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We calculate the variation of the local electric field with depth near the surface of a crystalline 
dielectric, for the cases of induced atomic dipoles oriented perpendicular and parallel to the 
surface. The crystalline dielectric is modelled by a cubic lattice of polarizable atoms, with the 
surface in the (001) plane. Our calculations show that the departure of the local field from its bulk 
value is confined almost entirely to the outermost plane, and even there is small (at the most a 
few percent). 

1. I n t r o d u c t i o n  

In this paper we shall study the variation with depth of the field polarizing 
the atoms within a dielectric (the local field, also known as the internal or 
effective field). Our motivation in this work comes from the study of the 
surface structure of liquids~). Current ellipsometric measurements 2) of the 
interface thickness require for their interpretation a knowledge of the rela- 
tionship between the dielectric functions ~.(z) and Ell(z) and the number 
density n(z) of the atoms constituting the fluid; or better, the dependence of 
the local field on n(z). The theory for inhomogeneous fluids 3) parallels the 
crystalline case discussed here, but is more complicated. The crystalline case, 
while not directly applicable to fluids, has an intrinsic interest of its own, and 
in addition its solution will be useful in the theory of reflection of light by 
solids (cf. Vlieger4)). 

The local field E '°c is fundamental in the microscopic theory of the 
electrical and optical properties of dielectrics, since it is the field which relates 
atomic dipole moment p to the atomic polarizability a 

P = ore I°~. (1) 

Lorentz s) [see also Nijboer and De Wette6)] showed that inside a lattice with 
atoms on sites of cubic symmetry, and with the polarized atoms approximated 
by point dipoles, the local field is 

E,O~ = E cxt 
1 + (8/3)¢ma' (2) 
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where E ext is the field due to charges outside the dielectric. This result leads to 
the Clausius-Mossotti expression for the bulk dielectric constant 

1 + (813 )1rna  
• = 1 - ( 4 / 3 ) ~ r n a "  (3) 

That the point-dipole approximation leads to very small errors in solids like 
argon can be seen by comparing (3) with experiment. For example, for solid 
argon near the triple point we have n = 0.0245 ~-3 (ref. 7, table II) and 

= 1.62 ]k 3 (ref. 8, p. 80) which gives • = 1.60, in agreement with the experi- 
mental value9). (For a theoretical calculation of the effect of extended atomic 
charges, see Guertin and Sternl°), and for the effect of higher multipole 
moments on the dielectric function, see McKenzie and McPhedranll)). We 
shall thus assume that the atomic fields can be approximated by those of point 
dipoles. In the following sections we shall solve the self-consistency equation 
for the local field for two directions (perpendicular and parallel to the surface) 
of the alignment of the dipoles. 

2. Dipoles aligned perpendicular to the surface 

The system under consideration is shown schematically in fig. 1. The 
dielectric is a slab, N atomic layers thick, and extending to infinity in the -+x and 
_+y-directions. It is placed between oppositely charged parallel plates; these 
provide the external field E ext, oriented perpendicular to the surface. The 
self-consistency equation reads 

E l°c = E ex' + E dip, (4) 

where E '°~ is the field defined by (1) acting on a particular atom, and E dip is the 
field at the chosen atom due to all other atomic dipoles. All atoms at the same 
depth have the same local field. Thus we will refer to E ~ ,  meaning the local 
field experienced by an atom in the nth layer. 

7®®®®®®®®®®®( 
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Fig. 1. System of dipoles aligned perpendicular to the surface. 
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The field at r = r~ due to a dipole p at the origin is r-313(p • ~ )~-  p]. The 
only component of this field of interest here is that parallel to p (all the atomic 
dipoles are parallel in the cases we consider), the other components cancel- 
ling. The component parallel to p is pr-3[3(p • ~)2_ 1]. Consider an atom in the 
nth layer of the cubic lattice, with coordinates (0, 0, na). The p-component of 
the field on this atom from an atomic dipole centered on (la, ma, ka) is 

aE~a-3{12+m2+(n_k)2}-3 fz[12+3(n-k)2  - 1 1 ,  
m 2 + (n - k) 2 (5) 

since ~ = (0, 0, 1). The contribution from all the atomic dipoles in the kth layer 
is therefore 

