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REFLECTION OF LONG WAVES BY INTERFACES
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We derive comparison identities for waves satisfying the equation d*yfdz” + ¢*(z)d = 0. One of
these identities is used to show that to second order in the product (wavenumber component
normal to interface) x (interface thickness), the reflection amplitude is given by r=
(1 - 24,9:1)(q, — g2)/(q; + g2), where | is a length determined by the deviation of the interface
profile from a step, and ¢,, g- are the normal components of the wave numbers in media 1 and 2
on either side of the interface. For the continuous interfaces discussed, | is about two-fifths of the
10-90 interface thickness. The corresponding formula for the transmission amplitude is t =

(1+Yq, - g 12q1/(g, + g2

1. Introduction

The problem of interest is the reflection of waves by planar interfaces. We
have in mind in particular (a) the reflection of particles of energy E by a
potential V(z), with the probability amplitude ¥ satisfying Schrodinger’s
equation

-

—z—r;l*V"I’+V‘If:E‘P, (n

and (b) the reflection of electromagnetic waves (light, for example) by an
interface between two media, described by a dielectric function €(z). In the
electromagnetic case, there are two polarizations to be considered: the
s-wave, with electric field E perpendicular to the plane of incidence, and the
p-wave, with the magnetic field B perpendicular to the plane of incidence. In
the s-wave case, if the propagation is in the zx plane, E =(0, E,,0) and E,
satisfies') V

-

VE, + 2 E, =0, 2

where ¢ is the speed of light, and w is the angular frequency of the
(monochromatic) wave. We can consider (1) and (2) together (the p-wave has
special character, and will be discussed in section 5). Since V and € are taken
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REFLECTION OF LONG WAVES BY INTERFACES 545

to be functions of z only, and ¥ and E, are independent of y for plane waves
propagating in the zx plane, both ¥ and E, are of the form e®*y(z2), with ¢
satisfying

d2
Th+au=o, )
where
2m ) .
T [E—-V(z)]- K° (quantum particle wave),
q’(z) = . @)

€(2) % -K? (electromagnetic s-wave).

Consider a wave originating in medium 1 and incident on an interface between
media 1 and 2. A reflected and a transmitted wave are set up, and in the
steady state s has the limiting forms

el 4 re iy >t el97, (5)
where
27"} (E-V)-K?,
a’(2) = W2 (6)
€; 'E{ - I(2

The (separation of variables) constant K is the x-component of the wavevec-
tor in either medium, so if 8, and 6, are the angles of incidence and refraction,
K =k, sin 8, = k, sin 0, (Snell’s law), where

2
STIE- V],
ki=qi+K*=

(5}

w
€; C_ (7)

Thus g; is the component of the wavevector normal to the interface:
q, = k, cos 9,<q(z) > g2 =k, cos 9. 8

Eq. (5) defines the reflection amplitude r and the transmission amplitude t¢.
If the transition between the media is discontinuous, so that q(z) becomes a
step function, r and t are readily determined from the continuity of  and
dy/dz at the interface. (For example, if dy/dz were discontinuous, d*y/dz’
would be a delta function, so (3) would not be satisfied). If the interface is
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located at z = 0, these conditions read 1+ r =t and iq,(1 — r) = 1g,t, giving the
well-known results

_9 4 24, 9)

s :
gt q) P gt q,

When the interface thickness is small compared to the reciprocal of the
wavenumber component normal to the medium, the reflection amplitude can
be expected to be r,, plus a small correction term, dependent on the
deviation of the profile from a step profile. This idea is developed here, by
means of a comparison identity derived in the next section.

2. Comparison identities for reflection and transmission amplitudes

Let ¥, be the solution for a reference profile q§(z), and ¢ the solution for
q*(z); q, and g have the same values g, and g, deep inside the two media. On
multiplying the wave equation for ¢, by i, and the wave equation for ¢ by i,
and subtracting, we obtain

2 (6504, SE) = (@2~ g, (10

Now we integrate from a point z, deep inside medium 1, to a point z, deep
inside medium 2 (z; and z, are such that ¢ and ¢, have attained their
asymptotic forms of eq. (5)). The integral of the left-hand side of (10) gives
2iq, (r,—r), all dependence on z, and z, cancelling out. Thus

] 2
r=r- g | d2(@* = D, (1)

where we have replaced z, and z, by + . Similar identities have been used in
discussion of two-body scattering and binding?).

