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From the derivative of the statistical mechanical definition of the number 
density (the first Yvon equation), we derive an infinite set of sum rules that 
must be satisifed by the density profile and the pair correlation function of a 
liquid-vapour system with pairwise central interactions. For a particular class 
of approximate pair correlation functions, the sum rules reduce to equations 
linking the pressure and temperature with the densities of the two bulk phases. 
Good agreement with experimental data is obtained. 

1. INTRODUCTION 

In this paper we will show that there is a direct link between the properties 
of two phases in coexistence and the correlations within the interface between 
these two phases. We shall discuss only simple monoatomic fluids, although it 
will be clear that generalizations to molecular and multicomponent fluids are 
possible. 

Consider a system of N atoms confined to a box of sides 2Lx, 2Lv, 2L z. For 
suitable pressures and temperatures, there will be two phases, liquid and vapour, 
in equilibrium. In the presence of a gravitational field (which we take in the 
direction of negative z), the phases will be separated by a flat liquid-vapour 
interface. It is convenient to take this to lie near the plane z =  0. In the usual 
way, we assume that gravitational pressure gradients can be ignored, apart from 
their effect in creating a plane surface. 

The calculations presented in this paper are based on an equation (the first 
of the hierarchy derived by Yvon [1]) which is obtained by differentiating the 
statistical mechanical definition of the number density 

n(rl ) X $  dr~ ... dr N exp ( -  U/T) 
I d r l  "'" drN exp ( - -  U/T) (1) 

and using the definition of the pair density 

N ( N -  1) $ dr  3 ... dr N exp ( -  U/T) (2) 
ng(rl' rg~) / drl  "" drlv exp ( -  U/T) 
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1438 J. Lekner and J. R. Henderson 

(temperature is given the dimensions of energy). With U =  ~ ~. u(rij); the first 
Yvon equation reads ' < J 

L~ L v Lz r ~ !"12 
V l n ( r l ) =  I d x 2  I d Y z  I dz2n2(P1, r (3) 

--Lx - L v  - L z  21 r12 

where we have written r for - u / T .  It is convenient to use a generalized pair 
correlation function g(r D r2) defined by 

n2(rl, r2)=n(rl)n(r2)g(rl, r2). (4) 

Deep inside either bulk phase, g(rl, r2) becomes the pair correlation function, 
g(r12), of that phase. For the chosen geometry, n 2 equals n(zl)n(z2)g(rlz , Zl, z2) 
when atoms 1 and 2 are both away from the side walls. We let L ,  and L u tend 
to infinity, and reduce (3) by the transformations used in going from equation 
(24) to (25) in [2]. This  gives, writing r for rlz and L for L~, 

L oo 
n'(zl)=27rn(z1) I az~ n(zz)z12 I dr g(r, Zl, z2)r ). (5) 

-L IzM 

Note that qV is negligibly small except for r smaller than a few atomic diameters, 
so that contributions to the integral in (5) come only from small ]z~2 ] . 

2. MECHANICAL EQUILIBRIUM 

Integration of (5) from a point z l = z  I deep inside the liquid, through the 
interface, to a point z 1= z v deep inside the vapour, gives 

iv L oo 
n ~ - n t = 2 7 r  d z l n ( z l )  I a z 2  n ( z 2 ) z 1 2  I d r  g ( r ,  z l ,  z2)r  ) 

zt -- L Iz** I 

i { i  i} =2= azln(z,) / + + dz= n(~=)z12 I dr g(r, ~,, ~)r 
zt - L  zt o [z~,] 

(6) 

Because of the 1, 2 antisymmetry of the integrand, the middle term is zero. In 
the first term, we can replace n(zl)n(z2) by nt 2 and g(r, Zl, z2) by gz (r), since non- 
zero contributions come only from small ]z121. The  first term in (6) thus equals 

2rrn, 2 I d~l / d~2~12 dr g,(r)qa'(r)= n, 2 I dr r a g,(r)r (7) 
0 - oo G, 0 

We recognize this integral as the contribution of interatomic forces to the pressure 
within the liquid : in a homogeneous system 

27r 
p / T = n +  T n 2 05 dr  r 3 g(r)r  (8) 

Similarly, the last term in (6) can be expressed in terms of the pressure within 
the vapour. Thus  (6) reduces to 

P,=Pv (9) 

(thermal equilibrium, T t = Tv, has already been assumed in the defining equa- 
tions). This  method of integrating the Yvon equation thus reproduces the 
condition for mechanical equilibrium. 
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Liquid-vapour coexistence and correlations 1439 

3. SUM RULES 

There are many other ways of integrating (5). For example, we can divide 
by n(zl) before integrating between the limits z~=z z and Zl=Z~. This gives 

l~ T ~1 - ~  27r I dzx I dzzn(ze)Zx2 I dr g(r, zl, z2)d/(r), (10) 
zz z~ Izl~l 

which can be written in a more symmetric form by an interchange of the variables 
of integration : 

log n__j=p ( 1  1 )  . . . .  
n~ T - + 77" I d~ l  I dz2[n(z l )  - n(z2)]z12 I dr g(r, Zl, ~2)(V(r). 

