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Two positively charged conducting spheres have been shown to attract at close enough range,

unless they have a charge ratio that would result from contact. We give analytical results for the

charge ratio at which the cross-over between electrostatic attraction and repulsion occurs, as a

function of the sphere separation. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4942449]

The purpose of this note is to give a precise criterion for
the existence of attraction between like-charged spheres. The
criterion is that at a given sphere separation the charge ratio
must either exceed a critical value or be smaller than a criti-
cal value. Outside of this region, for large enough or small
enough values of the charge ratio, the spheres will attract.
We give analytical results in the case of conducting spheres
of equal radii.

The theory is based on Ref. 1, where attraction of like-
charged conducting spheres at small separation was pre-
dicted by analytical means. Naturally, this prediction faced
healthy scepticism. For example, Griffiths wrote,2 “Suppose
I take two conducting spheres, of equal radius and equal
charge. They repel, regardless of the separation distance.
Paint a thin layer of insulation over their surfaces, and place
them in contact (or, if you like, leave them uninsulated and
place them a tiny distance apart). Add an infinitesimal charge
(maybe a single electron) to one of them. Now they attract
(by your theorem). Are we really to believe that this minute
increment in charge switches a force that was large and re-
pulsive to one that is (perhaps small but) attractive?”

The answer given below amounts roughly to the follow-
ing: if a small charge is added to one of the spheres, the
spheres will attract at a separation that is proportional to the
square of the deviation of the charge ratio from unity. (A
more precise criterion will be given later.) Thus, a charge
deviation from unity of one part per thousand requires
approach to within one millionth of the radius. As discussed
in Ref. 1, surface roughness of the spheres becomes impor-
tant at very small separations, and is likely to lead to an elec-
trical short. Electron tunneling through a very thin layer of
insulator (as in the Griffiths scenario above) is another way
in which charges on the spheres can equalize.

The analytical results of Ref. 1 for the capacitance coeffi-
cients and for the charge distributions on the two spheres
have been confirmed numerically.3 In addition, generaliza-
tions to pairs of non-spherical conductors have been
explored.4,5 In each case the attraction between like-charged
conductors, where it exists, can be traced to the redistribution
of surface charge on the conductors. Figure 7 of Ref. 1 and
Figs. 3 and 4 of Ref. 3 show the charge distribution on
spheres of radii a and 2a with positive total charges 2Q and
Q, respectively. The separation between the spheres is s ¼ a
(s is the separation distance of the closest points of the two

spheres), not close enough for net attraction to occur, but al-
ready there is an induced negative surface charge on the part
of the larger sphere closest to the smaller one.

Figure 1 of this paper shows the equipotentials for this
configuration, for which the potential of the smaller sphere is
larger by a factor of about 2.17 than that of the larger sphere
(zero potential at infinity being assumed). The variable
charge density is due to very small displacements (relative to
the nuclei) of a very large number of conduction electrons.
The displacements can produce locally a negative surface
charge on a positively charged sphere.

The electrostatic energy of two conductors a; b at poten-
tials Va;Vb carrying charges Qa; Qb is

W ¼ 1

2
QaVa þ

1

2
QbVb: (1)

The charges are related to the potentials via Maxwell’s ca-
pacitance coefficients (Ref. 6, Sec. 87)

Qa ¼ CaaVa þ CabVb; Qb ¼ CabVa þ CbbVb: (2)

Inverting these equations gives the potentials in terms of the
charges and the capacitance coefficients

Va ¼
QaCbb � QbCab

CaaCbb � C2
ab

; Vb ¼
QbCaa � QaCab

CaaCbb � C2
ab

: (3)

Thus the potential energy of two conductors (of arbitrary
shape) carrying charges Qa; Qb is

W ¼ Q2
aCbb � 2QaQbCab þ Q2

bCaa

2 CaaCbb � C2
ab

� � : (4)

When the conductors are spheres of radii a; b, the capaci-
tance coefficients depend only on a; b and the distance
between their centers c ¼ aþ bþ s. Maxwell (Ref. 6,
Sec. 173) was the first to find the capacitance coefficients for
two spheres. They are infinite sums over ratios of hyperbolic
functions of integral multiples of the variable U, defined by

coshU ¼ c2 � a2 � b2

2ab
¼ 1þ s

a
þ s

b
þ s2

2ab
: (5)

When c is large compared to the sum aþ b of their radii,
the leading terms of the expansion of the energy in inverse
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powers of c (which in turn follows from the expansion of the
capacitance coefficients in inverse powers of c) are

W ¼ Q2
a

2a
þ Q2

b

2b
þ QaQb

c
� Q2

ab3 þ Q2
ba3

2c4

� Q2
ab5 þ Q2

ba5

2c6
þ � � � : (6)

The first two terms are the self-energies of the two charged
spheres, then comes the Coulomb energy, followed by an
attractive term that originates in the mutual polarization of
the spheres, as explained in Ref. 1. The next term is also
attractive. Remarkably, Maxwell6 carried out an equivalent
expansion in reciprocal powers of the sphere separation to
order c�22! (Maxwell’s calculation is discussed in Ref. 7.)

