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Critical binding of diatomic molecules  

by J. L E K N E R  

Cavendish Laboratory,  Cambr idge  

(Received 14 March 1972) 

The behaviour of two bodies that are just bound or nearly bound is 
discussed. A class of potentials is given for which Schr6dinger's equation 
has exact solutions at critical binding (zero binding energy). This class 
includes the known solution for the 6-10 potential. For a general potential 
characterized by a coupling parameter % it is shown that the bound state 
energy tends to zero as - (~ - %)2, where % is the critical value of the coupling 
parameter. Small energy scattering of atoms which are near critical binding 
(e.g. helium atoms) is examined. It is shown that determination of the total 
cross-section up to terms of order k ~ is in principle sufficient to distinguish 
between bound and virtual states of the diatomic molecule. 

1. INTRODUCTION 

In  this note we discuss certain propert ies  of two-body  systems which are near 
critical binding. T h e  main  practical interest lies in deciding whether  or not two 
hel ium atoms bind to fo rm a diatomic molecule, but  the results obtained are 
general, and apply to any atomic or nuclear two-body  p rob lem where the inter-  
action can be approximated  by a central conservative field. 

Consider two bodies, masses M 1 and M~, interacting with the potential  U(r). 
Let  R(r) be the radial part  of the wavefunction for zero orbital angular m o m e n t u m ,  
and r = rR. T h e n  r satisfies the equation 

2m [E- U(r)]r (1) r + 

where m -1 = M1-1 + Mz -1, and E is the energy of relative motion.  In  considering 
solutions of (1) it is convenient  to express the potential  as 

U(r)=vu(r/a), (2) 

where v is a potential  s t rength and a is a length. Wel l -known examples are the 
6-12, 6-10 and Morse  potentials : 

{(ay  U(r)=v - 2  , (3) 

5 / a  \ 6 ~  

U ( r ) = v  {exp E - Z Z  ( ; -  1 ) 3 - 2 e x p  ~ - - f i  ( ~  - t ) l  } . (5) 

We  have chosen the fo rm of u so that  each of these potentials attains its m i n i m u m  
value of - v  at r = a. Any given potential  can be expressed in the fo rm (2), bu t  
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620 J. Lekner 

not in a unique way. This  lack of uniqueness is irrelevant here. Sometimes it 
is convenient to consider together a class of potentials by letting u depend on one 
or more dimensionless parameters. For example, the Morse potential (5) is 
parametrized by fi, a ratio of lengths. 

The point of expressing the potential in the form (2) is that we can change to 
the dimensionless variables x =  r/a, ~ = 2ma2E/h 2, and the system is then charac- 
terized by a single dimensionless quantity, the coupling parameter ~ : 

~=2ma2v/fi 2. (6) 

A similar procedure was used by de Boer [1] in the discussion of many-body 
systems ; the classical analogue is called the principle of corresponding states. 

In terms of the dimensionless variables, SchrSdinger's equation becomes 

+ = o .  (7) 

If  U(r) has an attractive part, there may be a range of values of the coupling 
parameter ~ for which bound states (e < 0, r = 0) exist. We will consider 
potentials which have bound states for large ~ ((3), (4) and (5) are of this type) ; 
the three questions we will try to answer are : (i) what is the critical value % 
below which no bound states exist ? ; (ii) how does E approach zero as ~ tends to 
%? ; and (iii) does low-energy scattering enable us to distinguish between 

> % and cr < % ? These questions are considered in the next three sections. 

2.  C R I T I C A L  B I N D I N G  : A CLASS OF EXACT SOLUTIONS 

The critical value % of the coupling parameter for which the solution is on the 
borderline between bound and free states (e = 0, ~0(oo) = constant) can be deter- 
mined for each potential  shape u(x) by direct numerical solution of 

r - %,(x)r = 0. (8) 

For example, the 6-12 potential of equation (3) has the critical value % =  7.043. 
(A variational estimate of 7-047 obtained by the Kilpatricks [2] is a little higher 
than this, as it should be.) 

Since inter-atomic and inter-nucleon potentials are mainly phenomeno- 
logical, with parameters determined by fitting virial coefficients or scattering 
data, it is interesting to note that there exists a class of potentials for which r and 
% can be obtained analytically. These can be obtained as follows : in (8) we 
write r = exp X, so that 

X" + (X ' )  2 = %u.  (9)  

It  follows that for any w(x), the potential 

u(x) = 1 [w'(x) + w~(X)] (10) 
o~ 0 

has the solution (normalized to unity at infinity) 
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Critical binding of diatomic molecules 621 