Our results for the reflection of long waves are based on (11), but we will
note in passing other identities that relate reflection and transmission am-
plitudes which may be derived in a similar way. Comparing the complex
conjugate of ¢, with ¢ gives

2ig (1 - rrp) ~2igynt = [ dz(a*~ apus. (12)

On setting g = q,, this leads to the condition known as flux conservation in
quantum mechanics:
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a(1=|r’) = gt (13)
Comparing ¢, with ¥, a wave incident from medium 2:
T e e >e 9+ F gl (14

gives

2i(arto— 4,T) = f dz(q*— gD P, (15)

—

When g, = g, this gives
Cht = qlTs (16)

so (15) can be written in a form similar to (11):

t=t,— f dz(q* - @)e. (17)

21q

Eq. (16), which relates the 1 - 2 and 1«2 transmission amplitudes, is implicit in
the relations derived by Landau and Lifshitz*); it applies only to the case
where q, and q, are real (for example in the case where g, is imaginary, the
asymptotic form of l,ll as glven by (14) is not valid). Comparing ¢ with y, gives
a relation like (17), with l{/dfo in the integrand. Finally, comparing ¢ with kS
gives

~2ia;res+ q,Trp) = [ dz(ai- adiu (8)

Setting q = qo gives q.Ft* + g, tr* = 0, which together with (16) shows that

Tt (19)
Thus the reflection amplitudes 1 -2 and 1<-2 have equal absolute value (again
only for q,, g, real)®.

3. Reflection amplitude for long waves

The identities derived above can be applied at any wavelength for any
shape of profile. Their use in determining r and t is dependent on the
availability of an exact solution s, for a profile of similar characteristics. Here
we are interested in the reflection of long waves, for example the reflection of
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light of 5000 A wavelength from a liquid-vapour interface which may have a
thickness as small as 5 A. In such circumstances the wave reflects, to a very

good approximation, from a step interface, and the natural choice for g, is
Q.- Thus we will use the identity (11) in the form

1 2 2
r= rﬂlcp_ﬁ f dz(qb— q;lcp)djdjslep' (20)

On Taylor-expanding yajs,., about z,,,,

re= rm—ﬁla f dz(q” = liep) "E:O(Z nz;‘e*’) (d (j’z"’:“*’))qep. (21
[The expansion is unorthodox, in that the second derivative of ., is
discontinuous at the step and so (for example) the third derivative has a
delta-function term. But this delta-function is multiplied by (z-z,,,)’ and gives
zero contribution to the integral.]

Provided the step profile is located somewhere within the profile of interest,
the correction to ry,, is a power series in ga, where q is the normal component of
the wavenumber in either medium, and a is a length characterizing the
thickness of the interface. The n =0 term in this series is proportional to

*. dz(q*— qi.,), and this can be made zero by appropriate choice of the
relative positions of the profile under study and of the step profile (see fig. 1).

I “7_ Z

Fig. 1. Plot of g°(z) for light incident on a water—air interface. The profile shown is the Fermi
function of eq. (32). Water is on the left (with €, =~ (4/3)%), air on the right (e~ 1). The curve at the
top is for normal incidence. A step profile is shown located so as to make the two hatched areas
equal [eq. (22)]. Since q° = k*— K, the oblique incidence case is obtained by uniformly lowering
the normal incidence curve. When g3 becomes negative the wave incident from medium 1 is
totally reflected. The lower (dashed) curve is drawn for ¢,=0, i.e. at the critical angle of
incidence, 0, = arcsin(3/4). Also shown on the diagram are the length a of eq. (32), and the 10-90
thickness t =(2 log 9) a.
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This equal-area construction has the effect of making Ar=r—r,,, second
order in qa, i.e. when

[ dzta-aip=o0. 22)

Ar = 0(qa)*. In the appendix we show (see (A.8)) that Ay = ¢ — Wyep 18 Of
order ga, so we can replace ¢ by ., in (21) and retain r correct to second
order in ga.

The origin has not yet been located. It is natural to choose it at the step, so
that (from (5) and (9)) ¥,e,(0) = 29,/(q)+ 02, (dWg,/dz)o = 2iq,q./(q, + q)).
Then (21) and (22) give

. . [ j dz 2(q% - qley) + 0(qa)’

(a:+a)
= (3520~ 2.0+ 0(qa, (23)
where
=2 [ dez(@ - @l@i-a) =2 [ dzz-KiIKi-kD @)

(the last equality follows from k*= q?+ K?). In the Schrodinger case

=2 f dzz(Vyep— V)I(Vy,— V), with f dz(Vg,— V) =0, (25)
In the electromagnetic case

1’=2 f dz z(€ —€g,)/(€,— &), with f dz(e — €4p) = 0. (26)
Note that, by an integration by parts, with u = V or ¢,

12=fdz—z/fdz— fduzz(u)/fdu 27

so that, for a monotonic profile, I’ is positive and for real g; the reflection is
always weaker (to second order in ga) than from a step profile. The results
stated above are valid for arbitrary (not necessarily monotonic) profiles which
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are non-singular: delta function terms in V(z) or e(z) are excluded, for
example.

