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A theory which calculates reflection amplitudes as perturbation series about a reference profile 

must obtain results for observables which are invariant to the positioning of the reference profile. 

We construct a manifestly invariant theory for electromagnetic s and p waves, to second order in 

the ratio of interface thickness to wavelength. The results are expressed in terms of “integral 
invariants”: combinations of integrals over the difference between the reference and the actual 

dielectric functions, which are invariant to their relative ‘positioning. To second order in the 

interface thickness, Ir,l* is characterized by one second order invariant (iz), while Irp12 and rp/rS are 

each characterized by a first order invariant (9,) and two second order invariants (i2 and jz). 

The theory given has greater generality than previous perturbation theories, applying to 

reflections from absorbing interfaces and/or substrates, and to reflections from a thin film between 

like media (such as a soap film in air). In the latter case we find that rp/rr is zero (to lowest order) at 

a certain angle. 

1. Introduction 

When the thickness of an interface is small compared to the wavelength of 

light incident upon it, we expect the reflection amplitudes for the s and p 

polarizations to be well represented by the first few terms of series in the ratio 

of the interface thickness to the wavelength of light, with the zeroth terms 

given by the Fresnel formulae. Corrections to the Fresnel formulae up to 

second order have been obtained in refs. 1 and 2 (to be designated I and II in 

this paper); the results may be interpreted in terms of lengths characterizing 

the interface, these lengths being integrals over the difference between the 

actual dielectric profile E(Z), and the step profile E,,(Z), which takes the values 

E, for z < 0 and for Ed for z > 0. In the theory as developed so far, it was 

convenient to simplify the analysis by relative positioning of the actual and 

reference profiles so as to make 

dz[+) - Q(Z)] = 0. (1) 

-m 

Such positioning (the equal-area rule, see fig. 1 of I) is always possible when 
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l i # l 1 and E is real everywhere. However, for reflection at an interface 

between two like media (el = EJ, or in the presence of absorption (E complex), 

the condition (1) can no longer be guaranteed. 

In this paper we shall generalize the theory by removing the constraint (1). 

At the same time we recast the results in such a way that the absolute 

magnitudes of the reflection amplitudes, and their phase difference, are expli- 

citly invariant with respect to the relative positioning of E and et,. This is made 

possible by the theory of invariants, 

First order results 

To introduce our techniques and notation, we shall briefly rederive the first 

order correction to the Fresnel formulae. This result, usually credited to 

Drude3), was apparently first obtained by Lorenz4): Rayleigh’) gives a deriva- 

tion and references to the earlier work of Lorenz, Van Ryn, Drude, Schott and 

Maclaurin. 

For the s wave, the constraint (1) is not used in the perturbation theory 

developed in the appendix of paper I. From I-(A.@ we have 

where 4i and q2 are the normal components for the wavenumber in media 1 

and 2, w is the angular frequency and c is the speed of light in vacuum, and rsl 

denotes the first order term in the expansion of r, in powers of the interface 

thickness. 

For the p wave, we use the comparison identity II-(46): 

where K2 = E,w~/c~ - q: = E~OJ~/C~ - qz, Q, = ql/E1, and C = (l/e) dBldz, CO = 

(l/e,,) dB,,/dz. To first order in the interface thickness, it suffices to replace BB, 
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and CC, in the integrand by B;(O) and c”,(O), where (II-(58)) 

2Q1 B,(O) = ~ 
Q,+Q,' 

C,(O)= z. 
1 2 

We obtain 

’ 
- Q;Ar] , 

where 

A,= I dz(e - E,,), A, = cle2 j- dz(i-i). 

