
Physica I I2A (1982) 544-556 North-Holland Publishing Co. 

R E F L E C T I O N  O F  L O N G  W A V E S  BY I N T E R F A C E S  

John L E K N E R  

Physics Department, Victoria University, Wellington, New Zealand 

Received 13 October 1981 

We derive comparison identities for waves satisfying the equation d:tk/dz: + q"(z)+ - O. One of 
these identities is used to show that to second order in the product (wavenumber component 
normal to interface) × (interface thickness), the reflection amplitude is given by r = 
(1-  2q~q21")(q~- q2)/(q~+ q2), where I is a length determined by the deviation of the interface 
profile from a step, and q~, q: are the normal components of the wave numbers in media 1 and 2 
on either side of the interface. For the continuous interfaces discussed, l is about two-fifths of the 
10-90 interface thickness. The corresponding formula for the transmission amplitude is t = 
(1 + I~(qu- q:)el:)2ql/(ql + qg. 

I. Introduction 

The  p r o b l e m  of  i n t e re s t  is the  re f lec t ion  of w a v e s  by  p l ana r  in t e r f aces .  We  

have  in mind  in pa r t i cu l a r  (a) the re f lec t ion  of  pa r t i c l e s  of  ene rgy  E by  a 

po ten t i a l  V ( z ) ,  with  the  p r o b a b i l i t y  a m p l i t u d e  ~ s a t i s fy ing  S c h r 6 d i n g e r ' s  

equa t ion  

he V2~  + Vq  r = E ~ ,  (1) 
2m 

and (b) the  re f lec t ion  of  e l e c t r o m a g n e t i c  w a v e s  (l ight,  for  e x a m p l e )  by  an 

in t e r f ace  b e t w e e n  two  med ia ,  d e s c r i b e d  b y  a d ie l ec t r i c  func t ion  e(z) .  In the  

e l e c t r o m a g n e t i c  case ,  the re  are  two  po l a r i z a t i ons  to be  c o n s i d e r e d :  the  

s - w a v e ,  wi th  e lec t r i c  field E p e r p e n d i c u l a r  to the  p lane  of  i nc idence ,  and  the  

p - w a v e ,  wi th  the  magne t i c  field B p e r p e n d i c u l a r  to the  p lane  of  inc idence .  In 

the  s - w a v e  case ,  if the  p r o p a g a t i o n  is in the  zx  plane ,  E = (0, Ey, 0) and  E,, 

sa t isf ies  ~) 

o) 2 
V2E,, + e ~ E~ = 0, (2) 

w h e r e  c is the  s p e e d  of  l ight,  and w is the  angu la r  f r e q u e n c y  of  the  

( m o n o c h r o m a t i c )  wave .  W e  can  c o n s i d e r  (1) and  (2) t o g e t h e r  ( the p - w a v e  has  

spec ia l  c h a r a c t e r ,  and  will  be  d i s c u s s e d  in s ec t ion  5). S ince  V and e a re  t a k e n  
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to be functions of  z only, and • and Ey are independent  of y for plane waves  
propagat ing in the zx plane, both gt and Ey are of the form eiKx~b(Z), with 

satisfying 

dZt# 4- q2(z)@ = O, (3) 
dz 2 

where 

q : ( z )  = 

2m _ K  2 
--U [E - V(z)] 

O)2 K 2 ~ ( Z ) ~  -- 

(quantum particle wave),  

(electromagnetic s-wave). 
(4) 

Consider a wave originating in medium 1 and incident on an interface between 
media l and 2. A reflected and a transmitted wave are set up, and in the 

steady state ~b has the limiting forms 

e iqff + r e - i q f f ~ - ~ . - )  • t e iq2z, 

where 

(5) 

]2m I q2(z) ~ E - V3 - K% 
= (6) 

~ ei ~c-~ - K 2. 