T h e  constraints on w are that u(x) tend to zero at infinity and that 

f ~ dxw ( x ) 
8g 

diverge to infinity as x tends to zero at least as fast as - l o g  x. Th e  critical value 
of the coupling parameter  is determined by specifying the position of the min imum 
of u, and its min imum value. For  example, functions of the form 

w(x) = f ( x ) / x  n, 

w(x) =g(x)/(sinh 5x) '~, 

w h e r e f  and g tend to constants at the origin and n > 1 will give soluble potentials. 
T h e  simplest example is w = y / x  ~ (n need not be an integer). For  n > 1 we can 
constrain u(x) to a min imum value of - 1 at x = 1 ; the critical coupling parameter  
and the potential are then 

% = i (n  2 - 1 ), 
,,(x)= 2n} 

( }o~ x771 . (12) 

T h e  critically bound states are 

1 (n+l)  (13) `60(x) 

This  set includes the known analytic solution for the 6-10 potential [3-5]. 
The  set of exact solutions obtained f rom a given w(x) may be enlarged in two 

ways : We note first that since 6 is to be zero at the origin and also at a point  where 
the potential becomes infinite, a potential which is infinity for x < c and o~u(x- c) 
for x > c has wavefunction zero for x < c and `6(x-  c) for x > c. This  result applies 
also to critically bound states, and thus the core-shifted potential has the same % 
as the original potential. 

T h e  second method is best illustrated by an example : we set w = y / ( x - d )  n, 
where d <  1, and make the u(x) of equation (10) take its min imum value of - 1 
a t x = l .  We obtain ( f o r n < l )  

% = ~ ( n ~ -  1 ) / ( 1  - d)2,  

(n+  1) , x _ ~ ,  - 2 n  , (14) 

and 

for x >  d. 

l ( n + l ~ ( 1 - d ~ ' * - l ~  
4~ - ~ \ n - U \ x - d /  j 

For x < d u(x) is infinity and `60 (x) zero. 

( 1 5 )  

3. THE APPROACH TO CRITICAL BINDING 

Potentials U(r) which have an absolute min imum - v  have binding energy 
E = - v  in the classical limit. Thus  for large % E tends to -c~. Th e  semi- 
classical correction, proportional to al/2, is obtained in the usual way by expanding 
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622 J. Lekner  

u(x) about its min imum at x =  1 ; the eigenstates are approximately those of a 
harmonic oscillator, with lowest eigenvalue. 

E - - a + [su"(1 )/2] t/2. (16) 

As ~ decreases, IEI decreases, eventually becoming zero at ~ = % .  We will 
show that e tends to zero as - (c~- %)~. This  is contrary to simplest expectations : 
Mahan and Lapp [5] assume that the behaviour is linear in c~ - % (see their figure 
1.) We multiply equation (7) by r and equation (8) by r subtract, and integrate 
f rom zero to infinity. This  gives 

[r162 - r162 ~ + ~ dxr r = (s - %) dxur r (17) 
0 0 

Both r  are zero at x =  0. Outside the range of the potential, r is a constant, 
which we choose to be unity, and q5 goes to zero exponentially : 

r ~ exp [ -  ( - E)I/2x]. 

T h e  first term in (17) is thus zero. In the second term, the integral 

tends to ( - e ) - 1 / 2 +  constant as a tends to % (and e tends to zero). Th e  integral 
on the right side has the limiting value 

j . oo dxur ~. 
0 

Thus  we find 

( - -  E)  1/2 = - -  (0~ - -  0~0) d, ,%'/~l(X)r  ( 1 8 )  

0 

in the limit as s ->  % from above. T h e  integral on the right is negative definite, 
since it is proportional to the potential energy in the critically bound state, which 
is equal to minus the kinetic energy, the latter being positive definite : 

% dxur 2 + dx(r o ) = 0. (19) 
0 0 

Thus  

{fo (20) 6 = S0 2 

We have thus determined the behaviour of e(~) at both ends of the spectrum. 
T h e  above relations are for s-states. For  bound states having angular 

momen tum L the potential u(x) is replaced by 

uL(x ) = u(x) + L (L  + 1)/x 2 (21) 

in equation (18), and (16) has to be modified by calculating the minimum and the 
second derivative at the min imum of the effective potential uz.(x ). 
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Critical binding of diatomic molecules 623 

4.  BOUND STATES, VIRTUAL STATES, AND LOW ENERGY SCATTERING 

The question of whether two He ~ atoms form a diatomic molecule or not is 
difficult to answer by the determination of c~ for a given potential shape, and conl- 
parison with %. The  reason for this is that, for all potentials, ~ lies close to %, 
but the uncertainty is greater than I~-%1" For example, Feenberg [4] quotes 
three values of c~ for the 6-12 potential determined by different authors in two 
different w~ys. The  values are 6-94, 7-29 and 7-51 (for details see Feenberg, 
table II)  ; the critical value of the coupling parameter is 7-04. Thus  a (He4)z 
molecule exists according to the last two determinations, but not according to the 
first. 

I t  may therefore be useful to have another way of distinguishing between 
bound and nearly bound (virtual) states, and if possible one which is independent 
of choice of potential. We will show that, in principle, one such method is the 
determination of the cross-section up to terms of order k 2. The approach used 
is similar to effective range theory, but  using the critically bound state r instead 
of the free state as the reference wavefunction. 