231 

(4 

(5) 

(6) 
--m -co 

In appendix A we show that, though both A1 and Ai are in general dependent on 
the relative placement of the dielectric function profiles E and Ed, the difference 
$i = A, - A, is independent of this placement (is an invariant). The ratio r,/r, 
must not depend on an arbitrary choice of such placement. We have 

From (2), (5) and 

r 
_ 41- q2 QI- Q2 

so =- 
41_ q2’ -TPo Q,+ Q,' 

we find 

r Sl WA -=_ 
r $32 

Ie?,2i01~(Al_h,)+k_ 
SO rpo Q: - Qi l lc2 rsil 

(8) 

(9) 

In obtaining the second equality in (9) we have used the relation 

K2 E~Q: - e2Q: -= 
ElE2 El-E2 

We have thus verified 

(10) 

that the first order part of ‘Jr, is invariant, being 
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proportional to 9,. Note that 4, = A, - A, can be written in a manifestly 

invariant (and more familiar6)) form by means of the identity 

m cc P 

l le2 j- d+$)- 1 dz(e-•,J= 1 dz(“-eF-e2). (11) 
-m --OF -m 

In the special case where l O is constant (er = l 2), the step has disappeared and 

the question of its positioning does not arise. Then A, and A, are separately 

invariant. The Fresnel reflection amplitudes are now zero, and the “first order” 

part of rp/rs becomes zero order: 

5!=52+...=1_ K* A,+A, ----__+. . . . 
rs cl E,W2/C2 A, 

(12) 

The case eO = constant will be discussed in more detail in section 4. 

3. Second order results 

The s wave result can again be read off from the perturbation theory of 

paper I. From I-(A.8) and I-(A.13) we have 

r, = - 
4q,q,w2/c2 I 2q,w4/c4 

(41 + 4212 
dz Z(C - l O) - 

(41+ q213 
( j ME - •1)~ . 

-m -m 

In terms of A, of eq. (6) and 

A, = 
I 

dz Z(E - E,,) 

we have 

-2q,w*/c* 

1 W2/C2 
rs2 = (ql + q2)2 %,A2 + q1 + q2 Ai . I 

(13) 

(14) 

(15) 
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Consider the absolute square of the reflection amplitude: 

Id2 = I r, + rl + r2 + . . . I2 

= lr,J2 + 2 Re(rzr,) + {Ir,l’+ 2 Re(r2;r2)} + . . . . (16) 

Here we restrict ourselves to real E and real q2 (this excludes total internal 

reflection). Then, for both the s and p waves, r, is real and rl is purely 

imaginary, so the lowest correction to ri is the second order term in the curly 

bracket of (16). This must be invariant. From (2) and (15) we find 

{lrs,12 + 2rsors21 = - 4;q;;;4 [2(E, - E2)A2- A;] . 

1 2 

(17) 

In appendix A we show that the quantity in the square brackets is an invariant, 

the first in an infinite set involving the A,,. 

The second order p wave can be obtained from the theory developed in 

paper II, but requires substantial additional work. We again use the comparison 

identity (3). The second order contribution rp2 is obtained by evaluating the 

integrand in (3) to first order. From II-(53) we have 

BB, = B;(O) + B,(O)[AB(O) + C,(O)(Z, + Z)] + . * *, (18) 

where AB(0) = B(0) - B,(O) is given by II-(56) ( corrected by dividing the second 

integral by (0, + 0,)): 

AB(0) = (z A J?,(O) - C,(O) i dz(E - qJQ,,(z) sgn(z)}(Q + a,)-’ + * * * 

-cc 

(19) 

2iQ, 

= (0, + Q2)2 ElE2 
[~n,+O,o,A,-o,(o,+o,)A:J+..., 

where 
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The dilated variables 2, and Z are defined by II-(17): 

Z, = ZE&) , Z = 
I 

die(l) . (21) 

0 

Thus the second order part of rp arising out of the BB, term in the integrand of 

(3) is 

B _ 2K2Q1Q2 A, KZ A, 

'P-Z- (Q,+ 0,)' cle2 Qz+ [-(--+ QA-(Q,+ Qdh;] 

m 

+ (Q, + Q,) j dz (i+ ;)(Zo + z)] . 