The (separation of variables) constant  K is the x -componen t  of the wavevec-  
tor in either medium, so if 01 and 02 are the angles of  incidence and refraction,  

K = kl sin 01 = k2 sin 02 (Shell 's law), where 

2m 
- ~  [E - v,], 

k~= q~ + K 2= 
O) 2 

~i "c-~. (7) 

Thus qi is the componen t  of the wavevec to r  normal to the interface: 

ql = kl cos 01*--q(z)-~q2 = k2cos 02. (8) 

Eq. (5) defines the reflection amplitude r and the transmission amplitude t. 
If  the transition between the media is discontinuous,  so that q(z) becomes  a 
step function, r and t are readily determined f rom the continuity of ~b and 
dO/dz at the interface. (For example,  if d~/dz were discontinuous,  dE~]dz 2 
would be a delta function, so (3) would not be satisfied). If  the interface is 
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located at z = 0, these conditions read 1 + r = t and iql(l - r) -- iq2t, giving the 

well-known results 

q | -  q2 2 q l  
/ s t e p  - -  (9) r'teP - ql + q2' ql + q2" 

When the interface thickness is small compared  to the reciprocal of the 
wavenumber  componen t  normal to the medium, the reflection amplitude can 

be expected  to be r~tep plus a small correct ion term, dependent  on the 
deviation of the profile f rom a step profile. This idea is developed here, by 
means of a compar ison identity derived in the next  section. 

2. Comparison identities for reflection and transmission amplitudes 

Let  t~o be the solution for a reference profile q 2 ( z ) ,  and to the solution for 
q2(z); qo and q have the same values q~ and q2 deep inside the two media. On 

multiplying the wave  equation for too by to, and the wave equation for t~ by too, 
and subtracting, we obtain 

d ,dtoo dto to0 ) : ( ¢ -  

Now we integrate f rom a point z~ deep inside medium 1, to a point zz deep 

inside medium 2 (z~ and z2 are such that tO and too have attained their 
asymptot ic  forms of eq. (5)). The integral of the left-hand side of (10) gives 

2iq~ ( r 0 -  r), all dependence  on z~ and z2 cancelling out. Thus 

,f  
r = r o - 2 ~  1 d z ( q  2 - q~)totoo, (11) 

where we have replaced z~ and z2 by ~ 2. Similar identities have been used in 
discussion of two-body scattering and binding2). 

Our results for the reflection of long waves  are based on (11), but we will 
note in passing other identities that relate reflection and t ransmission am- 
plitudes which may be derived in a similar way. Compar ing  the complex  

conjugate  of too with to gives 

2 i q , ( 1 - r r * ) - 2 i q 2 t t *  = f dz(q 2 -  q2)toto.. (12) 

On setting q = q0, this leads to the condition known as flux conservat ion in 
quantum mechanics:  
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q,(1 -Irl 2) = q21tl 2. (13) 

Comparing qJo with ~, a wave incident from medium 2: 

"t e-iq,z ~---~ --~ e -iq2z d- "~ e iq2z (14) 

gives 

: c  

2i(q2t0- ql"t ) = f dz(q 2-  q2)d/t)o. (15) 

When q0 = q, this gives 

q2t = q1¥, (16) 

so (15) can be written in a form similar to (11): 

' I  t = to - ~ dz(q 2 - qo2)~bo • (17) 

Eq. (16), which relates the 1 ~ 2 and 1 ~---2 transmission amplitudes, is implicit in 
the relations derived by Landau and Lifshitz3); it applies only to the case 
where ql and q2 are real (for example in the case where q2 is imaginary, the 
asymptotic  form of ~ as given by (14) is not valid). Comparing qJ with ~0 gives 
a relation like (17), with 0~0 in the integrand. Finally, comparing d~ with qJ~ 
gives 

- 2i(q2Yt* + q~'{r*) = f dz(q 2-  q2)~tk*. (18) 

Setting q = q0 gives q2Tt* + q~tr* = 0, which together with (16) shows that 

= _ t r*. (19) 
t 

Thus the reflection amplitudes 1 -~ 2 and 1~--2 have equal absolute value (again 
only for q~, q2 real)3)- 

3. Reflection amplitude for long waves 

The identities derived above can be applied at any wavelength for any 
shape of profile. Their  use in determining r and t is dependent  on the 
availability of an exact solution q~0 for a profile of similar characteristics. Here 
we are interested in the reflection of long waves, for example the reflection of 
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light of 5000 A wavelength from a liquid-vapour interface which may have a 
thickness as small as 5,4,. In such circumstances the wave reflects, to a very 
good approximation, from a step interface, and the natural choice for q0 is 
q~,~p. Thus we will use the identity (11) in the form 

1 f dz(q 2- q~,~p)+~t~p. (20) r = rstep 2iqt 

On Taylor-expanding tOq,~t~p about z~,~p, 

l f dz(q2 q~tep)2 (Z--Zstep) n (dn(l/Jl/Jstep)~ 
r = r~,~p 2iql ,=0 n! \ dz" /~tep' (21) 

[The expansion is unorthodox,  in that the second derivative of qJ~tep is 
discontinuous at the step and so (for example) the third derivative has a 
delta-function term. But this delta-function is multiplied by (z-z,,~p) 3 and gives 
zero contribution to the integral.] 