We consider solutions r of equations (7) for small positive energies 
E= qZ, with ~ near %. We use the identity [cf. (17)] 

F Y [r162 - r162 ~ + qg. dxr r = (~ - %) dxuq~or (22) 
0 0 

Let  p be the range of the potential. For x > p  we write ~b=sin (qx+6)/sin 6, 
where 6 is the s-wave phase shift. We again normalize 40 to unity at infinity (i.e. 
for x > p). The  left side of (22) becomes, for x > p. 

; ? q cos (qx + 8)/sin ~ + q~ dxr r + q~ dxr r 
0 p 

For small energies r is equal to 4o plus a term of order ~ -  % in the range of the 
first integral, while 40 is equal to unity in the range of the second integral. The 
left side thus reduces to 

f [ dxr176 - q sm qp q~ " + q cos qp cot 6. (23) 

As q tends to zero, equation (22) thus gives 

q cot 6 = (c~ - %) dxur 2 + q2 dx(1 - r (24) 
0 0 

T he t e r ms  omitted from (24) are of order ( ~ -  %)2 and q2(a_ %). This  expression 
is of the same form as that obtained by effective range theory [6] : 

k cot 6 = - s -1 + �89 k~, (25) 

where s is the zero-energy scattering length, r 0 the effective range, and k =  q/a 
the wavenumber. We have thus shown that for a system near critical binding, 
the scattering length and effective range are given by 

~ o 9  

a/s = - (o~- %)  dxuCg,  
0 

f 
op  

r o/a = 2 d x  (1 - r  
0 

(26) 

(27) 
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624 J. Lekner 

TEe first expression, together with tee results of the previous section, gives 

( , l:a a (28) 
s=  +_ \ 2 m l E i  } = +_ i~i~:2, 

where the positive sign is to be taken for bound states (e < 0), and the negative sign 
for virtual states. In both cases the e in equation (28) is understood to be given 
by equations (18) or (19). This  result is well known [6, 7], but the derivation 
is new and shows explicity the variation of s with c~ near %. 

The  total cross-section up to terms of order h a is given by 

4~r 47rs a 
cr = k 2 + k2 cot23 = 1 + (ks)2[1 - ro/S ] " (29) 

Thus  by plotting ~-~ versus h a one can determine the sign of roS. We will see that, 
for potential shapes of interest, r 0 is positive near critical binding, and therefore 
the sign of s (and thus of ~ -  %) can in principle be determined. 

The  effective range near critical binding is given by (27), with r normalized 
to unity at infinity. We consider potentials u(x) which are positive for x less 
than some x0, and remain negative for x greater than x 0. Interatomic potentials 
are of this type. Then,  from (7), the curvature of r is upward for x < x 0 and 
downward for x > x 0. Since r = 0 and since r being the limiting form of the 
lowest bound state, does not change sign, it follows teat  r increases mono- 
tomically up to its asymptotic value. Thus  r 0 is positive near critical binding. 
Tha t  it is not always positive is shown most simply by tee counter-example 
u(x) = 3 ( x -  1), for which 

S O~ 

a c~+l '  

r 0 _ 2 ~ - 1  
a 3 c~ 

(30) 

The  range of validity of (29) is ka~ 1. For He 4 atoms this means that the 
scattering cross-section has to be measured at velocities of about 50m/s or less 
(corresponding to thermal velocities of about 1 K). The  existence of a bound 
state is determined by the sign of s or roS. From (29) we see that 

f e ( O ) - l } / ( k s ) a ,  (31) r: _ 1 - [~r(k) 

while from (26), (27) and (19) it follows teat  ro/S is equal to (c~-%)/% times a 
numerical constant of order unity (equal to 5w/4V/2 in the case of the 6-10 potential, 
for example). TEe right side of (31) has to be determined with sufficient accuracy 
to fix its sign. This demands that its uncertainty be less than its absolute 
magnitude, which is of order ]~ -%[ /%.  The  need is thus for data at speeds of 
50 m/s or less, accurate enough for extrapolation of r to obtain ~(0), and for 
tee determination of the sign of the right side of (31). The  latest experimental 
data for helium [8] is at slightly higher speeds, and with experimental uncertainties 
about three times greater than that needed, so that no conclusions can be drawn 
at present. 
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Critical binding of diatomic molecules 625 

We note finally that equation (29) describes the scattering of two distinguish- 
able particles. For identical Bose particles of zero spin (e.g. He ~ atoms), the 
appropriate low-energy cross-section is (29) multiplied by four ([7] w 135). This 
effect has no influence on equation (31) or its consequences. 

I am indebted to Professor P. W. Anderson and Mr. R. G. Palmer for helpful 
comments, and to Mr. C. Nex for the numerical determination of % for the 6-12 
potential. 
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