-cc 

(22) 

We now evaluate r$, the second order contribution to r,, arising out of the 

CC0 term in the integrand of (3). We use II-(54) to obtain 

CC, = G(O) + C,,(O)[ AC(O) - B,,(O)( 1-t f )] + . . ., 
0 0 

Z 

where 
I 

denotes 

0 

(23) 

(24) 

zl 

and in 
I 

the last integral in (24) is replaced by Z/E&). Thus 

0 

CC,,= C$(0)+C,(O)[AC(O)-Bo(O)(2z$-~2(&+~~})]+-~~ 
0 

(25) 

The AC(O) = C(0) - Co(O) term may be evaluated by differentiating the integro- 
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differential equation II-(S), care being taken to include the -EO(Z)S(Z - 5) 

contribution from a2G/azSJ. We find 

A C(O) = (02: z2)2 (K~Q f dz(i-$)Qo’(z)sgn(z)-QIQzhl] _m 

= (~~~)2($-[(l+3i~-A,]- QQlhl), 

where 

A:= ere,[dz(;-;). 

0 

P-9 

(27) 

We thus have 

-(QI+Q+$~-K~ f W-c,)[t+jg]}]. (28) 
-cc 0 

From (22) and (28) we have 

rp2 = (:p:z2)3 Q2 cle2 
[!C (4) 

+ K2 (QI - 02) “E,2, 
I 

= + (Q,+ Q,)J] - Q,Q:A: - 2(Q, + Q,) $4 > (29) 

where 

J= 
h,A;-A;A, Oc 

+ 
ElE2 I 

dz(~-Cg)[f+~+~~diC(i)+~~]. (30) 
-m 0 0 

We will first check that the second order contribution to lrp12 is an invariant. 

This contribution is (cf. (16) and the discussion following) 

‘A:-(Q:+ Q:)$,Alf Q:Q;A: 

+ 2(Q: - Q:) $ A2 - (Q: - Q:)K’J] . (31) 
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The coefficient of (K2/e1e2)* inside the curly bracket in (31) is 

A:+ z+: h,Al+ A:+ (EZ- E:)J ( > 
=(.:-.i,[(~+~)(A2+A2)-J1-[ii+12+(~+~)q.j, (32) 

where we have used (A.5) (A.14) and (A.15). The coefficient of (K’/E~+)w~/c~ 

is similarly expressible as 

(El - rl)[J - (i+ $) (hz+A2)]+ (~+$)(i*+9,). (33) 

Finally, the coefficient of w4/c4 may be written in a manifestly invariant form as 

-~1~2iZ. Thus the second order contribution to Ir,12 is an invariant if 

is an invariant. This invariance is demonstrated in appendix B. 

We next examine the second order contribution to rplrs. 

This is 

(r,lrJ2 = 

Using the identities 

(Sl T q2MQ1+ QJ= (;- $(K2k q1qJ, 

o:- a:= (&t,r(k+$K2-$] 

and 

v2(Q1+ 02,$= G?1+ q2)W2+ wl2), 

(34) 

(35) 

(36) 

(37) 

(38) 
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we find 

1 SO 0 5 = ~C?~(K*/E,E,)~$; + 2Q,Q2K2 

r 
(39) 

s 2 (Q, + Q,)” (Q, + Q,)* ‘* + E~E~(E~ - l 2) 
E1 + E2 (55, - ‘*)I . 

We have thus verified that the second order contribution to rp/rs is invariant. In 

addition we see from (39) that this contribution goes to zero with K*, as it must 

since there is no physical difference between the s and p waves at normal 

incidence, for which rp/rs = 1 identically. 

4. Reflection by an inhomogeneous film between two like media 

Consider a soap film in air, or two slabs of glass glued together. There is 

reflection from the soap film, or the glue, due to the variation in the dielectric 

function. But there is no step in the dielectric function: l 1 = E*. An analogous 

case in quantum mechanics is the reflection of electrons at an oxide barrier 

between two pieces of the same metal. We will examine the results of 

second-order theory in this special but important case. Let e. now denote the 

common value of cl and l 2, q. the common value of q1 and q2, etc. The 

zeroth-order reflection amplitudes are now zero (qI = q2 and Q, = Q,). The first 

order reflection amplitudes are (from (2) and (5)) 

iw*/c* 
rSl = - A 

2qo ’ 
(40) 

and 

1 sin* O. - Al cos* 0,) . 