Provided the step profile is located somewhere within the profile of interest, 
the correction to rstep is a power series in qa, where q is the normal component  of 
the wavenumber  in either medium, and a is a length characterizing the 
thickness of the interface. The n = 0 term in this series is proportional to 
f~-~dz(q 2 -  q~tep), and this can be made zero by appropriate choice of the 
relative positions of the profile under study and of the step profile (see fig. 1). 

. . . . .  =<777 ]. T 

J;~ i > > z _  

1 L Z 

Fig. 1. P lo t  of  q2(z) for  l ight  inc iden t  on a w a t e r - a i r  in te r face .  The  profi le s h o w n  is the Fe rmi  
f u n c t i o n  of eq. (32). W a t e r  is on the le f t  (wi th  t l  ~ (4/3)2), air  on the r ight  (e2 ~ 1). The  c u r v e  at  the 

top  is for  no rma l  inc idence .  A s tep  profi le  is s h o w n  loca t ed  so as to m a k e  the two  h a t c h e d  a reas  
equa l  [eq. (22)]. S ince  q'~ = k 2 - K-', the  ob l ique  i n c i d e n c e  case  is o b t a i n e d  by  u n i f o r m l y  l o w e r i n g  
the no rma l  i nc idence  curve .  W h e n  q~ b e c o m e s  n e g a t i v e  the w a v e  inc iden t  f rom m e d i u m  1 is 
to ta l ly  ref lected.  The  l o w e r  (dashed)  c u r v e  is d r a w n  for  q 2 = 0 ,  i.e. at  the cr i t ica l  angle  of 
i nc idence ,  0~ = arcsin(3/4) .  Also  s h o w n  on the d i ag ram are the length  a of eq. (32), and  the 10-90 

t h i c k n e s s  t = (2 log 9) a. 
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This equal-area construction has the effect of making Ar = r-r~t~r, second 
order in qa, i.e. when 

f dz(q2_ 2 q step) = 0 .  (22) 

Ar = (~(qa) 2. In the appendix we show (see (A.8)) that Aq/= ql-~step is of 
order qa, so we can replace ql by ~tep in (21) and retain r correct  to second 
order in qa. 

The origin has not yet been located. It is natural to choose it at the step, so 

that (from (5) and (9)) 0~tep(0) = 2ql/(q~ + q2), ( d ~ t J d z ) 0  = 2iqlq2/(qt + q2)" 
Then (21) and (22) give 

4qlq2 f dz z(q 2 2 r = rstep (ql + q2) 2 - q~tCp) + (~(qa) 3 

/ \ q ]  -- q2 = | - - ~ - ) ( 1 -  2q,q212) + (~(qa) 3, (23) 
\ q l  -t- q 2 /  

where 

,2=2f zz(q2 2 2 f _q~¢p)/(q, q2)= 2 dzz(k  2 2 2 
- - k~tep)/(k,- k 2) 

(the last equality follows from k 2 = q2+ K2). In the Schr6dinger case 

/ 2 = 2  f dzz(V~t~p-V)/(V2-V,) ,  with f dz(V~,ep-V)=O, 

(24) 

(25) 

In the electromagnetic case 

J dzz(a -E~,ep)/(e,- £2), with [ dz(e - £step) = O. (26) 12= 2 

Note that, by an integration by parts, with u = V or e, 

~ u 2 u2 

du dz du  z Z ( u ) / f  du, (27) 12= f dz-d~zz2/ f dz= f du 
- o :  - ~  U l  u I 

so that, for  a monotonic profile, 12 is positive and for real qi the reflection is 
always weaker (to second order in qa) than from a step profile. The results 
stated above are valid for  arbitrary (not necessarily monotonic) profiles which 
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are non-singular: delta function terms in V(z)  or E(z) are excluded, for 

example.  
The transmission amplitude t may be calculated to the same order as r f rom 

the compar ison  identity (17), using the step function as reference,  and 

approximat ing tO by tOs,ep- We find, using (22), that 

t : tstep -} ql -- q2 f d z  z ( q  2 -  q~tep) + U ( q a )  3 
q l T q ,  

y 

_ 2q, {i + ~ ( q , -  q2)212}+ C~(qa) 3. (28) 
ql + q2 

Note  that the flux conservat ion condition (13) is satisfied to the order shown. 

