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Rotation of a self-bound many-body system 

by I. L E K N E R  

Physics Depar tment ,  Victoria University,  Wellington, New Zealand 

(Received 10 October 1973) 

We discuss the rotational excitations of highly quantum many-body 
systems (for example, potyatomic molecules or microdroplets of helium). 
For a general system, the states F~,  where F =  �89 ~. ~ (x~ t + iy~j)Lf(r~j) and 

j 

(I) is a rotationally invariant ground or vibrational state, are shown to be 
eigenfunctions of L ~ and Lz, with eigenvalues L(L + 1)h 2 and Lh (for even 
L). These wavefunctions preserve the translational invariance and the 
permutation and inversion symmetries of the N-particle state (I). For 
harmonic pair interactions, the f=  1 wavefunctions are shown to be exact 
eigenstates of the N-body hamiltonian. For large N, the states F(I)(f-= I) 
represent surface oscillations of the type first proposed by Bohr. An in- 
equality for the rotational excitation energy is obtained variationally ; it 
depends on two, three, and four-particle correlations. Other transla- 
tionally invariant angular momentum eigenfunctions are also discussed. 

1. INTRODUCTION 

T h e  rotational states of polyatomic molecules are normally discussed in 
terms of r igid-body ro ta t ion;  ref inements to allow for non-rigidi ty are then 
built  on to the rigid-rotation theoretical f ramework [1, 2]. Such a t reatment  is 
suitable for most  molecules, but  not for the loosely bound, highly quantum 
molecules of the isotopes of helium. This  can be seen clearly by letting the 
number  of atoms in the system get large : in the case of helium we end up with 
a droplet  of a quan tum fluid, which certainly cannot be regarded as rigid in any 
approximation.  In this paper we obtain certain exact many-body  orbital angular 
m ome n tum eigenfunctions by examining the th ree-body  case. These  rotational 
states are then shown to be the quantum analogues of the surface oscillations of 
a liquid drop, and thus correspond precisely to what one would expect  for the 
low-lying excitations of a helium microdroplet .  

We shall discuss the rotational excitations of a non-relativistic system of N 
particles (bosons or fermions),  with hamiltonian 

h2 N 
H =  -2--m 2~ V i 2 + r ( r l '  rz' "'" rx)" (1) 

i = 1  

T h e  potential energy V is assumed to be symmetr ic  with respect to permutat ions 
of the particle coordinates ri, and also to be translationally and rotationally 
invariant. We fur ther  assume (in this paper)  that V is independent  of spin 
coordinates, so that orbital angular m o m en tu m  is a good quan tum number .  
T h r o u g h o u t  this paper we ignore the spin coordinates, and angular m o m en tu m  
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432 J. Lekner  

is unders tood to mean orbital angular momentum.  
men tum operator is 

N 

L = - i h  ~ r i x V  i. 
i = 1  

T h e  total angular mo- 

(2) 

On making the t ransformation r~--~r i + a, we see that, as in classical mechanics, 
the angular m o m e n t u m  of the system is independent  of the choice of origin if 
and only if we work in the rest frame of the system. We therefore restrict our 
considerations to states tF of zero total m o m en tu m  P : 

( N )  PW= - ih ~ V~ W = 0 .  
i=1 

(3) 

In classical mechanics the total m o m e n t u m  can be set equal to zero, and at the 
same t ime the centre of mass coordinate 

N 

a = N - ~  y~ ~ (4) 
i = l  

can be fixed at the origin. In  quantum mechanics this is not possible : R and P 
are conjugate variables, with 

[Rx, Px]=ih, etc., (5) 

so that when the total m o m e n t u m  is zero the centre of mass coordinate is com- 
pletely indeterminate by the uncertainty principle. T h e  true rotational excita- 
tions of an isolated nucleus or molecule are therefore translationally invariant 
states. 

It  is convenient  to at first ignore this fact in constructing many-part icle  
wavefunctions f rom single-particle wavefunctions (as is done in the shell model)  
and then to construct  translationally invariant states by the substi tution r i--~P~, 
where 

Pi = r~ - R. (6) 

T h e  replacement  of the r~ coordinates by the coordinates relative to the centre 
of mass gives exact eigenstates in the special case of harmonically interacting 
fermions forming closed shells, as was shown by Bethe and Rose [3]. However ,  
in the general case there are severe difficulties, arising f rom the fact that  the p~ 
are not independent  coordinates : 

N 

E Pi =0. (7) 
i=1 

If  one treats the Pi as independent  coordinates, one has 3 N  variables instead of 
the 3 N - 3  variables needed to specify an N-part icle  state in its rest frame. 
This  leads to ' spurious states ' which do not  correspond to any state of internal 
motion, as pointed out by Elliott and Skyrme [4]. T h e  problem of eliminating 
the spurious states has been discussed by  several authors [5-7] : it has been 
shown to have a solution only in the special case of harmonic interactions. 
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Rotation of a self-bound many-body system 433 

by 
A different approach [8-10] is to transform to normal coordinates ~ ,  defined 

gx= \T+-- l /  r~+t-  A-1 ,=1 ]~ r, (A= 1, 2, . . .  N -  11, (8) 