The second order reflection amplitudes are (from (15) and (29)) 

2 
rQ=-% A,+ 

I 

W2/C2 

C2 
-/I; 
49; I 

and 

K4A: 1 2 
r 
p2 

=-+-K*J-;Q;A;->A,. 
4e;q; 2 

(41) 

(42) 

(43) 
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We noted before that A, and A, are separately invariant when e1 = l s. When 

r, = 0 the second order contribution to the square of the modulus of the 

reflection amplitude is )ri\‘, and from (40) and (41) the reflected intensities are 

invariant to this order. The ratio r,lr, becomes (when rPO and rSo are zero, and 

terms to second order are included) 

___ _ - + rP2rs1 rp1+ rp2 _ rp1 - rs2rp1 
+ . . . . 

‘4 + rs2 ‘sl 6, 

The ratio of first order terms is (from (40) and (41)) 

5 = (30~~ 
A 

(j - --! sin2 8 

O A, 
0 

r Sl 

(45) 

This ratio is zeroth order in the interface thickness, and correctly tends to unity 

as 6Jo, the angle of incidence and refraction, tends to zero. 

When A1 and A, have the same sign, as would normally be the case, there is 

an angle at which the film is transparent to the p wave (to the lowest order). 

This angle is the arctangent of the square root of the ratio 

I 
m 

A, 
dz(E - q,)/q 

( ) -m 

/il r,=s2 = I m (46) 

dz(e - l O)/e 
-m 

Thus, for thin films between like media, there is an analogue of the Brewster 

angle. (For four possible definitions of the Brewster angle, and a relationship 

between two of these, see section 7 of II). 

An important special case is that of a uniform thin film of (constant) 

dielectric function E, located between zi and z2= z,+ AZ in a medium of 

dielectric function l o. Then, from I-(31) and II-(73) we have 

rs = e%ozl ib2 437 
2wo - i(q2 + 4b 

and 

-‘P = e2iqor’ 

i(Q’ - Q’,)r 

2QQo - i(@ + Q,“)T ’ 

(47) 

(48) 
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where 

2 

q2=~E-K2, Q=q/e, r=tanqAz. 
C2 

1-i 4+% ,). ( > 2 40 4 

t 
l-;(z+$qT . 

(49) 

(50) 

The square bracket in (50) is equal to cos2 0,- (E~/E) sin2 eo, and is zero at 
13~ = arctan ~/E/E~, which is the same as the (bulk) Brewster angle for light 
incident from medium with dielectric constant e. onto a medium of dielectric 
constant E. It follows that a uniform film between two like media is always 
transparent to the p wave at the same angle, irrespective of its thickness. 

A non-uniform film, on the other hand, is transparent only to lowest order in 
its thickness, as can be seen from (44). We have, using (40-43) 

rp2rsl - rs2rpl = 1 
(51) 

This term is zero at o. = 0, but not (in general) at 00 = arctan d/Al/Al. To 
verify the invariance of the second order term, we note that when E* = e2, A, 
and A, are separately invariant, and (on using (A.3) (A.13) and the invariance 
of J2) eOhlJ - 2A,(A, + A,) transforms into itself. 

5. Summary, and comparison with earlier work 

We have developed a formalism which enables experimentally accessible 
reflection properties to be expressed in terms of invariants (combinations of 
integrals involving the difference between the dielectric profile and a reference 
step profile). Explicit results are given up to the second order in the interfacial 
thickness. For real E(Z) and real q2 these are 

(52) 
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lrp12 = go_ 4QlQ2 (” . 
v2(Q1+ 02)” c 

4 12-32[kc,)J2+ (k+3(i2+42)] 

+~[(s~-~~~52+i2+12+(~+~)J2]]+.... 

When e1 f l 2 we also have 

5 = rplrso - rslrpo = 2iQ, 
r SO 

_!cs. 
r, 1 r SO - (Q, + Q,)' ~1~2 ’ ’ 

(53) 

(54) 

Note that the reality of E has not been assumed in the derivation, so that (54) 

remains valid in the presence of absorption. 