As may be expected,  a profile with positive 12 (for example ,  one which is 

monotonic)  will give more t ransmission in the long wavelength limit than a 

step profile of the same height. 

4.  E x a m p l e s  

For the first two profiles the exact  reflection amplitude can be expressed in 

terms of e lementary  functions: 

Two-step (or uniform layer) 

El, 

~a~.~ + be. 2 
E ( Z )  = ~ 7  b ~ Ei' 

| IE2~ 

z ~ - a ,  

- a < z < b .  

z > b  

I'- = a b  = (e '  - < ) ( e i -  E2) (E~ - E:) 2 ( a  + b )  2. 

(29) 

(30) 

The exact  reflection amplitude, found by imposing the continuity of to and 

dto/dz at - a  and b is 

r = e 2i~,~ q ( q l -  q2) c + i (q  2 - q lq2 )  s (31) 
q(ql + q2)c - i(q 2 + q~q2)s' 

where 

q - a + b  ' sin {q(a +b)}" 

A straightforward calculation shows that (23) and (30) agree with (31). 
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Fermi  func t ion  (or hyperbol ic  tangent):  

El + ~2 e ~/a ~ ~2 
E ( z )  

l + e ~/a = . , ~ + 

= ½(~, + ~ 2 ) - 1  _ ~(el ~2) tanh(z /2a) ,  (32) 

71-2 
12 = -~- a 2. (33) 

The  w a v e  equa t ion  for  this profile is soluble in t e rms  of  h y p e r g e o m e t r i c  
functions3-5), and the exac t  reflect ion ampl i tude  is g iven b y  (with qa = y) 

F ( 2 i y 0 F (  - i(yl + y2) )F( -  i(y~ - Y:)) sinh 7r(y~ - Y2) 
r = (34) 

F(  - 2iy0F(i(y~ + Y2))F(i(yl - Y2)) sinh ~(Yt + Y2) 

Us ing  the Weie r s t r a s s  infinite p roduc t  r ep resen ta t ion  6) of  the g a m m a  funct ion ,  

F(z )  z e r~ 1 + e -~/", (35) 
n = l  

where  3, is Eu le r ' s  cons tan t ,  we  find 

F ( -  iy ) /F( iy )  = - exp2i{~/y - 4~(Y)}, (36) 

where  

cb(y) = ~ (nY- -a rc t anY) .  (37) 
n = l  

Thus  the phase  of  r is 214~(2y0 - 4~(Yl + Y 0 -  4~(Yj - Y2)] and since ~b(y) - y3 at  
small  y, the phase  is of  the o rder  (qa )  3 at  long wave leng ths ,  and (23, 33) are in 
a g r e e m e n t  wi th  (34). 

In table 1 be low,  we  c o m p a r e  four  profiles cha rac te r i zed  by  a single length 
a and a func t ion  f which  has  the limiting va lues  _ 1 at --- ~: 

~(z) = ~(~1 + Ez) - ~(~, - E2)f(z/a) (38) 

In t e rms  of f, 

a z _ z d f  (39) 
lZ=-~  - f d x x -d--x" 

-oc 

A c o n v e n i e n t  m e a s u r e  of  in te r face  size is t, the 10-90 thicknessT), defined as 
the d i s tance  in which  ~(z) goes  f rom ~ 1 - ( ~ 1 - ~ z ) / 1 0  to ~2+(EI--~z) /10 i.e. 
f rom 9 ~ # 1 0 +  E2/10 to ~ # 1 0 + 9 E J 1 0 .  Thus  t is the d i f fe rence  b e t w e e n  the 
z -va lues  at  which  f = _+ 4/5. This  is c o m p a r e d  with  1 and a in the table:  
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TABI,E I 