The transmission amplitude t may be calculated to the same order as r from
the comparison identity (17), using the step function as reference, and
approximating ¢ by ... We find, using (22), that

t= tmp+21%33 f dz 2(q* = qlep) + O(qa)’

——;q—l 1 _ 212 s 3
= q,+ q:{l +3(q,— g1} + O(qa)’. (28)

Note that the flux conservation condition (13) is satisfied to the order shown.
As may be expected, a profile with positive I* (for example, one which is
monotonic) will give more transmission in the long wavelength limit than a
step profile of the same height.

4. Examples

For the first two profiles the exact reflection amplitude can be expressed in
terms of elementary functions:

Two-step (or uniform layer)

EI’ Z<“aq
. a€1+b€2= _
e(z)= axbp C & a<z<hb, 29)
€, z>b;
2 _ _lei—€)ei— €) 2
l —ab——(ET_—ez)z—(a+b). (30)

The exact reflection amplitude, found by imposing the continuity of ¢ and
dy/dz at —a and b is

-3 aQ(Q1_Q2)C+i(q2—Q1Q2)S
r=e - s 31
a(q, + g)c —i(q° + q,qy)s (31
where
2 2
>_aqit bq; {c}:cos
4 a+b ’ s sin{q(a+b)}'

A straightforward calculation shows that (23) and (30) agree with (31).



REFLECTION OF LONG WAVES BY INTERFACES 551

Fermi function (or hyperbolic tangent):

€t ee? __ € €
=T e TTre TTre ™
= }(€, + €,) — 3(€, — €,) tanh(2/2a), 32
2
12 — _7_;_ a2_ (33)

The wave equation for this profile is soluble in terms of hypergeometric
functions®), and the exact reflection amplitude is given by (with ga = y)

= _ L@iy)I(— iy, + y) (= i(y, = y)) sinh @ (y, — y;) (34)
F(=2iy)I(y+ y DI (i(y, — yp) sinh w(y, +y))

Using the Weierstrass infinite product representation®) of the gamma function,

%

n=1

where vy is Euler’s constant, we find

I'(—iy)/I'(iy) = — exp2i{yy — ¢(y)}, (36)
where
-3 (Y_ Y
o(y)= "2=1 (n arctan n)' 37

Thus the phase of r is 2[¢(2y) — (¥, + ¥,) — ¢(y, — y»)] and since ¢$(y) ~ y> at
small y, the phase is of the order (qa)’ at long wavelengths, and (23, 33) are in
agreement with (34).

In table 1 below, we compare four profiles characterized by a single length
a and a function f which has the limiting values + 1 at =+ o

€(z) = &, + &) — i€, — €)f (z/a) (38)

In terms of f,
, =
r=-% f dxe%. (39)

A convenient measure of interface size is t, the 10-90 thickness’), defined as
the distance in which e(z) goes from €, —(e,— €,)/10 to €, + (€, — €,)/10 i.e.
from 9¢,/10+ €,/10 to €,/10+9¢,/10. Thus t is the difference between the
z-values at which f = = 4/5. This is compared with | and a in the table:
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TaBLE ]
Profile f(x) lla tla It
i 8
. x x| <1 — 0.3608
Linear {t x> V3 5
Exponential (1—¢ Mhsgnx V2 2log S 0.4394
. X i
Fermi tanh = — 2log9 0.4127
2 V3 £
Error function erf(x) L, 1.8124 0.3901
V2

5. Discussion

We have derived comparison identities relating the reflection and trans-
mission amplitudes of two arbitrary interfacial profiles. When one of these
(the reference profile) is a step function, we obtain the reflection and trans-
mission amplitudes for long waves:

d, — 49> 2 3
r=>2—211-2qq,0°}+ O(qga)’,
q +q2{ a,9,1%} qa)

1

24, ! 272 3
t=—"T—{1+3i(q,—g)1}+0(qa). (40
q.+q:{ 2(q,— g’} + O(qa) )
When the wavelength is long compared to the thickness of the interface, a
profile can therefore be characterised by a single length [ given by (with
u=V(z)or €(2))

i2:2 f dZZ(u—'ustep)/(ul_MZ)v fdz(u_uslep):()'

or
2: 2du/ _ I du_
I fdzz AL dzz 3 =0. (41)

In quantum-mechanical language, the latter expression gives I” in terms of the
second moment of the force F(z)= —dV/dz. In wave terms, the reflection is
determined (to this order) by the second moment of the gradient of the square
of the local wavenumber.

QOur discussion (in section 1) of reflection and transmission at oblique
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incidence showed that g, and g, have the same role at oblique incidence as k,
and k, at normal incidence. It follows that whenever (for dielectric functions of
type (38)) the reflection or transmission coefficients are known for normal
incidence, those for oblique incidence can be obtained by replacing k, by
k,cos 8, and k, by k; cos 6,.