When E, = l 2 (and thus q, = q2 etc.), the lowest order term in r,,/rs becomes 

‘pl_ A 

r sl 
- C0S2 8, - $ sin2 0, 

I 
(45) 

which is now zeroth order in the interface thickness. A film between two like 

media is thus transparent to the p wave (to lowest order) at the angle 

J 
_ 

8 = arctan >. 
I 

(55) 

Our earlier worklS2) on reflection was based on the simplifying assumption 

A, = 0 (and thus excluded the pi = l 2 case). From I-(23) and I-(26), when A, = 0, 

r, = rso 1 - 2q,q212 + . . . 
1 I 

, (56) 

where 

24 12 = - 
q-c2 

The length 1 is related to i, by 

(57) 

i, = (E, - l 2)212 (when A, = 0) . (58) 
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From II-(64) (again with A, = 0) 

2K2L2 - w’ I*]} , 
C2 

where D = J_“,dz(l/~~- l/e). On letting A,+0 in (29) we find 

The length L is thus related to J by 

J = 2(q - EJL2 (when A, = 0). 

With II-(66) this implies 

J = 2 i W+) - bowl{-&+ i g} (when A, = 0) . 

(59) 

(61) 

(62) 
-m 0 

These relations are useful in the evaluation of second order invariants. 
In the earlier work we found that s and p wave reflections were completely 

characterized to second order in the interface thickness by three lengths, D, 1 
and L. This is in apparent distinction to the present work, where we have one 
first order invariant S,, and three second order invariants (i2, I2 and JJ [we do 
not count 9* as an independent invariant, since ,!i, = f(i, + I2 + $a:)]. However, 
we note that in the second order term of Irp12 (eq. (53)), J,, i,, I2 and .9i occur 
together in the combination 

j*=(E,-e*)J*+ i+’ .%*. ( > E2 

In terms of j2, (53) may be rewritten as 

Irpl*= r&- 4Q1Q2 [$i2-$K2[j2+ (i+i)i2] 
qe(QI + Qb4 c 

(63) 
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and (39) may be rewritten as 

r role = 0 2Q1(K2/q4*9; + 2Q1Q2K2 j2 - (l/q + 1/e;)i2 

r s 2 (Q, + Qd3 (Q, + Q,)’ El--E* * 
(65) 

Thus 411, i, and j2 suffice to characterize s and p reflections to second order. 
These invariants are given for five simple profiles in table I. 

In the evaluation of the invariants it is convenient to position the reference 
profile to make A1 + 0 when possible. We then have 

j2 = (el - E&J - ( > L+l A,A, 
El E2 

+ 2(ei - l 2)*L2 (when A, + 0) (66) 

and can use the results of our previous work. Details of invariants not available 
from published work through (58) and (66) are given in appendix C. 

We note in conclusion that the theory developed here, being based on the 
assumption that E is function of only one spatial coordinate, applies to planar 
interfaces (of arbitrary profile). Beaglehole’) and Zielinska, Bedeaux and 
Vlieger’) have studied reflection from an interface roughened by surface waves. 
Charmet and de Gennes”) have recently developed ellipsometric formulae for 
films (not necessarily thin) which are bounded by a reflecting wall. 

Appendix A 

Integral invariants 

Let E(Z) be a function with asymptotic values ~(-03) = l 1, E(+w) = E*, and 
co(z) the step function taking values l i for z < 0 and l 2 for z > 0. Consider the 
dependence of 

h,+,(s) = j- dz[+ - S) - E~(z)]z” (A.11 
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on the shift parameter s. We have 

m 

A,+,(s) = j dz[e(z)- E&Z)+ q,(z)- E&Z + s)](z + sr 

m 0 

-_ 1 d+(z) - E~(z)](z + s)” + (q - EJ f dz(z + s) 

m 

= j- dz[e(z) - E~(z)][ z” + (:>z% + . - - + So] + (q - rz) 5 

= h.+,(O)+ (~)sA~(o)+ * - - + s”h,(O)+(E,- EJS. (A.21 

The s-dependence of the first four integrals A, is 

A,(s) = A,(O) + (e, - 4s, 

A,(s) = A,(O) f s&(O) + (el - EJ;, 

A&) = A,(O) + 2&(O) + s’A,(O) + (q - e2) f , 

A*(s) = A,,(O) + 3sA,(O) + 3s2A,(0) + s3A,(0) + (q - q) ; . 