2(n - k) 2 - (l 2 + m 2) 
~-~E~ ,~m--~ {12+ m 2 + ( n - k ) 2 }  '/2" (6) 

Thus eq. (4) reads 

N 
E l o c  _ l ~ , e x t  ± o t  - ~  - '_7 / .  E[°~$n-k, (7) 

where 

2n 2 - (i 2 + m 2) $, ~ L . ~  {/2+ m2+ n2}5/:. (8) 

Note Sn = S-n, and that the ! 2 + m 2 = 0 term is excluded from So. These lattice 
sums are slowly convergent if evaluated directlyn), but may be transformed 
to rapidly converging series, as detailed in Van der Hoff and Benson~3). They 
give 

l 
So = 4~(2) + 2~'(3) + 16¢r ~ ~ K~(2~rlm), (9) 

where K is a modified Bessel function of the second kind. For n > 0, $. may 
be found from 2 Y.'_® (F + m 2 + n2) -3/2, which we evaluate by the same method 
to be 

2¢r coth ¢rn +8¢r ~ IKl(2wln)+ 167r ~ ~ l 
n n i ! m2V'-m-~-+'~n 2Kl(27rl~/-~+n2)" 

We then find Sn from 

(lo) 
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Fig. 2. System of dipoles aligned parallel to the surface. 

in the z-direction, due to the non-uniformity in the surface charge density. In 
the following paper we discuss the fringing in more detail and show that the 
z-variation and fringing in the external field is cancelled exactly by equal and 
opposite effects in the field E dip due to all the dipoles in the dielectric. Thus 
for this geometry, despite the behaviour of the external field, the dipoles align 
themselves with the average field, parallel to the surface. Analogous to (35) in 
the following paper, we have 

E ~  = E "re- 1 a ~ Eio~S._k" (20) 

where E ave is the average field given by 

Eave ex t  ~ E~O~ ~ext = Ebulk  --  4 ' r r  g ~--- x--~'outside. (21) 

ext outside Ebulk is the external field in the dielectric bulk and E ext is the external field 
outside the dielectric and well away from the surface. 

Since the sum in (20) is just -3 times the sum we had in (7), we can use the 
results of section 2 to immediately write down the corresponding results for 
this section. We first note that for n large, (20) becomes, using (16) 

E ~  - E ~'¢ 4 a EiOC (22) - -  "4- ~'T/" ~--~ L ,  
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which, by (21) is 

¢xt  
E ~  = Ebelk 

1 + (8/3) ¢ra /a  3 (23) 

and so (20) does predict the Lorentz value for the local field inside the 
dielectric. 

Under the approximation E ~  = E~. °~, (20) and (16) give 

E a v e  

E ~ - _  
1 - (413)¢rala 3 - ½(ala 3) ~ Sk 

" (24) 
1 - ( 413 )~ra /a  3 l~'ext _____ z-:' bulk 

1 + (813)~ra/ a 3 
1 - (413)~'ala 3 - 12(ala3) ~,, Sk 

n 

Using ,~la 3 = 0.04 we get E~ °~ = 1.008EL and E[ °~ = 1.00001EL. The deviation 
of these values from the bulk value is even smaller than it was for the 
perpendicular case. Corrections to (24) are of order 0.5 x 10 -4 for the first and 
second layers. 
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Appendix A 

P r o o f  o f  ~,'~=! S , - t  -~ -S~'/3 f o r  large n 

We shall prove this in the form 

N 
S. - - ,  - 8--~ 

-N 3 

for large N. We have, from (8), S. -- limu_~ S~, where 

M M 2n2_(12+m 2) 
S~ = -M ~ -M ~ (12 + m2 + n2)5/2. 

