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We calculate c~(z) and ¢,(z), the dielectric functions which characterize 
the response of a planar interface to an electric field perpendicular to or 
parallel to the interface. These functions each differ from the Clausius- 
Mossotti form by an interface term, which depends on the variation in density 
and in the pair correlation function through the interface. Detailed calcula- 
tions are carried out for Ar, Kr and Xe, using a molecular dynamics pair 
correlation function, and three model density profiles. The effect of 
anisotropy on ellipsometric estimates of the interface thickness is found to be 
small, because of cancellations between opposing terms. 

1 .  I N T R O D U C T I O N  

Recent work has shown that even in the simplest case of a lattice [1] or 
fluid [2] of polarizable atoms, there is some anisotropy of the dielectric function 
at the solid-vapour and l iquid-vapour interfaces. The  purpose of this paper is 
to explore the anisotropy for simple fluids (At, Kr  and Xe), and the effect of 
the anisotropy on ellipsometric measurements of the interracial thickness. 

The  polarization modulation ellipsometric technique of Jasperson and 
Schnatterly [3] has been applied by Beaglehole [4] to the determination of 
interface thickness. The  quantity measured is f3, the value of the imaginary 
part of the ratio of the s and p reflection amplitudes, at the angle where the real 
part is zero. For light of angular frequency to, incident from medium 1 onto a 
planar interface characterized by an isotropic dielectric function c(z), 

= ½ oJ x/(E1 + ¢~) 70 + terms higher order in interface thickness, (1) 
C E 1 - -  E 2 

where 

7/0= S d z (  a ' ) (* -*~)=  dz , +  - E , - c ~  , (2) 
- ~  ~ -o¢. E 

and E 1 and ,~ are the bulk values of the dielectric function in media 1 and 2. 
This result, usually credited to Drude [5], was apparently first obtained by 
L. Lorenz [6] (Rayleigh [7] derives results for a general angle of incidence, 
and gives reference to the earlier work of Lorenz, Van Ryn, Drude, Schott and 
Maclaurin). The  result of equations (1) and (2) rests on two approximations : 
neglect of anisotropy and neglect of fluctuations within the interface (surface 
roughness). The  effect of fluctuations has been studied by Zielinska, Bedeaux 
and Vlieger in a series of papers [8]. The  effect of the anisotropy of the dielectric 
function for a non-fluctuating (or averaged) interface is studied here. 
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1386 J. Lekner 

For a planar interface, the reflection of light at a general angle of incidence is 
determined by two functions, E± and ¢,, representing the response of the 
system to electric fields applied normally or parallel to the interface, respectively. 
When anisotropy is taken into account, t5 is given by (1), with To replaced by 

;oo °~ { Ele2 } 7= ~ d z  ~,~ + - E t -  % . (3) 
-- C_l - 

This formula is derived in Appendix A, using a generalization of a comparison 
identity derived for isotropic E [9]. A result equivalent to (1) and (3) (apart 
from its sign) was apparently first given by Buff [10]. Beaglehole [4] extracted 
the same formula from the work of Abel& [11]. In this paper we shall evaluate 
(3) using the theory of Castle and Lekner [2] (referred to here as CL). 

2. DIELECTRIC FUNCTIONS WITHIN THE LIQUID--VAPOUR INTERFACE 
CL have shown how the local field within a monatomic fluid is related to the 

external fie]d via the polarizability c~ of an atom, the number density n(z), and 
the pair correlation function g(r, z,, z~). Within a homogeneous bulk phase, 
the dielectric function is shown to be (an isotropic) constant, given by the 
Clausius-Mossotti formula, The assumptions which lead to this result are that 
(i) the field due to a polarized atom is well approximated by that of a point 
dipole; and (ii) dipole fluctuations can be neglected. These assumptions are 
discussed further in [1 ] and [2] ; they are justified to some extent by the very 
small variation in the effective atomic or molecular polarizabilities found from 
the Lorenz-Lorentz or Clausius-Mossotti formulae in a variety of gases, liquids 
and solids under a wide range of conditions [12]. 

Within the interracial region, CL show that the dielectric functions are well 
approximated by the Clausius-Mossotti form 

1 + ]~rc~n(zl) 
e C M ( Z l )  = 1 - -  ~ ' n ' o ~ n ( Z l ) '  (4) 

with a small correction arising from inhomogeneity. From CL (14), (20), and 
(23) we find E2.(Zl ) = 1 + 8"/7(~n(.i) + I(2:1) 

1 - -  47TO~ig(~l) -~- I ( g l ) '  ( 5 )  

where the interfacial contribution I is given by 
o0 

I ( z , ) = - 2 7 r ~  J dr r-" i az(3z~-r2)n(z l+z)[g(  r, zt, gl+~') - 1 ]  (6) 
0 --r  

(the interface lies in the x-y  plane ; z I and z 2 are depth coordinates of atoms 1 
and 2, r = I t2 - r l [  is the distance between the two atoms, and z = z ~ - z ,  is the 
difference in their depths). 