The force between two widely separated spheres is
therefore

F ¼ �@cW ¼ QaQb

c2
� 2

Q2
ab3 þ Q2

ba3

c5
þ � � � : (7)

Assuming Qa and Qb have the same sign, to this approxima-
tion the force will be attractive (negative) for

c3 < 2
Qa

Qb
b3 þ Qb

Qa
a3

� �
: (8)

Attraction between two widely separated like-charged
spheres is thus possible only for a charge ratio very different
from unity. At a given (large) separation, the required charge
ratios are

Qb

Qa
� 1

2

c

a

� �3

or
Qb

Qa
� 2

b

c

� �3

: (9)

The close-approach situation is more interesting. The ca-
pacitance coefficients have terms logarithmic in the sphere
separation, and lead to the prediction that attraction will
occur when the spheres are close enough to each other,
unless they have the charge ratio that they would attain on
contact. The question “how close is close enough for
attraction?” is answered in general as follows.

To find the electrostatic force between the spheres, we dif-
ferentiate the energy in Eq. (4) with respect to the sphere
separation. We find that F ¼ �@cW ¼ �@sW is zero when
the charge ratio q ¼ Qb=Qa satisfies the quadratic

A0 þ A1qþ A2q2 ¼ 0; (10)

where

A0 ¼ 2CbbCabDab � C2
bbDaa � C2

abDbb; (11)

A1 ¼ 2CabðCaaDbb þ CbbDaaÞ � 2ðCaaCbb þ C2
abÞDab;

(12)

and

A2 ¼ 2CaaCabDab � C2
aaDbb � C2

abDaa: (13)

The coefficients D are derivatives of the capacitance coeffi-
cients with respect to separation, Dab ¼ @cCab ¼ @sCab, etc.
Equivalently, we can replace derivatives with respect to c or s
by derivatives with respect to the dimensionless coordinate U
(the sum of the bispherical coordinates of the two spheres)
defined in Eq. (5). (U increases monotonically with c or s, so
the zero-force quadratic is the same in either case.) Equation
(10) is simultaneously a transcendental equation for the zero-
force sphere separation in terms of the charge ratio, but it is
simpler to treat it as a quadratic in q ¼ Qb=Qa.

The large-separation capacitance coefficients of Ref. 1
inserted into Eq. (10) lead to Eqs. (8) and (9). The discrimi-
nant of the quadratic (10) is

A2
1 � 4A0A2 ¼ 4ðCaaCbb � C2

abÞ
2ðD2

ab � DaaDbbÞ: (14)

For large separation, we find that this is positive, with lead-
ing term 4a4b4=c4, decreasing with sphere separation. At
close approach, the discriminant is positive and increasing
with separation. Thus the quadratic for q has two real roots in
each limiting case. That two real charge-ratio solutions exist
at any separation would follow from an analytic proof of the
inequality D2

ab � DaaDbb > 0, which seems difficult. A physi-
cal argument for the existence of cross-over between repulsion
and attraction at any separation applicable to spheres of equal
radii, based on a suggestion of Griffiths, goes as follows. For
any value of the separation distance, if one of the charges is
zero the force is obviously attractive, and for equal charges it
is by symmetry repulsive, so there must be some cross-over
charge ratio where it goes from attractive to repulsive.

We now look in more detail at the close-approach behav-
iour. Reference 1 gives the capacitance coefficients to order
U2 for general a; b. The equal-radii coefficients are simpler

Caa ¼
a

2

�
ln

2

U
þ cþ 2ln2þ U2

24

� ln
2

U

� �
þ cþ 2ln2� 1

6

� �	
¼ Cbb; (15)

Cab ¼ �
a

2
ln

2

U

� �
þ cþ U2

24
ln

2

U

� �
þ cþ 1

3

� �� 	
;

(16)

(c � 0:5772 is Euler’s constant). When a ¼ b there is extra
symmetry in the quadratic (10) for the charge ratio

Fig. 1. Equipotential contours of two charged conducting spheres with radii

a; 2a, and charges 2Q; Q. On each sphere, the shading (color online) indi-

cates the sign and magnitude of the surface charge: on the small sphere there

is a large positive charge density (dark shading); on the larger sphere the

gray denotes a smaller positive charge density and the lightest shade a nega-

tive charge density.
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q ¼ Qb=Qa: A0 ¼ A2, so the quadratic is unchanged on the
replacement of q by q�1, as expected. Equation (10) now
gives the cross-over charge ratio as

qþ q�1 ¼ �A0

A1

¼ 2þ O U2ð Þ: (17)

The term of order U2 is positive, so the quadratic has real
solutions, as noted above. The solutions are also positive,
and reciprocals of each other: q6 ¼ ð1þ dÞ61

