Thus the second-order contribution to r, is

p o —2Qua+t b)(e,— €)(e — €) {K4(€1 —e)e—€) [2_K2_ wz]}
P2 Qi+ QY Qi+ Q)eere)’  e—el e UF

This expression checks with the second-order part of (71).

an

7. The Brewster angles

We saw in section 2 that one would expect near-transparency at the angle
of incidence defined by Q, = Q,, i.e. determined purely by the bulk properties
of the two media:

#g(bulk) = arctan \/ :—T (78)

There are other operational definitions of Brewster angles, reducing to (78) in
the limit of a step profile, but in general dependent on the interfacial profile
characteristics. These are determined by minima in |r,| or |r,/r], or by the
location of the zero of the real part of r,/r,. We shall give an expression, to
second order in ga, for the angle at which Re(r,/r)) = 0: from (67) and the fact
that r,, is pure imaginary, we see that this condition requires

rp0+ L6 rsZLr‘.ﬂ;: 0. (79)
We let
OB(Re(—;P-) = 0) = arctan \/ ? + Afp. (80)
s 1

It is apparent from (79) that A6y = 0(qa)?*, so the difference in the Brewster
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angles, to second order in interface thickness, is given by Yoo = — Fpy, OF, with

Qs = (w/c)Ve + e,

Qééfz = r,(6s) + 0(qa)’. 81)
This implies

Ay = \/?ez(’e iZ/(ZBi it Ot 82)
From (64),

raOn) = (1 (%)2[(6, -~ )L+ S Dz_%%—e—f% 12]. (83)

The sign of Afj is thus determined by the relative size of the terms in the
square bracket.

7. Conclusion

We have developed a variety of techniques for dealing with the elec-
tromagnetic p-wave. The second-order ellipsometric formulae derived here
appear to be the first explicit results for a general profile expressed as
convergent integrals, although there are implicit results in the work of
Maclaurin'®), Rayleigh®) and Abelés'"). The results show that there is a wealth
of information in the angular dependence (contained in Q,, Q, and K?) of r,
and r,/r,. Three lengths characterising the profile can be determined from T'p2s
one of these being obtainable from r,; (see eqs. (11) and (64)), and one (D)
from r,. Two lengths can be determined from (r,/r,),, one of which is D.
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Appendix

An integro-differential equation for the p-wave

The results given here are closely related to those given in the appendix of
I; the discussion will correspondingly be abbreviated. We shall work with the
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p-wave equation (40), with v = 1/e:

2

(@) (G- x)B-
iz (v 1z + v vK°)B =0. (A.1)
We construct a Green’s function G(z, {) satisfying
9 { 3G\, (o’ AV
5;(%az)+(p-th)G—-Mz 0 (A2)
and incorporating the required boundary conditions. This is (cf. I, (A.6))
4
el - . {=z
5, € e -
. Ve
el(q:(—qlz) _
Qi+ Qy -
/ .
- - 2eiq(;2 (€% + ')
Gz ()= < z
P . e—iqll) /
2iQ, w0 e
e
/ ei(qzl“‘hl)
i(Q1+Qy
s
/ e~iq1{ iqyz —igyz
ZIQ‘ (e Nz _ rpe a3 )

(A3)

Now write v = v+ Av, B = By+ AB. From (A.1) and the corresponding equa-
tion for By, AB satisfies (with primes denoting d/dz)

2
(v,AB'Y + (% - voKz)AB +(AvAB'Y — K?AvAB = A,, (A.4)
where
Ay = K*AvB, - (AvB)). (A.5)

Now expand AB as a (functional) power series in Av:
AB=B,+B,+---. (A.6)

We get an infinite set of coupled equations:

2

(0B + (% - 00K*)B, = A, (A7)
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where A, is obtained by replacing By by B, in (A.5). Each of these is formally
solved in terms of G(z, {): from (A.7) and (A.2)

B.(2)= [ Gz 04, (D). (A8)
Summing these to n = », we find

AB(2) = f 46 O{ K40 - 57 (400 )}, (A.9)

or

dB BG}

iz ol (A.10)

B(z) = By(2) + f chv(z){ 2B(()G(z, 1)+ 42

which proves (55).
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