We note that 

2(q - eZ)AZ(s) - A:(s) = 2(q - e2)A2(0) - A:(O) 

so that 

(A.31 

(A-4) 

i, = 2(q - eE2)A, - A: (A.5) 

is invariant with respect to the relative positioning of e and q,. Similarly, 

i, = 3(e1 - q)*A, - 6(tl - e2)A$ 1 f 2A: (A.61 
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and 

i, = 4(e1 - q,j3A, - 12(~, - E~)~A,A, + 12(~, - e2)A2A: - 3Ai 64.7) 

are invariants. There is an infinite hierarchy of such invariants (assuming the 
existence of A, for all n); the general formula may be obtained from (A.2) 

in = n(cl - EJ-l A, + F; (-)‘@I - I) (‘1) (q- l 2)“-*%_,A: + (-)“-$I - 1)A; . 

(A8 

The invariant i, may be expressed as a multiple integral which is manifestly 
invariant with respect to the location of the profile E relative to the step profile, 

i, = - dz2[e(z1) - E,&~ - z2)][e(zz) - l 0(z2 - zr)] . 64.9) 

To verify that (A.9) reduces to (AS) we use the relations 

E2-E1, z,<z,<o, 
q&q - z2> - q)(q) = El - 452 7 0 < z1 -c Z2) 

0 9 otherwise, 

(A. 10) 

and 

m 

I dz,[&, - ~2) - &)I = (~1 - ~2b2 . (A.ll) 

The reciprocal or square of a step function is also a step function; so is any 
single-valued function of a step function. The invariants developed above thus 
have endless generalizations. For the physical problem in hand, the invariants 
arising out of integrals over the difference between the reciprocals of E and E,, 
are important. Corresponding to the A’s we define 

m 

An+&)= qe2 

1 1 n --- z 
Eo(Z) l (z- s) 1 * (A. 12) 
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Their transformation properties are the same as those of the A’s: for example 

A l(S) = A l(O) + (El - EZ)S > 

A,(s) = A,(O)+ s/i,(O)+ (q- e2);. 

(A. 13) 

Thus 

1,=2(~r-~~)Az-A; (A.14) 

is an invariant, etc. We also have from (A.3) and (A.13) that 9, = A 1 - A, is an 
invariant, as is explicitly demonstrated in eq. (11). 
The next “mixed” invariant is 

m m 

Finally, we note that manifestly invariant integrals may be generated by 
multiplying the integrand in (A.9) by f(zr- 23, where the function f is 
arbitrary. When f(z) = eikz we obtain the invariant 

I(k)= - j dz, i dz eik(r1-r2)[~(z1) - ~,,(zr - zz)](e(zJ - E,,(z~- q)] . z 

-m -co 

(A.16) 

On using the relation [cf. (A.ll)] 
m 

I dzl[EO(zl - ~2) - I] eikzl = y (eikZ* - 1) (A. 17) 

-m 

we find 

I(k) = y [A(k,s)-A(-k,s>l-A(k,s)A(-k,s), (A. 18) 
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where 

A(k, s) = 1 dz[+ - S) - E,,(Z)] eikz 

-m 

= e”“A (k, 0) + y (eiks - 1) . (A.19) 

[The second equality in (A.19) may be used to verify that I(k) is an invariant]. 
We now expand h(k, s) in powers of k. The coefficients are the A, integrals 
defined in (A.l): 

h(k,s)=~~h~,,(s). 
0 * 

(A.20) 

The invariant I(k) has the expansion 

I(k)= 2(e,-eJ5j (2(;;;), A2m+2-g g(ik;f;io” A,+rh,+r. (A.21) 
00 ** 

The odd powers of k in (A.21) are zero. The even powers generate a set of 
invariants which (apart from the first) are distinct from the i,, given earlier: for 
example the coefficients of (ik)2 and (ikr in I(k) are 

The coefficient of (ik)’ is i,. 

