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Abstract

Exact closed-form solutions of the time-dependent Schrédinger equation are
obtained, describing the propagation of wavepackets in the neighbourhood
of a potential. Examples given include zero reflection, total reflection and
partial reflection of the wavepacket, for the sechzjl—‘, 1/x? and §(x) potentials,
respectively. In the first two of these cases the results are obtained using the
methods of elementary supersymmetric quantum mechanics. This gives an
introduction to supersymmetry in its simplest form, suitable for graduate or
advanced undergraduate students. Animations of wavepacket propagation are
provided.

1. Introduction

An exact free-particle wavepacket solution of Schrodinger’s time-dependent equation dates
back to the early days of quantum mechanics [1, 2]. This is the Gaussian wavepacket
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Here m is the mass of the particle, x( is the position of maximal [Po|? at r = 0, ko is the
dominant wavenumber and vy is the group speed fikg/m. The length b gives the spread of
the wavepacket at = 0. At earlier and later times the width of the packet is greater, namely
[6% + (ht/ mb)z]%. Thus x = xo can be thought of as the centre of the focal region of the
wavepacket, occupied at + = 0. As ¢ increases towards zero the wavepacket converges to its
most compact form, reaches it at # = 0 and then expands as it continues to propagate in the
positive x-direction. Figure 1 shows its propagation through the focal region.

There are few known analytic solutions for wavepackets propagating in the presence of a
potential, although exact solutions abound at one energy (see for example [3], especially the
appendix). The potential well
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Figure 1. Motion of the free-particle Gaussian wavepacket @ (x, ¢) through its focal region. The
parameters used are xg = —5b, kob = 1. The time varies from t = —10b/vg to +10b /v, where
vo = hko/m is the group speed. The position varies from x = —15b to +10b. The focal region
is centred on xg = —5b at r = 0. The plots show the probability density |®g|?: the upper plot as
contours, the lower plot as a surface. Snapshots of the probability density at times ranging from
—9b /vy to 9b/vg incrementing by 3b /v, are shown as dark curves on the lower plot.

has the remarkable property that, for integer v, it does not reflect, at any energy. For example,
the v = 1 energy eigenstate (of eigenvalue E; = h*k?/2m) propagating in the +x-direction
can be written as [4-7]

vk, x, 1) = [1 +— tanh ’—C}eikﬂkzh’ﬂm. 3)

ka a
This has no reflected part, manifestly, and so any superposition of such eigenstates will not
reflect either. One such superposition gives the wavepacket [5, 7]
a(x — xg — ikob?)
b2 +iht/m

D(x,1) = [ + tanh ;—C] Do (x, 1) 4)
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Figure 2. Motion of the non-reflecting wavepacket & (x, t) through the potential region; |®|? is
plotted. The parameters are as in figure 1, and a = b. The potential U (x) is also shown. Note the
constriction in the probability as the packet passes over the potential well, centred on x = 0.

where ® is the free-space Gaussian packet given in (1). Another, more complicated example
of a non-reflecting wavepacket based on (3) is given in [7], where wavepacket properties such
as group and phase speeds, width and local wavelength are discussed. Figure 2 shows how
the non-reflecting wavepacket ®; propagates through the potential well region.

In this paper we shall show how results such as (4) can be obtained in a much easier way,
accessible to students. The methods we use are (mainly) based on the operational algebra of
supersymmetric quantum mechanics [6, 8, 9], in its very simplest form. (What is now known as
supersymmetry arose from the application of the Darboux transformation; see for example [5]
and references therein.) The methods thus provide both a shortcut that avoids quite laborious
calculus and an introduction to supersymmetry for students of quantum mechanics.
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2. Application of supersymmetric algebra to sech? wavepackets

Supersymmetric quantum mechanics, in its simplest form, deals with relationships between
the eigenstates of two related Hamiltonians [5, 6, 8, 9]:

—h? nh
H=—3+V(Xx), Vix)=W?>— —a. W 5
o (x) (x) N (5)
2§ _hza2+\7() Vix)=Ww2+ hoaw (6)
= — X, X) = ——=0y
2m 2m

where W is called the superpotential; an alternative name is root potential, since dimensionally
W is the square root of a potential, and because it gives rise to the two potentials V and V.
The two supersymmetric partner Hamiltonians may be written in terms of operators A and A™:

h h
A= ——0,+ W, At =———3, +W (7)
V2m V2m
H = A*A, H = AA". (8)

It is simple to verify that (5) and (6) are equivalent to (7) and (8). Also, if an energy
eigenstate of H is v/, with eigenvalue E, Hyy = E1, operating with A* from the left gives
A*A(A*Y) = E(A*). Thus operating with A* on an eigenstate of A gives an eigenstate of
H = A*A, with the eigenvalue E.