A result similar to (5) is obtained in the case where the electric field is parallel 
to the interface. From CL (40) and the general definition of ~ (see CL, Note 
Added in Proof), we find 

L~(zl) : 1 + 8zroLn(zl)- ½I(Zl) (7) 
1 - ~rrom(z,) - ½I(zl)" 

Thus the correction to the Clausius-Mossotti form is opposite sign (at any 
particular zz) for E± and ~ ,, and is twice as large for ~±. 
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Dielectric functions at liquid surfaces 1387 

To evaluate I we need the number density n(z), and the generalized pair 
correlation function g(r, zx, zz) within the interfacial region. Without loss of 
generality we can write g as a linear combination of gl(r) and g~(r) (the pair 
correlation functions within the liquid and vapour phases), weighted by the 
density at the mean depth ~/= ½(z I + z~), plus a correction term Ag : 

g ( r ,  g l ,  g 2 )  = n ( ~ )  - -  n__________~ gl(r) + n I - -  ) gv( r )  + Ag(r ,  zl ,  22). (8) 
nl -- nv /'/1 -- t/v 

Since g, gl and g~ all tend to zero as r ~ 0  and to unity as r-+oo, Ag is zero at 
both small r and large r. Lekner and Henderson [13] used this form for g, 
with Ag= 0 and with Ag = [g](r)-g~(r)]F(~,), to obtain the pressure/temperature 
ratio along the coexistence curve as a function of n I and nv. The comparison 
of their results with experimental data is consistent with Ag being small, and in 
the remainder of this paper we shall set it equal to zero. 

The density profile n(z) is conveniently written in the form 

n(z) = ½(n I + n~) - ½(n I - n~)O(z), (9) 

where O( + oo) = + 1. In terms of O, and with Ag = 0, 

g(r, ½ [ g # )  +gv(r)]  -- (10) 

Using (9) and (10) in (6) we find 

I(21)-~ ~ra ~o drr-" -.i d z ( 3 z z - r 2 )  { (n , -nv)[g(r ) -1]O(zx  + z) 

+n[gl(r)-gv(r)]O ( z .  + 2 ) - ½ ( n , - n v )  

( z)} ,11, x [gl(r)-g.(r) lO(zx+z)0 z1+~ , 

where 
= ½(nl + nv), ¢(r) = ½[g~(r) +g,,(r)]. (12) 

We shall write (12) as I = In + I a + I,,g, where the subscripts n, g, and ng denote 
contributions to the inhomogeneity term from variation through the interface of 
density, pair correlations, and density and pair correlations together. We have 

o~ 

I"(21) =r ra(n l -nv)  I dr r - ' [~ ( r ) -  1]K.(r, z1), 
0 

oo 

lo(za) =rran I dr r-4[g,(r)-g~(r)]K~(r, 21), (13) 
o 

Ino(zl) = - -~ a(n 1 - n~) dr r-'[gl(r ) -g.(r) lK. ,o(r ,  zl), 
0 

where 

Kn(r, zl) = j_. dz (32 z -  rz)O(zl + z), 

Ko(r,_ zl)= ! dz(3z2-r~)O z~ +g , 

Kno(r, zl)-- J dz(3z~-r2)O(zl  + z)  0 zl +~ • 

(14) 

2 z 2  
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1388 J. Lekner 

When 0 is odd (as it is for the model density profiles considered here), Kn and 
Kg are odd functions of z D and Kng is an even function of z 1. If the first three 
integrals of 0 are known, K n and Kg may be evaluated by repeated integration 
by parts : let 

0 = d d ~ d a 
dz 01=k-~ °~=-d-~ 08" (15) 

Then 

K,n.(r , Zl) = 2r2[Ol(z1 + r) - -  01(z 1 - -  r)] - -  6r[Oz(Zl + r) + O~(z 1 - r)] 

and 

ga(r, z l ) ~ - 4 r 2 I O l ( Z l d - u ) - O l ( Z l - 2 )  ] 

+ 6[Sz(z 1 + r ) -  ~3(Zl-r)]  (16) 

-24r[Og.(z1+2) 
[03 (z1- 2)-03 (Zl-2) ] . (17) 