Appendix B 

Reduction of J and invariance of J2 

(A.22) 

(A.23) 

The rather complex form of J given in (30) may be simplified as follows. 
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Consider the double integrals contributing to J; these may be rewritten as 

cc I m Z 

I dz(e-.,,)j$+ j- dz(;-k)j-d& 

-cc 0 -cc 0 

m I co Z m 

= 1 dz(c-•O)[d&;)+ f dz(&;)jd&-eo)+ I dzz(z-T) 

-m 0 -a 0 -m 

m m 

Aill,- A,A; = 
El% 

+ f W-eo+i(d-f) 

-m z 

co m m 

- j- dz(;-i)/d+o)+ j- drr(t-T). 

-m * -m 

Thus 

=2 
I 

+ A,(2A : - A $EIEZ . 

(B.1) 

P-2) 
-co 0 

This last form of J verifies (62). 
To prove the invariance of J, we consider one of a class of manifestly 

invariant double integrals which are generalizations of YZ (given by (A.15)): 
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With f(z) = sgn(z) this invariant reduces to 

- (el- l J dz IzI [-&-$- I \z\ [e(z)- eo(z)l . (B-4) 

0 
-co -m 

Using the first form for J given in (B.2) and J, = J - (l/e1 + l/&I, + A,) we 
find that the invariant is equal to J2 plus 

m 

-co 

El - E2 
-~w(z) + (&$wW}. 

0 
(B.5) 

The expressions within the curly brackets in (B.5) is identically zero. We have 
thus shown that 

m m 

I I 
1 

J,= dz, dzz sgn(zr - z&e(zJ - E”(Z1 - z&&J - EO(ZZ - ZJ 1 * (B-6) 
-m -cc 

This proves the invariance of J2, and at the same time demonstrates an 
unexpected correspondence between J, and &r2. Note that from (63) (A.15) and 
(B.6) we have 

m m 

h = 1 dz, j- dwo(zz - zd4zd - EO(Z~ - 4 [& - eo(z2\ z,,] . P.7) 

Appendix C 

Definition of profiles, and integrals related to invariants 

In the following definitions z1 is arbitrary, and z2= z,+ AZ. 
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Two-step (or uniform Zayer): 

I 

El 9 2 < 21, 

e(z)= E, 21 < 2 < 22 ) 

E2 7 z > 22. 

Linear: 

E(Z) = 

Rayleigh: 

J. LEKNER 

Cl) 

El -=z 21, 

e1 (e2 - el)(z zl)/Az , 21 < z < 22, 

E2 3 2 > 22. 

Exponential: 

E(Z) = 
e1 + f(e, - cl) exp(z - Z&AZ, z < zl , 

l 2 + i(e, - ~2) exp(z, - z)/Az , z > z1 . 

Hyperbolic tangent, or Fermi function: 

E(Z) = i(q + I$ - k(e, - l 2) tanh[(z - 2,)/2At] 

(C.2) 

(C.3) 

(C.4 

El 
+ 

E2 

= I+ exp(z - z,)/Az 1+ exp(q - z)/Az 

= [q + e2 exp(z - q)/Az]/[l + exp(z - ~&AZ] . (C.5) 

The integrations required for j2 have been done for the Rayleigh profile’), 
and are elementary for the linear profile. It remains to examine the exponential 
and Fermi profiles. For those we choose z1 = 0, which makes Al = 0; it then 
suffices to consider the integral 
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For the exponential profile 

I 

I d5 = -=- 
43 &) + %(Z) 

dz sgn(2) log(z) . 

1 2 
0 

For the Fermi profile 

z 

I 
0 

- : log(l + exp(-z/Az))] . 

The J integral may be further reduced by elementary manipulations. 
For the exponential profile we find 

J = 2(Az)2(logz+ 1 dxlOg(;+ “‘1. 

(C-7) 

(C-8) 

(C.9) 

The leading term in an expansion in terms of 6 = (er- E~)/(E~+ E’L) is 8(Az)‘S. 
For the Fermi profile there is a large number of equivalent analytical forms. 
We give one which is convenient for numerical computation: 

J = 2(AzP(~r - %I{$ (i+$ 

(C.10) 

The leading term in the 6 expansion is (4a2/3)(Az)2S. 
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