N 
gN =N-1/2 E I'i" (9) 

i=1 

This transformation achieves the desired result of separating the centre of mass 
motion from the  internal motion: the ~x for A < PC- are relative coordinates, 
independent of the choice of origin, ~N is proportional to R, and 

N N 
E V, 2= E Va ~, (10) 
i=l A=I 

N 
L= - i h  Y~ ~ x V;t. (11) 

A=I 

The N-particle problem has been transformed to that of N quasiparticles, one 
of which represents the motion of the whole body, and the other relative motion 
within the body. Further, since 

N N N-1  

�89 ~] 2 vii 2 = N  Z l~a~, (12) 
j = l  i=1 A=I 

the quasiparticles are non-interacting when the particles interact with harmonic 
pair forces. The quasiparticles are however no longer bosons or fermions, but 
have a very complicated permutation symmetry. 

In this paper we use the method of normal coordinates to obtain a set of 
angular momentum eigenstates for the three-body case, and then generalize to 
the N-body system. The N-body angular momentum eigenstates have the 
necessary translational invariance, and the correct permutation symmetry. 
The difficulties mentioned in the previous two paragraphs are thus entirely 
avoided. On the other hand, the approach is intuitive rather than systematic, 
and we cannot hope to obtain all the rotational states in this way. 

2. MANY-BODY EIGENSTATES OF L 2 AND L z 

We consider the three-body problem first, since in this case all the rotational 
states may formally be written down. The normal coordinates are 

1 

1 
~2 = ~ (r31 + t32), (13)  

1 
=--7; ( n +  r3). V~ 

M.P. 2 E 
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434 J. Lekner 

The angular momentum operator in the rest frame is 

1- = - • a-- l + x ) �9 (14) 

Let S(1, 2, 3) be any rotationally and translationally invariant state. Then 

r 2, 3 )=  E Z (rM[llmll2m2)Yhml(~)Yz~(~2)SLz, z~ (15) 
m l  m2 

is a translationally invariant eigenstate of L 2 and L z with eigenvalues L(L + 1)h 2 
and Mh. (The Yzm are spherical harmonics and (LMlllmll2m2)are Clebsch- 
Gordan coefficients.) The problem is now to symmetrize these states. One 
set of states with the same permutation symmetry as S may be obtained easily 
by setting /z=0. The non-zero terms in (15) have ll=L. A symmetrized 
sum formed from (15) is proportional to 

YLM(rl2) § YLM(I'18) § YLM(F23) 

with even L (because YLM(--r)=(--)LYLM(r)). This expression leads us to 
consider many-body wavefunctions proportional to 

N N N N /Xij+iyij\L" 
�89 E Z YLL(rCj)~�89 E E I 

j = l  i=1  j = l  i=1  rij ] 

(It  is sufficient to consider the state with eigenvahe of L, equal to Lh, since the 
whole set of 2L + 1 states with different magnetic quantum numbers may then 
be obtained by means of the ladder operator L x -  iLv). 

We can generalize again, and consider many-body wavefunctions of the form 
tie = F(I), where 

N N 

F=�89 E E (xij+iYij)Lf(rij) (16) 
j = l  i=1  

and (I) is any translationally and rotationally invariant state with either Bose or 
Fermi permutation symmetry. L must be even, otherwise F is zero. We shall 
now verify that the states F(I) are eigenfunctions of I- 2 and L, with eigenvalues 
L(L+ 1)h 2 and Lh, for arbitrary f. For f = constant it will be shown that the 
wavefunctions are also energy eigenstates of a system with harmonic pair inter- 
actions. We have 

~F 
8x k ~. (xkj + iyk~)Lxkjrkr + L ~ (xkj + iykj)L-Xf(rkr 

3 J 

~F 
8yk= ~ (xkj + iykj)Lykf kfxf'(rkj) + iL ~ (xkj + iyk~)L-lf(rkj), 

8F 
8Z---kk = ~ (XkJ+ iykj)Lzkjrk~--lf'(rkj). 

(17) 
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Rotation of a self-bound many-body system 435 

Therefore 

= Lh E E (xk + iYe)(xkj + iYk~)L-lf(rk~) 
k 

+ ih ~ E (xkYj - xIYk)(Xkj + iYkj)Lrkj-lf'(rk~) �9 
k j 

The  second term is zero ; to the first term we apply the identity 

E ~. akAkJ = E E ( a k -  aj)AkJ (Ak~ + Ajk = O) 
k 3 k < j  

to obtain 
L ,F  = LhF. 

In a similar way we get 

L F=-ihX F 

= - Lh E ~. Zk(Xk~ + iYkj)L--lf(rki), 
k 3 

= - iL~ Y E zk(xkj + iykAL--lf(rkj). 
h j 

(18) 

(19) 

(20) 

(21) 

Thus  (L x + iLu)F= 0 (this verifies that we have the uppermost  state) ; using the 
fact that 

(L x - iLu)(L ~ + iLu) = Lx 2 + Lu~ + i[Lx, Lu] 

= L x  2 + Lu2 - hL~ 

(Lx ~ + Lu2)F = hL,F = Lh2F. 
we find 

Therefore  
(22) 

1.2F = L(L + I )h2F. (23) 

The  wavefunctions ~ = F O  have thus been shown to be angular momen tum 
eigenstates, with f(r) arbitrary, apart from the obvious requirements that F and 
its first and second derivatives should exist. 

