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Abstract
We give formulae for the calibration of a force apparatus based on sphere–sphere geometry,
both exact and approximate. The expressions are for the electrostatic force between
conducting spheres of radii a and b, held at potentials Va and Vb, as a function of the separation
s between them. The force, which can be attractive or repulsive, is given to parts-per-thousand
accuracy for s � a by a simple formula when the sphere radii are equal. When Va �= Vb, the
dominant force term at close approach is attractive, with magnitude (Va − Vb)

2 ab
4(a+b)s . When

Va = Vb the force is repulsive, taking the Kelvin contact value V 2
a (4 ln 2 − 1)/24 when a = b.
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1. Introduction

The purpose of this paper is to provide simple formulae for

the calculation of electrostatic force between two conducting

spheres held at constant potentials Va and Vb. The results can

be used in the calibration of force apparatus. In more general

geometries the calculation of electrostatic force is difficult (see

for example [1]), but for the sphere–sphere geometry Wistrom

and Khachatourian [2] and Saranin and Mayer [3] have

provided theoretical and experimental results. Wistrom and

Khachatourian express the force between the spheres in terms

of the surface charge densities on the spheres, which in turn

satisfy coupled integral equations, to be solved numerically.

Saranin and Mayer consider the case of conducting spheres

kept at the same potential (their section 2). The force between

spheres kept at a constant potential difference has been treated

earlier [4]. Here we give an exact expression for the force

between spheres kept at fixed arbitrary potentials, based on

known results for the capacitance coefficients. There follows

a simple but accurate analytical approximation for the force

between two conducting spheres, which becomes exact in the

limit of close approach.

2. Electrostatic force between two spheres each kept
at a fixed potential

Let the spheres have radii a and b, and let the distance between
their centres be c. The nearest points of the spheres are
separated by s = c − a − b; potentials on the two spheres
are maintained at Va and Vb by constant-voltage sources,
designated as batteries in figure 1.

The electrostatic energy of the system depicted in figure 1
is

W = 1
2 QaVa + 1

2 QbVb − QaVa − QbVb

= − 1
2 QaVa − 1

2 QbVb. (1)

(The reason for the subtraction of QaVa and QbVb is that the
energy of a battery is decreased by QV on supplying charge Q
at potential V; see for example [5].) The charges Qa and Qb on
the two spheres are determined by the potentials Va and Vb and
the capacitance coefficients [6] Caa, Cab and Cbb:

Qa = CaaVa + CabVb, Qb = CabVa + CbbVb. (2)

Thus the electrostatic energy of the system is given by

W = − 1
2 (CaaV

2
a + 2CabVaVb + CbbV

2
b ). (3)
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Figure 1. Two conducting spheres of radii a and b, held at constant
potentials Va and Vb (relative to earth). The separation between the
spheres is s, the centre-to-centre distance is c = a + b + s.

When the conductors are spheres, the capacitance
coefficients are given exactly by the infinite sums [6–9]

Caa = ab
∞∑

n=0

sinhU

a sinh nU + b sinh(n + 1)U

Cbb = ab
∞∑

n=0

sinhU

b sinh nU + a sinh(n + 1)U

Cab = −ab

c

∞∑
n=1

sinhU

sinh nU
.

(4)

The dimensionless parameter U is defined by

coshU = c2 − a2 − b2

2ab
= 1 + s

(
1

a
+ 1

b

)
+ s2

2ab
. (5)

3. Electrostatic force between two spheres at
potentials Va and Vb

The above results show that when the potentials Va, Vb and
the lengths a, b and c (or s) are specified, the energy W is
determined. The electrostatic force between the spheres is
given by

F = −∂cW or F = −∂sW. (6)

The sums in (4) converge rapidly except in the limit of
close approach, when s is small compared to a + b. Then
U is small compared to unity, and convergence of the sums
(4) becomes progressively slower as s/(a + b) tends to zero.
Fortunately, one can derive accurate analytical approximations
in the close-approach limit [7, 10–12]. To lowest order in s,
these are

Caa = ab

a + b

{
1

2
ln

[
2ab

(a + b)s

]
− ψ

(
b

a + b

)
+ O(s)

}

Cbb = ab

a + b

{
1

2
ln

[
2ab

(a + b)s

]
− ψ

(
a

a + b

)
+ O(s)

}

Cab = − ab

a + b

{
1

2
ln

[
2ab

(a + b)s

]
+ γ + O(s)

}
,

(7)

where ψ(z) = d ln �(z)/dz is the logarithmic derivative of
the gamma function, and γ = −ψ(1) = 0.5772... is Euler’s
constant. Differentiation of the logarithmic terms gives rise
to a force inversely proportional to the separation at close
approach:

F = − ab

4(a + b)
(Va − Vb)

2 1

s
+ O(1). (8)

We shall give the O(1) term, and the O(s) term for the
a = b case later. Here we just note that Russell’s expression
for the a = b force [6] is in agreement with (8):

FR = −1

8
(Va − Vb)

2 a

s
+ 1

48
(Va − Vb)

2

[
ln

a

s
+ 2γ + 1

6

]

+ 1

48

(
V 2

a + V 2
b

)
(4 ln 2 − 1) + O(s). (9)

(Russell gives part of the O(s) term also.) The graphs of force
in figures 3(b) and (c) of Wistrom and Khachatourian [2] are
consistent with F ∼ s−1 at short range, and the force between
conducting spheres with fixed charges Qa and Qb is also of this
form, unless the ratio of the charges is the same as would be
obtained by bringing the spheres into contact, in which case
the force is repulsive and non-singular [12]. The third term
in (9) is a constant force of repulsion, dominant for Va = Vb

in the a = b case, and was first obtained by Kelvin in 1853
[13]. (The 1853 Kelvin formula has an interesting history: see
section 4 of [12], and [15]).