To illustrate the uses of these relations, we shall derive the exact energy eigenstate and
wavepacket associated with the v = 1 potential (2), namely the results given in equations (3)
and (4). Consider the root potential

Wv (x) \/—_; tanh — (9)
Then (5) and (6) give potentials related to (2):
2 X
V,(x) = P {vz —v(v+1) sechz—} (10)
ma a
- K2 X
V,(x) = 5 Z{UZ—v(u—l) sechz—}. (11)
ma a

Since for v = 1 Vj is the constant potential > /2ma?, H, has scattering eigenstates e***, with

eigenvalue 2 (k2 L), for any real k. Taking ¥ = ¢'*, we obtain an eigenstate of Hi:

Ateitr = (—a + X tanh f) ek (12)
! V2m T a a ’

This is proportional to the ¢+ = 0 value of v, given in (3). To get full correspondence with

Y1 we subtract the constant term K2 /2ma® fromthe v = 1 potentials in (10) and (11), so the

energy eigenvalue £ becomes 71°k%/2m. The time dependence in (3) is then obtained from the

fact that the solution of Hy = ihd,v is formally ¥ (x, 1) = e "#!/"y(x, 0), which becomes

V(x,t) = e E/My(x, 0) for energy eigenstates.

It is obvious that a constant potential (here V for v = 1) does not reflect; correspondingly
the derived scattering eigenstate (3) of V has no reflected part. This is in accord with the
general result that the reflection amplitudes of the partner potentials V and V are proportional
to each other ([9], p 21), so if one is zero the other one will also be zero.
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To derive the v = 1 wavepacket given in (4), we consider the Fourier expansion of the
free-space Gaussian packet:

1 o0 . .
O (x, 1) = N f dk elkx—ik*ht/2m g gy (13)

The explicit form of the Fourier amplitude Fy(k) is used in [7] to obtain & (x, t), but it is not
needed here. Consider

a~/2m
h

X 1 o . 72
At do(x, 1) = (—a&x + tanh —) —/ dk ek =ik 2m gy
1 0( ) a \/E - 0(
R o X :
_ / dk e /2 B () (—aax +tanh —) eiks
oo a

= /Oc dk Fy(k)(—ika)yri (k, x, 1). (14)

oo
This wavepacket is a superposition of exact non-reflecting energy eigenstates, and thus
solves the time-dependent Schrodinger equation. Carrying out the differentiation implicit
in AT®o(x, 1) gives us (4).
Since the potentials V,(x) and Vo1 (x) differ by a constant, the corresponding
Hamiltonians share the same energy eigenstates. For example v/, given in (3), is an eigenstate
of Hy, Y = sz. ‘We have also seen that A:fbv is an eigenstate of H,. Thus,

Ay = Aty = 5.+ 2 tanh ~ ) v (15)
2¥V2 = Ay Y1 = m X a a 1
is an eigenstate of H,. Carrying out the differentiation gives us, up to a constant factor,
= [1 + (ka)® — 3 tanh® © + 3ika tanh f]e““. (16)
a a

This wavefunction was obtained in [7], by using identities for hypergeometric functions. The
present route gives the result by a simple differentiation. Likewise A;% = A}yn is an
eigenstate of H3 and so on.

The corresponding wavepackets follow: for example

Dy(x, 1) = ATD | (x, 1) ~ (—aax +2tanh 2) @ (x, 1) (17)

is, by steps analogous to those in (14), a superposition of exact non-reflecting energy eigenstates
Ya(k, x,t), and is thus a non-reflecting wavepacket which exactly solves Schrodinger’s
equation for the U, potential.

3. Examples of the total reflection of wavepackets

We have seen that the choice (9) for the root potential gave partner potentials which both have
a sechzjl—c shape. Can we choose W (x) so that one potential (say V') is constant? Equation (6)
then gives us the Riccati equation for W (x):

h 2 172

This has the solution

W(x) = W coth [@W(x — )‘c):| . (19)
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The partner potential to V = W? is singular at x = X:

- 2coshzgv_l/(x —)+1

=W cosh? Y22/ (x — %) — 1 G0

We shall examine the simplest case, x = 0 and W — 0:
=1 =" w=o @

2m x mx?’
The potential V; forms an impenetrable barrier centred on the origin. We shall consider
wavepackets that come up to this barrier from x = —oo and are reflected, with zero probability

amplitude at the x = 0 singularity. We thus build on the stationary wave ¥, = e** — e 71,
which leads to the wavepacket

®o(x, 1) = Do(x, 1) — Do(—x, 1) (22)
for the free-particle case. Now we operate with A* on 1/, obtaining energy eigenstates of
H=- %Bf + Vo (x). As before, the superposition of these eigenstates gives us a wavepacket

solution of Schrodinger’s equation. Omitting the factor 71/+/2m, this is

Q(x, 1) = <_8x + l) [Po(x, 1) — Po(—x,1)]
X

1 X — X0 — ik0b2 1 X+ X+ ik0b2

=+t — 7 | P ) = | -+ 5 | Po(=x,0). (23)
x b2 +iht/m x  br+int/m

There is no singularity at x = 0; in fact the leading term is O(x?). Figure 3 shows the

propagation and total reflection of this wavepacket.