(11) 

More generally, multiply (5) by ns-l(Zl) before integrating. The result is 

P (1-s-1)(ntS-nvO=-~ (n,s-l-nvS-1) +rr I dzl I dz2 n(zl)n(z2) 
z t  z l  

o o  

X [nS-l(Zl)- nS-1(%2)]%12 I dr g(r, zx, z2)qV(r ). (12) 
Izi ,  I 

[(11) can be obtained from (12) by using lira s-a(x ~- 1) =log x.] Thus  we have 
s---->0 

obtained an infinite set of equations relating nl, n~ and piT to integrals over the 
density profile and the generalized pair correlation function. The  bulk contribu- 
tions to these sum rules have been evaluated in terms of p/T ; the last term in (12) 
is manifestly an interface contribution. The  only assumptions made so far have 
been the neglect of gravitational pressure gradients and the restriction to central 
pairwise interactions. 

4. APPROXIMATIONS FOR g(r, zl,.z2) 

The  pair correlation function within the interface has not been determined by 
experiment, and computer studies are still at a preliminary stage [3-5]. This lack 
of knowledge about g(r, zl, z2) (or c(r, zl, z2) ) is a problem common to most 
theories of liquid-vapour interface properties;  analytic progress is made by 
approximating the pair correlation function. Often, g(r, zi, ze) has been ap- 
proximated by a pair correlation function at some average density, or by a 
combination of such functions ; for example [6] 

g ~ r , n ~ T ) )  {~1+'~2~ g(r ,  n(zi)+n(z2)) ' 2  {[g(r, n(zl))+g(r, n(z2))]. (13) 

The  above expressions are in terms of pair correlation functions of hypothetical 
homogeneous fluids, with non-physical densities (i.e. neither nt nor nv). We 
prefer to develop an approximation in terms of pair correlation functions of the 
actual coexisting bulk phases, namely gt and gv. Also, for mathematical 
simplicity, we approximate g(r, Zl, z2) by g(r, 3), ~ = (z 1+ z2)/2. The simplest 
expression for g(r, 3) in terms of gt, gv and the density profile n(z) is linear in the 
profile (c.f. [7, 8]) 

g(r, ~7) = �89 + gv(r)] - �89 - gv(r)] 0(5), (14) 
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1440 J. Lekner and J. R. Henderson 

where 0 is defined by 

n(z) = �89 + nv] - �89 - nv]O(z) (15) 

(for our geometry, 0(+ oo)= + 1). A generalization of (14) is 

g(r, 5) = �89 + g~(r)] - �89 - gv(r)] 0(5) + [l(5)gt(r) + [v(5)g~(r), (16) 

where/t .~(+ oo)=0. As r-+oo, g(r, 5)-+1, s o / ~ + 1 , = 0  for all 5. Thus (16) 
simplifies to 

g(r, 5) = �89 + gv] - �89 gv] 0(5) + ( g , -  gv)F, (17) 

where F is an unknown function of 5 or 0(5), which goes to zero deep in either 
phase. 

5. COEXISTENCE CURVE EQUATIONS 

Using our approximations for g, we are able to investigate the consequences 
of the sum rules. The s = 0 sum rule (equation (11)), gives, on Taylor-expanding 
n(Zl) and n(z2) about 5, 

n t p ( i  1 )  ~ 0o ~ (Z/2) 2n+l 
log g = >  g -  - r r (n t -n~)  - dz I d5 

-0o ,,=o (2n+ 1) ! 