Profile f (x)  I/a t/a lit 

I 8 { x lxl< 1 0.3608 
+_1 Ixl-- I  ,,i~ 5 Linear 

Exponential (1 e I'l)sgnx ~/2 2 log 5 0.4394 

Fermi tanh x ~ 2 log 9 0.4127 
2 "/3 

1 
Error function eft(x) 1.8124 0.3901 

"/2 

5. Discussion 

We have derived comparison identities relating the reflection and trans- 
mission amplitudes of two arbitrary interfacial profiles. When one of these 
(the reference profile) is a step function, we obtain the reflection and trans- 

mission amplitudes for long waves: 

r - q l -  q2 {1 -2q,q212} + U(qa) ~, q q;q2 

t - 2 q ~  {1 +~(q~-  q2)212}+ (~(qa)L (40) 
ql + q2 

When the wavelength is long compared to the thickness of the interface, a 
profile can therefore  be characterised by a single length l, given by (with 

u = V(z) or E(z)) 

i 2 = 2  f dzz(u-/~step)/(/dl - -  I d 2 ) ,  f d z ( u - / / s t e p ) = 0 ,  

or  

du z d U = o .  12= f dzz=~z/(U2-U,), f dz dz 
x 

(41) 

In quantum-mechanical  language, the latter expression gives 1= in terms of the 
second moment  of the force F(z)= - d  V/dz. In wave terms, the reflection is 
determined (to this order) by the second moment  of the gradient of the square 
of the local wavenumber.  

Our discussion (in section 1) of reflection and transmission at oblique 
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incidence showed that q~ and q2 have the same role at oblique incidence as  k 1 

and kz at normal incidence. It follows that whenever (for dielectric functions of 
type (38)) the reflection or transmission coefficients are known for normal 
incidence, those for oblique incidence can be obtained by replacing kl by 
k~ cos 0t and k2 by kz cos 02. 

The formulae (40) and (41) appear to be new, but they lie hidden in very old 
results, being implicit in the work of Maclaurin 8) and Lord Rayleigh 9) who 
obtained formal expressions for the reflection of electromagnetic waves to 
second order in the interface thickness. Later  Abeles ~°) and Drazin 1~) 
rederived and extended these results, which however remained complex 
compared to (40) and (41). We give one example: Drazin obtains the 
reflection amplitude (for one-dimensional propagation) to second order in the 
interface thickness in terms of integrals 11 and Iz. The first of these is 
proportional to (in our notation) 

zc 

f dztu(z) - u,] + [ dz[u(z) - uz], 
- ~  0 

which we write as f_~ dz[u - Ustep]. As discussed in section 3, this integral can 
be made zero by appropriate positioning of the step profile. Drazin's second 
integral I2 is the difference between two double integrals: 12 is proportional to 

z~ 0 z 

f f f dz f 
0 Z --~c - o e  

This reduces to fF= dzz[u - Ustep] and is thus proportional to our 12. 
We note in conclusion that the electromagnetic p-wave may be put into the 

form (3). For the p-wave, in the geometry of section 1, B = (0, By, 0), By = 
eiKXB(z), and B(z) satisfies the equation 

d2B l d~ dB ( to 2 ) 
dz 2 • d z  dz + ec-~-  K2 B = 0 ,  (42) 

which we can write in the form 

dz \~ d~-z/ B = 0. (43) 

Thus in terms of a new variable Z, defined by 

dZ = edz, (44) 
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the  p - w a v e  e q u a t i o n  b e c o m e s  (with Q = q/e) 

d2B 
dZ2 ~- Q2B = 0. (45) 

T h e r e  a re  h o w e v e r  spec ia l  p r o b l e m s  a s s o c i a t e d  w i t h  the  p - w a v e ,  w h i c h  will  be  
1-~ d i s c u s s e d  e l s e w h e r e  "). 

Appendix 

Perturbation theory for  reflection problems 

W e  wish  to e x p r e s s  tO, the  s o l u t i o n  of  

d2tO F q 2 0 = 0 ,  e i q , : + r e  iq~%---tO--~teiq2: 
dz 2 

in t e r m s  of  a k n o w n  f u n c t i o n  tOo, the  s o l u t i o n  of  

d~t0~° + qotoo, e iq': + r~,e i,~,:~___tO~,~ to e i~:. 
d22 

W r i t e  q2 = q~+ kq2, a n d  tO = tOo+ t O l  4 -  t O 2 4 -  . . . 

