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Abstract 
 

The electrostatics of two cylinders charged to the same potential has two 
apparently distinct but equivalent solutions. Their equivalence follows from the 
uniqueness of the conformal mapping of a multiply connected region onto a 
circular annulus with concentric slits, up to a rotation of the annulus. 
Equivalence of the two solutions implies a triply-infinite identity (with two real 
variables and a real parameter). A special case of the imaginary part of this 
identity gives a one-parameter series for π . 
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1  Two-cylinder electrostatics 
 
 Two very different solutions exist to the electrostatic problem of two equal 
parallel cylinders held at the same potential [6, 2]. The purpose of this note is 
to show their equivalence, and to make explicit the identities which result from 
the equivalence. 
 
 Figure 1 illustrates the problem and its solution: two parallel conducting 
cylinders, both of radius a, centered on )0,( d±  in the yx,  plane. The 
potential is the same on the two cylinders. The figure shows the equipotentials 
(solid curves) and field lines (dashed curves). 
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 Figure 1: A cross-sectional view of two parallel conducting cylinders 
charged to the same potential, and the resulting equipotential contours and 
field lines. 
 

 
 If we normalize the potential on the cylinders to unity, and let λ  be the 
dimensionless ratio in Gaussian units of the total charge per unit length on the 
two cylinders to the potential on the cylinders, the Darevski [2] potential 
function becomes DDV Φ+= λ1 , where 
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Here u and v are real bicylindrical variables (the two-dimensional analogue of 
bispherical coordinates; see for example [5], where the same notation is used), 
related to the Cartesian coordinates x and y of Figure 1 by 
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where 1r  and 2r  are the distances from the field point ),( yx to the points 
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 222

2
222

1 )(,)( yxryxr +−=++= ll  (3) 
The positive parameter au  is determined by the lengths a and d: 
 aduau aa /coshor/sinh == l  (4) 
 The Quilico [6] potential function, in the same bicylindrical coordinates, can 
be written in the form QQV Φ+= λ1 , where 
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Both DΦ  and QΦ  satisfy Laplace’s equation 0)( 22 =Φ∂+∂ yx , and both are 
zero when auu ±= , that is on the two cylinders. That 0),( =±Φ vuaQ  is clear 

from (5), since ( ) 14/tan 2 =±π . In the case of DΦ , when auu ±=  the 
right-hand side of equation (1) becomes 
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To evaluate the sum we shall use the facts that ([4], p97) 

 ∑
∞

=

<
+−

−
==

1
2 1,

21
)()(),(cos

n

n
nn t

tct
tcttcTcTnv  (7) 

where vc cos= , and the )(cTn  are Chebyshev polynomials of the first kind. 
Integration of the generating function in (7) gives us 
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In equation (8) we set auet −=  to get 
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which shows that the expression in (6) is zero. 
 We also need to check that the expressions DΦ  and QΦ  agree far from 
the two cylinders. It is then advantageous to use the relations 
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We find from (10) that 

 ),(
3
24

coscosh
coscosh 22

22

22

222

22

2

2

vuO
vu
vu

vuvu
vuyxr

+
+
−

+
+

=
−
+

=
+

=
ll

 (11) 

Thus infinity in the x, y plane corresponds to the origin in the u, v plane. For 
l>>r  the leading term in both DΦ  and QΦ  is logarithmic. In DΦ  we 

have  
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In the QΦ  infinite sum (5) the dominant term as u and v tend to zero is that 
with 0=n : 
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These expressions agree with each other, and with the potential at large 
distance from a cylinder carrying charge q per unit length, namely 

)1()/ln(2 Oraq + . 
 
 
2  Consequent identities 
 
 The equality of the potential functions DΦ  and QΦ  implies the identity 
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There is a related identity, associated with the functions ),( vuΨ  giving the 
field lines. In each case, the function Ψ  is the imaginary part of a complex 
function Ψ+Φ i . For the Quilico solution, we note that 
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Thus QΦ  and QΨ  are the real and imaginary parts of a complex analytic 
function of ivu + , namely 
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For the Darevski solution, we use two functions of iuv − , 
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and 
 nunvinunviuvn sinhsincoshcos)(cos +=−  (18) 
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Thus DΦ  and DΨ  are the real and imaginary parts of DF , where 
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The equality of 2/πiFD +  and QF  gives 
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The real part of (20) gives the identity (14), the imaginary part gives 
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The Quilico imaginary part (the sum on the right-hand side) is not defined 
when 0)2/sin( =aunuπ . We have to reinterpret the sum over logarithms in 
(20) as 
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in which the terms with n±  are taken together, namely 
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Let 
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Expanding the tangents in (23) gives for the right-hand side of (20) 
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For large n, )/exp(21 2
an unπτ −−→ , and hence the series in (25) converges 

exponentially with n. 
 
3  Special cases 
 
 The central identity (20) is valid for real u and v, auu < , and 0>au . We  
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discuss some interesting special cases. By construction, the real parts of both 
sides in (20) are zero on auu ±= . The imaginary part of (20) on auu =  is 
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The first term on the left of (26) needs to be replaced for ππ 2<< v  by the 
full form ( ))2/sin()2/cosh(),2/cos()2/sinh(arctan2/ vuvu aa−−π , where 

),arctan( BA  is the arctangent of BA / , placed in the correct quadrant 
according to the signs of A and B. The two sides of (26) are manifestly zero 
when 0=v . At π=v  we get the identity 
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If we set )1(ln2/2 >= ααπ au , the equality (27) reads 
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Specializing further to )(4/ 22 eua == απ gives 
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There is an infinity of such special cases, of course. All of the identities, 
general and special, appear to be new. 
 
 
4  Discussion 
 
 The identities we have presented follow from the uniqueness of the mapping 
of multiply connected regions on a circular annulus with concentric slits 
(Ahlfors [1] Section 5.1, p248; Henrici [3] Volume 3, Section 17.6). The 
solution of the Dirichlet problem is unique up to a rotation of the annulus 
(equivalently: up to a factor of unit modulus). It would be interesting to have a 
direct proof of the general identity, or even of the sub-identities obtained by 
taking special values of the variables u and v and parameter au . 
 
 
 



 

 

Identities arising from two-cylinder electrostatics                   1417 
 
 
 
References 
 
[1] L. V. Ahlfors, Complex analysis (2ed), McGraw-Hill, New York, 1966. 
 
[2] A. I. Darevski, The electrostatic field of a split phase, [in Russian] 
Elektrichestvo, 9 (1958), 16-19.  
 
[3] P. Henrici, Applied and computational complex analysis, Wiley, New 
York, 1993. 
 
[4] N. N. Lebedev, Special functions and their applications, Dover, New York, 
1972. 
 
[5] J. Lekner, Near approach of two conducting spheres: enhancement of 
external electric field, J. Electrostatics, 69 (2011), 559-563. 
 
[6] G. Quilico, Campo elettrico di un conduttore bifilare, L’Elettrotecnica, 41 
(1954), 530-538. 
 
 
Received: January 15, 2013 
 