We return to the general (a �= b) case: from the form of
(3) and from (8) it follows that the force F = −∂sW between
the spheres is of the form

F = 1
2 DaaV

2
a + DabVaVb + 1

2 DbbV
2

b , (10)

where the coefficients Di j are derivatives of the capacitance
coefficients:

Daa = ∂sCaa, Dab = ∂sCab, Dbb = ∂sCbb. (11)

(The expressions for force are in Gaussian units, in which the
dimensions of force are the same as that of (potential)2, and
the dimension of capacitance is length. In SI units the force is
obtained by multiplying the expressions given here by 4πε0.)
On using expressions for the capacitance coefficients valid to
O(s) [7, 10, 12] we obtain the force coefficients to O(1, ln s)

Daa = − ab

2(a + b)s
+ A + Bψ ′(β) + C [2ψ(β) − L]

36(a + b)3

Dbb = − ab

2(a+b)s
+ A−Bψ ′(1 − β) + C [2ψ(1 − β) − L]

36(a + b)3

Dab = ab

2(a + b)s

+ (2a − b)(2b − a) + 6(a2 + ab + b2)[2γ + L]

36(a + b)3
, (12)

where we have used the shorthand notations
A = (a + b)(2a2 − ab + 2b2), B = 12ab(a − b)

C = 6(a3 + b3), L = ln

[
2ab

(a + b)s

]
, β = b

a + b
.

(13)

The equations (10) to (13) give an analytical
approximation to the force between spheres of unequal size,
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to the next order up from (8). When a = b these expressions
inserted into (10) give Russell’s result (9).

To obtain terms of O(s) in the force, we need terms of
order U2 in Daa, Dab and Dbb. These may be obtained by taking
derivatives of the (exact) integral forms of the capacitance
coefficients given in [11]. In the general case the results
are somewhat cumbrous [12], but when a = b the electrostatic
force between two spheres becomes

F = FR − (Va − Vb)
2

720

[
ln

a

s
+ 2γ − 169

40

]
s

a

− V 2
a + V 2

b

720

[
4 ln 2 + 17

4

]
s

a
+ O(s2). (14)

The derivation proceeds from the force expression (10)
which defines the force in terms of the derivatives of the
capacitance coefficients, (11). The capacitance coefficients
of equation (4.7) of [12] are in terms of the variable U
defined in (5). We convert from derivatives with respect to
s (or c) to derivatives with respect to U as in equation (4.9)
of [12]. The general result contains ψ(z) = d ln �(z)/dz and
ψ ′(z) = d2 ln �(z)/dz2, but when a = b the use of

ψ

(
1

2

)
= −γ − 2 ln 2, ψ ′

(
1

2

)
= π2

2
(15)

([14], equations (6.3.3) and (6.4.4)) simplifies the derivatives
to

Daa = − a

4s
+ 1

24

[
ln

a

s
+ 2γ + 4 ln(2) − 5

6

]

− s

a

1

360

[
ln

a

s
+ 2γ + 4 ln(2) + 1

40

]
(16)

(to order s/a); Dbb = Daa, and

Dab = a

4s
− 1

24

[
ln

a

s
+ 2γ + 1

6

]

+ s

a

1

360

[
ln

a

s
+ 2γ − 169

40

]
. (17)

Insertion of these values of the capacitance derivatives into the
force expression (10) gives the result (14).

4. Illustrative results and discussion

Figure 2 shows the force curves for the same parameters as
used by Wistrom and Khachatourian [2] in their figures 3(a),
(b) and (c). WhenVb = Va the force is repulsive at all distances,
otherwise the force becomes attractive (negative) when the
approach is close enough. (For Vb/Va = 51/55 and 40/55
this occurs at s/a = 0.009 559 and 0.157 465, respectively.)
Attraction occurs between spheres both at a positive potential
because of mutual polarization: for spheres with equal radii,
the sphere at the lower potential obtains a negatively charged
region neighbouring the other sphere (see figure 2 of [2], and
figure 7 of [12]). Attraction also happens between spheres
that have fixed like charges, except when those charges are in
the ratio that would obtain by the spheres being brought into
contact [12].

The exact force (full curves) is found by differentiating
the exact expressions for the capacitance coefficients given

Figure 2. The electrostatic force between spheres of radius a at
potentials Va and Vb, versus s/a (s is the separation of the closest
points of the spheres). The three plots show F/V 2

a , for the same
potential ratios as used in figure 3 of [2], namely Vb/Va = 1, 51/55
and 40/55. (In SI units the plots are of F/(4πε0V 2

a ) versus s/a.) The
dashed curves give the difference between the exact and
approximate values of F/V 2

a , times 500. For example, the
value −0.05 corresponds to (approximate–exact) F/V 2

a = 0.0001,
which is 1/100 of the smallest scale division shown.

in (4), with Di j = ∂cCi j and sinhU∂cU = c/ab from
(5). The approximate curves calculated from (14) are barely
distinguishable from the exact curves over the physically
important range 0 � s � a: even at s = a the force values
differ by only four parts per thousand. The dashed curves give
500 times the difference between the exact and approximate
values of F/V 2

a .
In summary: we have given simple analytic formulae

which allow easy calculation of the electrostatic force between
conducting spheres held at potentials Va and Vb. We hope these
formulae will facilitate the electrostatic calibration of sphere–
sphere force apparatus.
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