F r o m  ( A . I )  a n d  (A.2),  tOl sat isf ies  the  e q u a t i o n  

d2tOl 

dz 2 

T o  so lve  

026  
0z 2 

T h e n  

= _  f d~Aq2(~)tOo(()G(z' ~). tO,(z) 

(A.1)  

(A.2)  

(a se r ies  of  p o w e r s  of  Aq2). 

- -  + q0Ol = -- Aq2O0" (A.3)  

(A.3)  we  n e e d  to c o n s t r u c t  a G r e e n ' s  f u n c t i o n  G(z, ~) s a t i s f y i n g  

- - +  q~(z)G = ,~(z - ~). (A.4)  

(A.5) 

i(q~ + q2) 

e i .... - ....... 7 . . . .  ..-;"" 
. . . . .  (e '<~ + r~,e '<;) 

2-*ql .-~ ~- / 

z e ,ql£ (e  iq':  iql: ) 
..... " 2 i ~  + rl,e 

C iq:; 

i q 2 ( e  ,,e:: ro e ''~e:) " 

/ - /  

~/'e~qe:-- (e  iqy :  - -  r~, e i'~z':) 
. - '  2iqe / . . . . . .  z-axis 

e,~qe: ql;~ 

(A.6)  G(z. ~)= 

~-axis ~ = : 

ei~qe~ m:~ 

F o r  l o n g  w a v e s ,  the  p h y s i c a l  c h o i c e  for  q0 is q~,ep, a n d  the  G r e e n ' s  f u n c t i o n  

s a t i s f y i n g  (A.4)  a n d  i n c o r p o r a t i n g  the  r e q u i r e d  b o u n d a r y  c o n d i t i o n s  is (wi th  

ro = (ql - q2)/(ql + q2)) 
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From (A.5) and (A.6), we find the asymptotic form of tOt(z) as z ~ - ~ :  

0 

tOl(Z)'-~ e-iq'z {2----~l f d~Aq2(~)(eiqlr" + ro e-iq'r')2 + ql _ ki q2 f d~'Aq2(~) 
--oo 0 

× (e  iq,'~ -F r0e-i 'h ' ;)eiq2'i}.  (A.7) 

Comparison with (A.1) then gives the first-order (in Aq 2) correction to the 
reflection amplitude. Writing r = ro+ rl+ r2+ . . . .  we identify r~ as the 
expression inside the braces in (A.7). In the long-wave limit, 

2iq, f aq'q2 f d¢ (,Aq2(l~) + (7(qa) 3. (A.8) rl = (ql + q2) 2 d~Aq2(~) -- (q l  + q2) ~ 

The first term is in agreement with the n = 1 term of (21) when tO is 
approximated by tOste,- The next term is in agreement with (23) only when (22) 
is satisfied (f2~d~Aq2(~)= 0): in general r-rstep contains a term second 
order in Aq 2 in the (~(qa) 2 expression. To see this, we look at higher order 
perturbations. The nth order (in Aq 2) correction G satisfies the equation 

d2tOn + qo2tOn = - Aq2tOn_l, (A.9) 
dz 2 

which is of the same form as (A.3). Thus tO2 is given by (A.5) with tO1 replacing 
tOo. The asymptotic form as z - + -  oo is 

o 

tO2(z)-->e iqlZ{~ql f d~Aq2(~)tOl(~)(eiq'¢+ ro e-iq.¢) 

+ i q---Z~q~ f d ~Aq2(Otot(O e'q2c}. (A.10) 
o 

The expression inside the braces is r> In the long-wave limit, 

: ¢  

itOl(0) f d~+Aq2(O (A.11) r 2 --> 
qt +q2 

and from (A.5) and (A.6), 

2iq~ f dsrAq2(<~). (A.12) tOt(0)-'~ (q l  Jr- q2) 2 
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Thus 

(f )-, - 2oh d~aq2(~) 
r2-->(q, + q2)3 (A. 13) 

which demonstrates that the reflection amplitude t o  ~ ( q a )  2 contains (in 
general) a term second order in Aq 2. The simplicity of the result (23) is thus 
seen to follow from the positioning of the step profile to make J'~ d ~ A q  2 = 0. 
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