CL estimated 1 n for the exponential profile (to be discussed in § 5), approxi- 
mating ~(r) by gv(r) ; and neglected lg and lng. We shall explore the relative 
importance of ln, lg and Ing in the next three sections, using in sequence three 
model density profiles. For the pair correlation functions we shall use gv(r)= 
exp( -u (r ) /T) ,  where the interatomic potential u(r) is taken to be of the 
Lennard-Jones 6-12 form 

u(r)=4v (d)° ] , (18) 
and the numerical gl(r) of Verlet [14] (table 4). This was produced by a 
molecular dynamics simulation on a model 6-12 fluid ; the gl(r) used here is 
for nlda=0"850, T/v=0"719, which is the closest to the triple point (nld z~ - 
0-84, T/v~0.70) among the Verlet data. The potential strengths v, atomic 
diameters d (for the 6-12 fluid), and atomic polarizabilities a of argon, krypton 
and xenon are given in table 1. We also give the experimental liquid and 
vapour densities at the temperature T =  0-719 v for which the liquid pair corre- 
lation function is tabulated. Since the dielectric properties depend strongly 
on the product of the atomic polarizability and density, we have used the experi- 
mental liquid densities in preference to 0.85/d z in our calculations. 

Table 1. Data used in the calculation of dielectric functions 

Ar Kr Xe Reference 

v(K) 117-2 163.1 226"I [15] 
0.719 v(K) 84.3 117.3 162-6 

d(A) 3.405 3-634 3-954 [15] 
0-85/d3(A -3) 0.02153 0.01771 0.01375 

nffA -3) 0.02128 0.01747 0.01356 [16-18] 
nv(A 3) 0.00006 0-00005 0.00004 [16-18] 

c,(A 3) 1.62 2-46 3.99 [19] 
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Dielectric Junctions at liquid surlaces 1389 

The  pair correlation functions gl(r) and gv(r) are shown in figure 1. The  
difference gl(r)-gv(r) (figure 2) is seen to have a substantial negative region, 
which suggests that Ia and Ina may not be negligible. 

4- 

3- 

2 

1 

O 

g(r)  

* : l i q u i d  
_ = . v o p o o r  

Figure 1. Pair correlation functions in the liquid and vapour phases. 

Figure 2. 

-I 

-2 

! /  

The difference between the liquid and vapour pair correlation functions. 

3. ~ fOR THE STV.P PROFILE 

The  step profile, for which n(z)= nl (z < 0) and n(z)= nv (z > 0), and 

O(z) = sgn (z), (19) 

is a physically inconsistent model density to use with the pair correlation 
functions shown above. It is interesting however as a limiting case, in which 
the entire contribution to the ellipsometric quantity ~ is due to anisotropy 
(70 is zero for the step profile). From (16) and 

Ox(z)= Izl, O (z)=½:sgn (z), O3(z)=@lzl =, (20) 
or by direct integration, we find 

and 

Kn(r, zl)= 

Ka(r, z1)= 

2Zl(Z~-r~), r> lzx], 
(21) 

0 , r <  [Zll 

4za(4z~-r2), r >2]z~J, 
(22) 

0 , r<2Izll. 
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1390 J. Lekner 

By an integration by parts, K n o  is t ransformed into 

Kno(r ,  zz) = 2 ~ d z  z ( r  2 - z2){8(zz + z) sgn (2z q- z)  + 3(2z z + z) sgn (z z + z)} 
- - r  

= [Kn(r  , z z ) - K g ( r ,  Zl) ] sgn (Zl). (23) 

T h e  discontinuity in density leads to a discontinuity in In(z1) at z z = 0 : 

I , ~ ( z z ) ~ r r ~ ( n l - n v )  sgn (zz) as zz-->0. (24) 

Ig and I,~o are continuous (and both  zero) at z z = 0 ,  because the factor g l ( r ) -  

g,c(r) removes the singular contr ibut ion f rom small r values. T h e  xenon values 
for I,~ and Ig (odd) and Ing (even) are shown for positive z in figure 3 and the 
total interface te rm I is shown in figure 4 ; they are an order  of magnitude 
larger for this discontinuous profile than for the continuous profiles to be dis- 
cussed. T h e  values of ~ (table 2) are nevertheless comparable to those for the 
more realistic profiles, because of the absence of an isotropic contribution. For  
xenon the contributions of I,~ alone, Ig alone a n d / n o  alone amount  to respectively 
51, 32 and 32 per cent of the total (these do not add to 100 per cent because ~7 
is not linear in I) .  T h e  effect of Ig a n d / n o  is thus substantial in this example. 