The term proportional to ®¢(x, ¢) in (23) has maximum probability at x & x( + vot and
will be dominant at negative times, while the term proportional to ®¢(—x, #) has maximum
probability at —x =~ x( + vot and will be dominant at positive times (assuming that |xg| is
small).

4. Reflection and transmission by the delta function potential

We characterize the delta function potential by the reciprocal length « (the magnitude of «
gives the strength, and the sign determines whether the potential is repulsive or attractive):
hi
V(x) = —38(x). (24)
m

The delta function causes a discontinuity in the gradient of ¥ at x = 0: setting E = h%k*/2m
the time-independent Schrédinger equation becomes

(=07 +268(x)) ¥ = kY. (25)
Integration across the origin from —e to +¢ and letting ¢ — 0 gives
¥'(0—) — ¢/ (0+) + 2k (0) = 0. (26)
Let p and t be the reflection and transmission amplitudes, so that
ikx —ikx
e +pe (x <0
vk x) = {r elkx (x > 0). @7

Continuity of ¢ at x = 0 implies 1 + p = 7, and the discontinuity in the derivative at x = 0
(equation (26)) gives ik(1 — p) — ikt + 2kt = 0, so that (compare [10], equation (2.119))
—ik k

_ , _ _ 28
P = +ic ' ik (28)
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Figure 3. Total reflection of the wavepacket given in (23) by the potential 71/mx?; the parameters
are as in figure 1. Note the large probability |®|? near x = 0 at ¢ & 2.5b /vy, and the interference
fringes in the reflected part. The potential is shown on the right in the lower plot.

To construct a wavepacket we shall superpose the energy eigenstates (27). Note that the
supersymmetric formalism connects the attractive and repulsive delta function potentials, with
just a sign change in «: setting v = «a in (10) and (11) and letting ka — 0 gives us the
supersymmetric pairs
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Figure 4. Partial reflection of a wavepacket by the delta function repulsive potential. The
parameters are xg = —5b, kob = 1 and kb = 1. Note the interference fringes in |®|? after
reflection. The potential (at zero x) is indicated by the dashed line in the upper plot, and by a spike
in the lower plot.

n’k - n’k
V> —6x), V- +—38x). (29)
m m

In superposing the energy eigenstates we can obtain simple results if (as suggested by the form
of (28)) we use the Fourier amplitude

F(k) = (k +iK) Fy(k), Fo(k) = betkomztk—ko’p? (30)
Then we have (with ® the free-space Gaussian, as before)
1 o0 . .
Var / e MM By () = o, 1) 31)
—0Q
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and, by differentiation of (31) with respect to x,
1 X — xo — ikob?
ez b2 +iht/m
Thus the superposition of ¥ (k, x) given by (27), with Fourier amplitude (k + ix) Fy(k), gives
the wavepackets (we remove a factor 1)

(=0 +K)DPg(x,t) — kDo(—x, 1) x <0
=0, Po(x, 1) x> 0.

/ dk k> =K/ 2m i3 By = 9, Dy = — . (32)
—0oQ

D(x,t) = { (33)
Note that one part of the wavepacket, namely —d, ®¢(x, t), is the same on the left and the
right of the delta function potential. This part propagates straight through the potential. The
other parts on the left, proportional to the potential strength «, are the incident packet ®¢(x, )
and the reflected packet ®¢(—x, ). The three parts on the left overlap when near x = 0,
producing interference fringes, whereas the single transmitted part remains smooth on the right.
Figure 4 illustrates the process.

5. Discussion

We have seen that the simplest version of supersymmetric algebra can reproduce the recently
obtained results for wavepacket propagation in the presence of the non-reflecting potential
well (2) (for integer v). The same approach works for total reflection, again producing
exact wavepacket solutions of the time-dependent Schrédinger equation in the presence of the
repulsive 1/x? potential. Finally, an exact solution was given for wavepacket reflection
and transmission by a delta function potential, repulsive or attractive. In all cases the
wavepackets are constructed from the free-space Gaussian wavepacket, by differentiation
and simple algebraic manipulation. These analytic results complement numerical studies
(see for example [11] and references therein), and at the same time show the workings of
supersymmetric quantum mechanics at the most elementary level.

Animations of propagation of the wavepackets discussed here can be viewed at
http://www.victoria.ac.nz/scps/staff /johnlekner/animations.aspx.
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