The formulae (40) and (41) appear to be new, but they lie hidden in very old
results, being implicit in the work of Maclaurin®) and Lord Rayleigh®) who
obtained formal expressions for the reflection of electromagnetic waves to
second order in the interface thickness. Later Abeles'®) and Drazin'')
rederived and extended these results, which however remained complex
compared to (40) and (41). We give one example: Drazin obtains the
reflection amplitude (for one-dimensional propagation) to second order in the
interface thickness in terms of integrals I, and I,. The first of these is
proportional to (in our notation)

I dz[u(z) - u,] +fdz[u(z)— w),
—x 0

which we write as [, dz[u — u,,,). As discussed in section 3, this integral can
be made zero by appropriate positioning of the step profile. Drazin’s second
integral I, is the difference between two double integrals: I, is proportional to

fdzjjdz’[u(z’)—uz]— J(: dz j dz'[u(z’y— u,l.

0

This reduces to . dzz[u — u,,,] and is thus proportional to our 12

We note in conclusion that the electromagnetic p-wave may be put into the
form (3). For the p-wave, in the geometry of section 1, B = (0, B,,0), B, =
e'’**B(z), and B(2) satisfies the equation

B 1dedB . { &> uo\g_
et (eE-K)B=0, (42)

which we can write in the form

L4048 (@)

Thus in terms of a new variable Z, defined by

dZ = edz, 44
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the p-wave equation becomes (with Q = gfe)

d’B _—

7t Q@B=0. (45)
There are however special problems associated with the p-wave, which will be
discussed elsewhere').

Appendix

Perturbation theory for reflection problems

We wish to express i, the solution of

(cii-j;+q:df=0, et re et (A.)
in terms of a known function ¢, the solution of

d2 el 1 - H - N -~

d;llzo + gy, €M e ety e (A.2)

Write q°= qi+ Aq> and ¢ = Y+ ¢, + d+ ... (a series of powers of Ag).
From (A.1) and (A.2), ¢, satisfies the equation

d? ) 5

—(i.%+ qoyn = — 497U, (A.3)
To solve (A.3) we need to construct a Green’s function G(z, {) satisfying

*G |,

i qo(z)G = 8(z = {). (A.4)
Then

w2 == [ dACONDOGE O (A.5)

For long waves, the physical choice for g, is gu. and the Green’s function
satisfying (A.4) and incorporating the required boundary conditions is (with

ry=1(q,— q)I(q, + q2))

{-axis (==
CW:: gy TR
2ig (e " —rye")
el st P
i(q,+ a2) G
/,," qu1 (C M rl,e"‘ )
Glz. )= — e g zaaXiS A.6
e o ) .
T (e + pye 1Y //,/ o
zq, gllat @t
(g, + a2

(2% N .
(e + roe M)

2iq,
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From (A.S) and (A.6), we find the asymptotic form of ¢(z) as z > —o:

§t9)

0
¥(z)—> e_iq'z{ﬁ f d{qu(Z)(Ciqlg +7, e’iqul)z +
X (ei‘h{_.l_ roe'iqll)eing}. (A7)

Comparison with (A.1) then gives the first-order (in Ag?) correction to the
reflection amplitude. Writing r=ry+r,+r,+..., we identify r, as the
expression inside the braces in (A.7). In the long-wave limit,

2iq,

= Aq,q (
"= (q1+q)2f deaa) ~ 8 [ at1aq @) + 0(qa). (A8)

(g, + ‘h)z

The first term is in agreement with the n=1 term of (21) when  is
approximated by ... The next term is in agreement with (23) only when (22)
is satisfied (f=.d{Aq*({)=0): in general r—r,, contains a term second
order in Aq’ in the 0(qa)’ expression. To see this, we look at higher order
perturbations. The nth order (in Aq?) correction i, satisfies the equation

dy,

S+ alp, = A, (A9)
which is of the same form as (A.3). Thus ¢, is given by (A.5) with , replacing
¥,. The asymptotic form as z—> —x is

0
u(@=e {5 [ LG OM@E + e )

b f SACOUD . (A10)

The expression inside the braces is r,. In the long-wave limit,
r—> “” ©) f dAqH(D) (A.11)

and from (A.5) and (A.6),

21ql

2
s ] dZAqX(D). (A.12)

(0)—
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Thus

"z"’(“‘#jz)—a (f d§Aq2(§)>2, (A.13)

which demonstrates that the reflection amplitude to ©(qa)’ contains (in
general) a term second order in Aqg°. The simplicity of the result (23) is thus
seen to follow from the positioning of the step profile to make [~ d{Aq’=0.
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