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Abstract

The usual ‘quantum bouncer’ is a quantum particle bouncing elastically
under the influence of gravity. Here we consider a particle bouncing off an
impenetrable wall, and bound to it by the harmonic potential 1

2mω2x2 instead
of by the gravitational potential mgx. An analytic solution is possible, easily
accessible to classes in intermediate quantum mechanics. The solution is
related to Schrödinger’s oscillating wavepacket (the original coherent state).
Although periodic, it changes its form during the oscillation, in contrast to
Schrödinger’s packet. The uncertainties in the position (�x) and the momentum
(�p) oscillate also, as does the product �x�p.

(Some figures in this article are in colour only in the electronic version)

The gravitational quantum bouncer [1–3] is much discussed as an elementary classical problem
which in quantum mechanics has interesting features such as quantum revivals [3, 4]. The
problem is to find and characterize wavepacket solutions of Schrödinger’s time-dependent
equation

ih̄∂t�(x, t) =
[
− h̄2

2m
∂2
x + V (x)

]
�(x, t) (1)

for the potential V (x) = mgx(x > 0), V (x) = +∞(x � 0). The solutions of Schrödinger’s
time-independent equation with a linear potential are Airy functions, and the energy levels En

are proportional to the zeros of the Ai function [1]. The physics has led to some surprising
mathematical results [2, 5]. Closed-form solutions are not available, so one is reduced to
studying sums over the energy eigenstates ψn as solutions of (1):

�(x, t) = �cn e−iEnt/h̄ψn(x). (2)

In this letter we study a quantum bouncer where the force pulling the particle towards the
hard wall at x = 0 is provided by a spring, so V (x) = 1

2mω2x2 for x > 0. The two bouncers
are illustrated in figure 1.

The superposition of any two terms in the series (2) will produce a wavefunction that
oscillates at an angular frequency proportional to the energy difference between the two
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Figure 1. Quantum bouncer energy eigenstates, with gravity (on the left) and a spring (on the right)
providing the restoring force. In both cases there is an impenetrable wall at x = 0, V (x) = +∞
for x � 0. The first three energy levels are shown. The energy eigenstates are Airy functions (on

the left), and the odd harmonic oscillator eigenstates (on the right). The energy scales are h̄2q2

2m
on

the left, where q = (
2m2g

h̄2 )
1
3 and g is the acceleration due to gravity, and h̄ω is on the right. The

horizontal scale on the right is ξ = (mω/h̄)1/2x.

eigenstates being superposed. This is not the oscillating wavepacket we are interested in: we
wish to construct a wavepacket which oscillates at the classical frequency (which depends on
the displacement amplitude in the gravitational case). For this we need a smooth superposition
of infinitely many eigenstates. This is precisely what Schrödinger constructed for the full
harmonic potential in the early days of quantum mechanics [6, 7]. His wavepacket is

�S(x, t) = exp

{
−mω

2h̄

[
(x − xm cos ωt)2 + 2ixxm sin ωt − i

2
x2

m sin 2ωt

]
− i

2
ωt

}
. (3)

(Schrödinger actually gave an expression equivalent to the real part of (3); he used time factors
e+iEnt/h̄ rather than e−iEnt/h̄, the time-dependent Schrödinger equation not having yet been
formulated.) The absolute square of (3) is

|�S(x, t)|2 = exp

{
−mω

h̄
(x − xm cos ωt)2

}
(4)

and thus �S represents oscillatory motion within the harmonic potential well, without change
in its envelope, and with the classical period T = 2π/ω. Note however that the full complex
�S repeats after twice the classical period. This is analogous to the precession of spin-1/2 in
a magnetic field, in which the expectation value of the spin rotates about the field direction at
the Larmor frequency, while the spinor itself takes two Larmor cycles to return to its original
value.

A formal solution to the general bouncer problem, where a wavepacket solution �(x, t)

is known for any even potential V(x) without the wall at origin, can be written down easily [8]
as


(x, t) = �(x, t) − �(−x, t). (5)

(Since V(−x) = V(x), �(−x, t) is a solution of (1) if �(x, t) is a solution, and (5) is zero at
x = 0, thus satisfying the impenetrable wall boundary condition.) A similar idea (in conjunction
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with supersymmetric quantum theory) was used to construct a wavepacket totally reflected by
the potential h̄2/mx2 [9].