, where d2 is
equal to the OðU2Þ term in Eq. (17), which follows from
Eqs. (10), (15), and (16):

d2 � 4ln2� 1

12
ln

4

U
þ c

� �2

U2: (18)

For spheres of equal radii, U � 2ðs=aÞ1=2
at close

approach, and the cross-over charge ratios differ from unity
by

d � 4ln2� 1

12

� �1=2

ln
4a

s

� �
þ 2c

� �
s

a

� �1=2

: (19)

Figure 2 shows the degree of repulsion or attraction
between two equal spheres, as a function of their separation
and of the charge ratio q ¼ Qb=Qa. The contours give the ra-
tio of the force between the spheres to the Coulomb force
between point charges Qa; Qb separated by the center-to-cen-
ter distance c between the spheres, namely FC ¼ QaQb=c2.
The thick contours give the charge ratio at which the force is
zero, and thus bound the region of repulsion.

From Eq. (19) we see that the dominant variation in the
charge ratio for which the force is zero is (at close approach)
determined by the square root of separation to radius ratio.
Conversely, the separation at which cross-over to attraction
occurs varies as the square of the deviation of the charge ra-
tio from unity, s=a � d2 ¼ ðQb=Qa � 1Þ2.

The theoretical F=FC contours in Fig. 2 all meet at the sin-
gular contact point (0, 1) in the (separation/sphere diameter,
charge ratio) plane. The neighbourhood of the contact point
is interesting. We shall discuss the equal-sphere case; for the
general case see Sec. 4 of Ref. 1. Once the spheres touch and
the charges are equalized [Q ¼ ðQa þ QbÞ=2 is the charge on
each sphere after contact], the force is repulsive and given
by the Kelvin7,8 expression at contact, namely, by

F0 ¼
4ln2� 1

6 ln2ð Þ2
Q2

2að Þ2
� 0:6149

Q2

2að Þ2
: (20)

The force remains repulsive at all distances, by symmetry.
It is almost constant at small separations.1 Before the charges
are equalized the leading close-approach term of the force is
attractive. It increases with decreasing separation and is pro-
portional to the charge difference squared1

F ¼ � Qa � Qbð Þ2

2as ln
4a

s

� �
þ 2c

� �þ O 1ð Þ: (21)

If the charge difference is very small, the next (repulsive)
term can dominate at finite separation, but the repulsion does
not exceed the Kelvin contact force. So, near the contact

point the force can be attractive or repulsive, depending on
the charge difference and the separation. The repulsion is
bounded by the Kelvin contact force; the attraction is in
theory unbounded but in practice eventually converted into
repulsion by an electrical short at close approach.

The same square root variation of the bounding charge ra-
tio curves persists in the general case of unequal radii. The
charge ratio that is attained on contact is, from Eqs. (4.1) and
(4.2) of Ref. 1,

Fig. 2. Regions of attraction and repulsion in the (separation, charge ratio)

plane, plotted for spheres of equal radii. When the charges on the two

spheres are equal (charge ratio equal 1), there is repulsion at all separations.

For unequal charges, two regions of attraction exist, bounded by the recipro-

cal curves derived in the text (thick solid curves). The contours correspond

to the values of the ratio of the force to the point-charge Coulomb force

FC ¼ QaQb=c2. The values are 1
2

(in the repulsion region), 0 on the thick

curves, and � 1
2
;�1;�2 in the regions of attraction.

Fig. 3. Regions of attraction and repulsion in the (separation, charge ratio)

plane, plotted for spheres with unequal radii, b ¼ 2a. When the charges on

the two spheres are in the contact ratio given in Eq. (19), there is repulsion

at all separations. For charges not in this ratio, two regions of attraction

exist, bounded by the thick solid curves. The contours correspond to the val-

ues of the ratio of the force to the point-charge Coulomb force

FC ¼ QaQb=c2. As in Fig. 2, the values are 1
2

(in the repulsion region), 0 on

the thick curves, and � 1
2
;�1;�2 in the regions of attraction.
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Qb

Qa
¼

cþ w
a

aþ b

� �

cþ w
b

aþ b

� � � b

a

� �2
p2

6

� �a�b
aþb

;

w zð Þ ¼ d

dz
lnC zð Þ: (22)

For example, when b ¼ 2a the contact charge ratio (for
which there is repulsion at all separations) is

Qb

Qa
¼ cþ w 1=3ð Þ

cþ w 2=3ð Þ ¼
9ln3þ p

ffiffiffi
3
p

9ln3� p
ffiffiffi
3
p � 3:4477: (23)

[The value in Eq. (23) is 1.7% larger than is given by the ap-
proximate expression in Eq. (22).]

For unequal radii, the bounding curves of the repulsion
region are no longer reciprocal, as they are in the equal radii
case. They meet at zero separation at the charge ratio given
in Eq. (22). Figure 3 shows the contours of the force ratio
F=FC and the regions of repulsion and attraction in the case
b ¼ 2a.
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