Now 

N M M 

E S ~ = X  S ~ - 2  E S~, 
- N  - M  N + I  

(A.I)  

(A.2) 

(A.3) 
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for all N < M. The first sum is zero by symmetry, and the second we can 
replace by a triple integral, provided N >> 1: 

M M M 

f l y  ~_~ S.M--*4 dn dl dm 3n2-(12 + m2 + n2) 
N+I ( l  2 + m 2 + n2 )  5/2 

N 0 0 

M M 

f o, f dm(l+n- - n)(12+me+n2)-3/2 
0 0 

M 

= - 4  f dn 
N 

M M 

=o f d, f dm [(12+ N MM )312 1 m 2 + N2)3/2 - (~2 + m 2 + 
0 0 

= 4 { j ( N )  - J(1)}, 

where 

1 I 

(A.4) 

f f A = E _ 2 arcsin A J(A)= dx dy (x2+y2+A2)3/2 2 % / ~ "  (A.5) 
0 0 

The last result is obtained by changing to polar coordinates and using 
~r14 

f A = arcsin dO ~/A2 + sec2 0 V ~ 2 - ' ~ "  (A.6) 
0 

For the capacitor geometry of fig. 1, N/M--*O, so (A.3) and (A.4) give 

~m [ ~ S ~ = _ 8 { 2 _ ( 2 _ 2 a r c s i n l ) }  = 8w. (A.7) 

Appendix B 

Evaluation of correction terms 

The system of N coupled linear equations for E ~ ,  eq. (7), can be written as 

N 

f, = 1 + ~ l  A,&, (U.1) 

where f .  = EI,°C/E'~t, and A.k = (ala3)S,-k = A~. In matrix form, 

(I - A) f  -. 1 ,  (B.2) 
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where I is the unit matrix and 1 a vector of l's. Provided that the largest 
eigenvalue of A has modulus less than unity, the general solution of (B.2) is 

f = ( I  -- A ) - I I  = I + A I  + A21 + .  • ", (B.3) 

o r  

N N N 

f:xaet = 1 -t- E A.k  + E E A,,tAtk + " ' .  
k=l k=l I=1 

Our approximate solution (18) can be written as 

Capprox = 1 N N ~V 
N = l + ~ . A ~ k + ~ _ , ~ , A ~ k A , t + ' ' ' .  J ,  

1 -  ~ ,  Ank k=l  k=l  I=l 
k=l  

Thus 

jntt'exaet- ,I nCappr°x ---- ( Alk -- A,,k ) A,,t + ~7 --d3 
k=l  1=1 

Define 

N 
Bl, = ~ (Ark -- A~k) = -B , t  

N 

= - ~  ( S k - I -  Sk-.) 

Ol N-I N-n } 

When N is much larger than n or I, this reduces to 

max I n)--I 
B t . = ~ s g n ( / - n )  :~(~,.) S~, 

(a.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8)  

i.e. 

o - S ~  - (Sz + S2) - (s~ + S2 + s3) . . .  \ 

S~ o - S2 - ( & + S3) 
= {It S l  -P $ 2  $ 2  0 --  $ 3  (B.9) B 

~ ~ S I - ~ - S 2 + S 3  $ 2 " ~ - $ 3  S 3 0 
\ . . . .  . . .  ° . °  . . °  

From (B.6) 

= , , , . A . ,  + , ,  (B.10) 
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Thus, to ~(a/a3) 2, 

/ 8 2 + (SI + 82)82 + (SI + 82 + $3)S3 + ' "  " 

/exact__falwrox_~ lot ~ 21-- S2 + SIS2+ ( & + &)~2 + ' ' "  ) ~ , ~ / [ - ( s ,  + s g & -  & s ,  + s 3 s ,  + . . .  

- ( S t  + S2 + S3)S3 - (S2 + S3)S2- S3S~ + .  • 

(B.11) 

The leading correction terms are therefore given by 

- :2 

exact__ approx ~ ~ 2 , ,  (B.12) 

The case of dipoles oriented parallel to the surface is similar to the above, 
with -2iS, replacing S,. 
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