For the spring-held quantum bouncer, we can take � = �S, or indeed any wavepacket
solution of the time-dependent Schrödinger equation for the full harmonic potential V (x) =
1
2mω2x2, −∞ < x < ∞. Since 
(x, t) is odd in x, it can be expressed as a sum over the
odd energy eigenstates of the full harmonic oscillator. In the remainder of this letter we shall
explore the properties of the bouncing wavepacket 
S(x, t) = �S(x, t) − �S(−x, t).

We first note some of the properties of Schrödinger’s wavepacket �S. The expectation
values of energy, position and momentum have (apart from the 1

2h̄ω term in the energy) exactly
the classical form:

〈E〉S = 1
2h̄ω + 1

2mω2x2
m

〈x〉S = xm cos ωt

〈p〉S = −mωxm sin ωt.

(6)

The variances in the position and momentum are both constant in time:

(�x)2 = 〈x2〉 − 〈x〉2 = h̄

2mω
, (�p)2 = 〈p2〉 − 〈p〉2 = 1

2
mh̄ω. (7)

The uncertainty product takes its minimum possible value: �x�p = h̄/2. It is well
known that Schrödinger’s wavepacket is a special case of the coherent states of quantum
optics [10, 11].

When the hard wall is inserted, all of the above expectation values are changed, because
the wavepacket must now change shape as it oscillates. Figure 2 shows two snapshots of the
wavepacket 
S.

The bouncing wavepacket has interference zeros at odd multiples of T/4, with T = 2π/ω

being the classical period of the full harmonic oscillator and T/2 being the classical period of
the bouncer. (Since the complex �S returns to its original value after time 2T, there are four
bounces before the complex 
S repeats.) The interference zeros are located at multiples of
πh̄/mωxm; one example is shown in the lower diagram of figure 2.

Let ξ = (mω/h̄)1/2x be the dimensionless measure of displacement, and ξm =
(mω/h̄)1/2xm correspond to the maximum displacement. Then the expectation values of
energy, position and momentum are

〈E〉 = 1

2
h̄ω

(
1 + ξ 2

m

)
eξ 2

m + ξ 2
m − 1

eξ 2
m − 1

〈x〉 = xm

cos ωterf(ξm cos ωt) eξ 2
m − i sin ωterf(iξm sin ωt)

eξ 2
m − 1

〈p〉 = −mωxm

sin ωterf(ξm cos ωt) eξ 2
m + i cos ωterf(iξm sin ωt)

eξ 2
m − 1

.

(8)

The energy expectation value tends for large ξm to that given in (6) for �S, namely 1
2h̄ω

(
1+ξ 2

m

)
,

and to 3
2h̄ω for small ξm. In accord with Ehrenfest’s theorem (see for example [7], section

7), 〈p〉 is equal to m times the time derivative of 〈x〉. Both 〈x〉and 〈p〉 oscillate with the
period T/2, 〈x〉 about a mean which increases with xm to its asymptotic value (2/π ) xm, 〈p〉
about zero. Figure 3 shows the position and momentum expectation values for a moderately
large value of the dimensionless displacement, so chosen to illustrate the approach to classical
motion.
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Figure 2. The quantum bouncer with the dimensionless displacement amplitude ξm =
(mω/h̄)1/2xm equal to 3, at t = 0 (top) and t = 3T/4 (bottom). The envelope (blue), real
part (red) and imaginary part (green, dashed) of 
S are shown. The energy scale is in units
of h̄ω. Animations of this wavepacket and of the Schrödinger wavepacket can be viewed at
http://www.victoria.ac.nz/scps/staff/johnlekner/animations.aspx.

The expectation values of the squares of the position and momentum do not contain the
error function:

〈x2〉 = h̄

2mω

[
2ξ 2

m cos2 ωt + 1
]

eξ 2
m + 2ξ 2

m sin2 ωt − 1

eξ 2
m − 1

〈p2〉 = mh̄ω

2

[
2ξ 2

m sin2 ωt + 1
]

eξ 2
m + 2ξ 2

m cos2 ωt − 1

eξ 2
m − 1

.