3. HARMONIC INTERACTIONS 

We shall show that when ~ is the ground state of a system of N bosons with 
harmonic interactions, i.e. 

the state tl~--Fdp with f = l is an exact eigenstate of H as well as of L z and L 2. 
For hamiltonians of type (1), with Hqb =E0qb , we have the identity 

)~2 (]>--1 (O2VkF). (25) 
( H -  Eo)'V = - 2m 2 %. 

2 E 2  
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436 J. Lekner 

When [ = 1 we see from (17) that Vk2F= 0, so that 

( H -  Eo)tF = h~ - m  ~ vkO " VkF" (26) 

For harmonic pair interactions the ground state is well known [8-11] : 

( h~Nv'~ l l 2 
E o=�89 ~f , (27) 

@---exp{-(\Nh~a~ ]my ~112~<3~.rii,.}. (28) 

Thus 

/7/v ~1/2 
~Vk*'VkF=-2L\NIi~a~ j @~ ~ ~ (xkj+iy~j)(xkz+iykz)L-' 

( Nrnv ) ~ ]~ 
= - 2 L  \ ~ ]  r ~ ~ (xk + iy~)(xk, + iyk,)L-~ 

(Nmv) 112 
: - 2 L \ h 2 a ~ ]  FO, (29) 

using the identity (18). Combining (29) with (26) we see that t F = F ~  is an 
eigenstate of H, with energy 

~Nv) ll ~ 
EL=Eo+ZL \ ~  ] �9 (30) 

Comparison with the tv~o-body system [12] leads us to expect that these states 
have the lowest energy for given angular momentum L. The fact that the 
rotational excitation energy increases as L is not a general property of these 
angular momentum eigenstates, but it is interesting to note that there are many 
nuclei which approximate this behaviour [13]. 

4. ROTATIONAL ENERGIES IN THE GENERAL CASE 

In w 2 it was shown that the functions FO have angular momentum L. 
They are therefore orthogonal to any state with L = 0, and are thus suitable trial 
functions in a variational calculation. In general, the best f for given L and ap 
may be determined by many-body variational methods which have recently 
been developed [14]. Here we shall make the simplest possible choice and take 
f =  1. It will appear that the resulting rotational states are surface oscillations 
of the system. 

By the variational principle, with iF= F~,  

E L _ E o < ~  d l  ... d N t F * ( H - E o ) W  Nh~ I dl  ... dNIVIF}~O~ 
S dl ... dNl'Vl ~ =2m ~-~i _.? ~ " 

(31) 
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Rotation of a self-bound many-body system 437 

We have used (25) and the fact the qb has either Bose or Fermi permutation 
symmetry. We set f = l  and consider the two-body case first. Then 
~P(r 1, r2)= OP(rl~), and 

2L2h ~ j dr(x ~ + y~)L.l~P~(r) 2h ~ 
EL Eo <~ - -m - ~ d r - - ~ - ~ ~  =L(L+�89 mfi' (32) l 

where 

f i =  0 (33) 

dr r=L~=(r) 
0 

The general case of arbitrary N and L 
consider L = 2 only, and use the notation 

We have 

so that 

is much more complicated. We 

( A )  = l  d l  ... dNAOP2/ ! d l  ... d N r  ~ (34) 

[V~FI = = s E E (~.x~ + y.y~O, (35) 
a k 

< I ViFI=> = 8 ( N -  1 )(xl~ z + y l ~ )  + 8 ( N -  1 ) ( N -  2)(xx2x~a + Y~Y~a) 

= 4 N ( N -  1) (x,~ ~ + yl=~), 

where we have made use of the identity 

2x12xaa = xl~ z + X I 3  2 - -  X232. 

Similarly, 

(36) 

(37) 

(3s) 

so that 

<[FI 2) = � 8 8  1)< E E {(x12xk, + Yl2Yk,) 2 - (x12Yk,- yl=xk,)=}) 
k l 

= � 8 9  1 ) ((x,= ~ + y1~2) z) 

+ � 8 9  1 ) ( N -  2)((x~2xia + Y~=Yla)Z _ (x~=y,a _ y ~ x l  z)z) 

+ � 8 9  1 ) ( N -  2 ) ( N -  3)((Xx2Xa4 + yl~ya,) 2 

- (xl~yat - y1~x34)2}. (39) 

To define an effective moment of inertia for a given rotational state we compare 
the excitation energy with that of a rigid body, and write 

EL _ Eo = L( L + 1 )h 2 
2 i  z (40) 

Comparison with the variational equation (31) then gives a lower bound for the 
effective moment of inertia I L : 

IL > L ( L +  I )m(IFI  ~) 
g( [VlF[~  ) (41) 
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