X O ( 2 n + l ) ( 5 ) Z  of dr g(r, 5)r (18) 

we obtain 

or 
( v)3 logn,  p 1 1 - (n , -nv )  [. drrar  

- 7 ,  o 
(21) 

T = ( n ~ - n v )  2 nt+n~ n~-n vl~ . (22)  

When n I >> n~ (i.e. near the triple point end of the coexistence curve) equation (22) 
correctly tends to the ideal gas law p=nvT .  At the critical point equation (22) 
gives 

Pc __1 
nc Tc 3 - 

(0 (m) stands for the mth derivative of 0). The integral over z(=Zx2 ) may be 
evaluated : 

l o g ~ = ~  - - r r (nz -nv )  n=O • ( 2 n + 3 ) ( 2 n + l )  ~ 

oo 
x of drr zn+3 r I dSO(2n+a)(5)g( r, 51" (19) 

0 --0O 

If in the last integral we use the simplest approximation for g(r, 5), equation (14), 
and the identities 

oo 0o 
I dSO(2n+l)(5) = 28n0 and I d5 0(~n+1)(5)0(5) = 0, (20) 
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Liquid-vapour  coexistence and correlations 1441 

All the sum rules give this value for the critical ratio when g is approximated by 
(14) : In terms of the variables 

n !  ~ n v 
x ~ = � 8 9  

n l + nv' 

the interface term in (12) is reducible to 

12'  arr3r I 
" 3 - 0  -1 

x { 1 - s x o + S ~ 2 1 } x 2 0 2 } + O ( x 4 ) + O ( x a + 2 ~ / ~ ) ,  (23) 

where the critical exponents v and fi are defined by, [9], 

interface thickness ~ ( T  c - T ) - L  n t - n. c ~ ( T ~ -  T)& 

The 0 integral in (23) is easily performed, and the r integral may be evaluated 
using (8) as before. Expansion of the remaining terms in (12) up to the third 
power of x then shows that pdneT~ = �89 for all s, in the approximation (14). This 
value is higher than the experimental ratios for monatomic fluids (Ar, Kr and Xe 
have values near 0.29, as do fluids with nearly spherical molecules [10]), but lies 
closer than the van der Waals value (~) or modern versions of the van der Waals 
theory (see for example w 10.3 of [13]). 

For non-zero F, (17) and (18) give (on neglecting all but first-order density 
gradient terms when evaluating integrals involving F) 

n~nv n l + n v  l o g - - - 2 F o ( n l - - n v )  
p n ~ -  n v n v , (24) 
"~: (n I - nv) ~ - 2Fo(nl 2 - nv ~) 

where 

1 

Fo=  I aOF(O). (25) 
-1 

In terms of x and ~, (24) reads 

( l_x~)  [1  1 - x 2  l + X _ 2 F o x l  
p 2x log 1 - x 

~ T  2x 2 - 4Fox 

x~O 1 - 3Fo/x (26) 
> �89 1 2Fo/x" 

If the leading term in the x expansion of Fo is bx, 

Pc 1 - 3b _1  (27) 
ncTc - ~  1 - 2 b "  

It is straightforward to show that all the sum rules give the result (27) when g is 
approximated by (17) with F 0=bx. The proof proceeds by expanding (12) in 
powers of n z-  n~, as described above for the case F-= 0. The value b ~_ 0"1 gives 
the experimental ratio pdncTc  ~_ 0.29. 
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1442 J. Lekner and J. R. Henderson 

Coexistence curve equations similar to (22) and (24) may be derived from 
the other sum rules, provided all but first-order density gradient terms are 
neglected. For example, from the s = 2 sum rule and (14) we find 

P ntnv(n'+nv) (28) 
-~ = nl2 + 4nlnv + n, z" 

This again gives pc~noTe= �89 and the ideal gas law when n z >>n v. 

.2C 

P/T 
(atmlK) 

�9 12 

.08 

160 

2 ~ 
. /  

' ~ , 2 r "  

200 240 280 
T(K) 

Comparison of experimental p, T data for Xe (solid curve, drawn through points from 
table 6 of Streett et al. [11 ] and the best fit critical point of Levelt Sengers et al. [10]) 
with p/T values calculated from (22) (circles) and (28) (squares), using the liquid 
and vapour density data of Cornfeld and Carr [12]. 

In the figure, equations (22) and (28) are compared with xenon experimental 
pressure and temperature data [10, 11] using liquid and vapour density data [12]. 
Agreement with experiment is good, the largest deviation occurring in the 
critical region. It is clear from (27) that there the agreement can be improved 
with suitable F. Corrections to the equations derived here (based on improved 
approximations to g(r, zl, 22) ) can be simply added on, since the sum rules are 
linear in the pair correlation function. 

Finally, we should note an earlier attempt by Berry and Reznek [14] at using 
the first Yvon equation to obtain a relation between coexistent densities and p/T.  
These authors used g = gl(r) at the outset, and obtained pdncT c = 1. 

We are grateful to Anneke Levelt Sengers for her help in locating experi- 
mental data, and to Professor Carr for supplying the Xe density data. 
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Liquid-vapour coexistence and correlations 1443 
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