(9)

Both oscillate with the period T/2, the classical period of the bouncer. The uncertainty
product �x�p is now time dependent, and oscillates between small and large values, again

http://www.victoria.ac.nz/scps/staff/johnlekner/animations.aspx
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Figure 3. Time variation of 〈x〉 (mω/h̄)1/2 (red, solid curve) and 〈p〉/(mωh̄)1/2 (green, dashed
curve), drawn for ξm = (mω/h̄)1/2xm = 10. At this value of ξm the expectation values are already
close to the classical displacement and momentum, which are x(t) = xm| cos ωt | and m times the
time derivative of x(t).

at the classical bouncer frequency. When the dimensionless maximum displacement is large
compared to unity, the small and large values take simple forms:

�x�p → h̄

2
at t = 0, π/ω, 2π/ω, . . .

�x�p → h̄

2
ξm

(
2π − 4

π

)1/2

at t = π/2ω, 3π/2ω, . . . .

(10)

The small value, which is the minimum allowed by quantum mechanics, occurs at the maximum
displacement. The large value is associated with the interference fringes between what we can
regard as the incoming and reflected wavepackets, �S(±x, t). The mean square deviations
(�x)2 and (�p)2 are out of phase, with the maximum �x coincident with the minimum in �p,
as expected. The time variation of �x�p is more complicated, as shown in figure 4.

Finally, let us consider the autocorrelation function A(t), where [4]

A(t) =
∫ ∞

0
dx
∗(x, 0)
(x, t) (11)

(a normalized 
 is assumed). If we substitute an expansion in terms of the (normalized)
energy eigenstates for 
, as in (2), we get

A(t) = �|cn|2 e−iEnt/h̄. (12)

When a packet exactly matches its initial value, |A(t)|2 = 1. For the Schrödinger wavepacket
(3) of the full harmonic oscillator,

|AS(t)|2 = exp
{
−mω

h̄
x2

m(1 − cos ωt)
}

. (13)

Thus, even though this packet is coherent and unchanging in its envelope, the absolute square
of the autocorrelation function varies from unity (at t = 0 or integer multiples of the classical
period T) to e− 2mω

h̄
x2

m = e−2ξ 2
m at odd multiples of T/2. For large ξm this is very small, indicating

very little overlap between �S(x, 0) and �S(x, T /2).
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Figure 4. Time variation of the uncertainties �p/(mωh̄)1/2 (green, dashed top curve),
�x(mω/h̄)1/2 (red) and �x�p/h̄ (blue thick curve). Note that �p is maximum at odd multiples
of T/4, when the interference zeros occur. The product �x�p is approximately h̄/2 at integer
multiples of T/2, and is maximum on either side of odd multiples of T/4. The curves are drawn for
ξm = 2. For large ξm the maxima in �x�p form a narrow plateau centred on odd multiples of T/4.

Figure 5. The absolute square of the autocorrelation function, |A(t)|2, for the Schrödinger
wavepacket �S (red dashed curve) and the quantum bouncer 
S (blue solid curve). Both curves
are drawn for ξm = 2.

We expect |A(t)|2 to vary strongly during a cycle of the harmonic bouncer, and it does:

|A(t)|2 = 2 eξ 2
m(

eξ 2
m − 1

)2

{
cosh

(
ξ 2
m cos ωt

) − cos
(
ξ 2
m sin ωt

)}
. (14)

The autocorrelation is unity at t = 0 and at multiples of T/2 = π/ω, the classical period
of the bouncer. In between, at odd multiples of T/4, it becomes exponentially small when ξm

is large compared to unity:

∣∣∣A ( π

2ω

)∣∣∣2
=

[
sin

(
ξ 2
m/2

)
sinh

(
ξ 2
m/2

)
]2

. (15)

Figure 5 illustrates the time variation of the autocorrelation function for the full harmonic
oscillator and for the bouncer on a spring.
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To sum up: we have given an explicit solution to the harmonic quantum bouncer,
constructed from Schrödinger’s original coherent wavepacket. It is perfectly periodic, but
with a strong variation in its uncertainty product. It is too simple to show the more subtle
phenomenon of quantum revival, but interesting nevertheless in its correlations and time-
varying waveform.
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