Table 2. Values of T and T0 (obtained by setting I=0) ,  near the triple point of Ar, Kr and 
Xe. (Three or four digits are given, for the comparison of relative magnitudes. 
For absolute magnitudes, at best the leading non-zero digit is sufficient--see for 
example the range of estimates of interface thickness shown in table 1 of [23]). 

Profile Ar Kr Xe 

step - ~/d 0.0276 0.0443 0.0735 

linear - ~l/d 0.0625 0.1003 0.1667 
al=0.9d -To /d  0.0617 0.0991 0.1647 

• //T0 1.013 1.012 1.012 

exponential - "q /d  0-0672 O. 1080 O. 1797 
ae=0.425d -To ld  0-0657 0.1056 0.1759 

~/~0 1.023 1.023 1.022 

. 2  

.1 

0 , . , L  I ~ 

z / d  

Figure 3. Interfacial terms In( ), Ig( . . . . .  ) and I~g( . . . . . .  ) for the step profile. 
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Dielectric functions at liquid surfaces 1391 

-2  
I 

. 2 .  

.1 

1 2 

- . 2  

Figure 4. Total interracial contribution for the step density profile. 

4. ~ FOR THE LINEAR PROFILE 

The linear density profile, for which O ( z ) = z / a ( [ z l < a  ), O ( z ) = s g n ( z )  
(IzI > a), is the simplest continuous model for density variation across the inter- 
face. Shih and Uang [20] have used this profile, among others, to calculate 
the surface tension a and the surface energy E for argon at 85 K. Henderson 
and Lekner [21] have used these calculations to extract an interface thickness;  
in terms of the parameter a defined above, they find a___0-9 d. We shall use 
this value in our calculations. We need K,,, Ko and Kna- For the linear profile 
we have 

O,(z) = ~zZia + ~a ; I*1, 

02(z ) = ~za/a + ~az  ; (½z ~ + ~a z) sgn (z), 

. 1.13+ A-a lzl, 
where the forms on the left are for I*1< a, those on the right for I zl > a. 
(16) and (25), or by direct integration, we find 

K,(r ,  z l )  = ~a (u,fl - l,Z)(2r z - u. 2 - l,Z), 

0, if l , , > u  n, 

where 

if ln<un, 

l . = - m i n ( r , a + z l ) ,  u , = m i n ( r , a - z l ) .  

Similarly, / 1 
Ka(r ' z l ) =  8aa (ua2-la2)(2r~-ua~-la2) '  if la<u a, 

O, if l a > u a, 

where 
lg = - min (r, 2a + 2z 1), ua = min (r, 2a - 2z 1). 

(25) 

From 

(26) 

(27) 

(28) 

(29) 

Knu(r, z l )  may be evaluated by integration by parts. The  result is 

B(r, "1, z)lr: +C(r, *)IY, K,,a(r, z l ) = A ( r ,  zl, Jlt. (30) 
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1392 J. Lekner 

where 

A(r ,  ~'1, s t)  = g2 ( 2 r 2 -  ~ ' 2 ) 0 ( g l  + ~ / 2 ) ,  
4a 

B(r, z,, z ) = ~  (2r~- zg)O(Zl + Z), (31) 

c ( r ,  z )  = - 

l =  max (l,, lo), u = min (us, uo) 

and where each term of (30) is to be given zero value when the lower limit 
exceeds the upper  limit. 

For  analytic density profiles, the r -4 term in Is(Zl) does not lead to a sin- 
gularity at small r : expansion of O(z I + z) about z 1 shows that 

oo 
In(z1) I dr r(?,(,')- 1 )+  . . . .  (32) 

0 

We have already seen in the case of the step profile that a discontinuity in density, 
together with the short-ranged r -a behaviour of the r- integrand,  leads to a dis- 
continuity in Is(z1) at z 1 = 0  (the point of discontinuity in density). T h e  
linear profile has a discontinuity in slope at z 1 = + a, and this leads to a dis- 
continuity in the slope of In(za) at z 1 = + a. F rom (16), we have 

dlJ~')=~roc(n,-nv) i drr-'(ff,(r)-1){2rZ[O(zx + r)-O(Zl-r)] 

-6r[Oa(Zl +r)+Oa(za-r)]+6[O~(Zl +r)-O2(Zl-r)]}. (33) 

For  z 1 = a + 3 and [8[ < r < 2a + 3 the expression in braces becomes 3r~/a + 0(83). 
When r <131 and r < 2a + 8 it takes the value zero. T h e  consequent  value of 
dIs/dz x at z l=a+8 is -rra(nl-nv) sgn(3)/a , giving a discontinuity in the 
slope of I s of 2rra(nl-nv)/a. T h e  behaviour near z 1 = - a  follows f rom the 
above and the fact that Is(z1) is odd when O(z) is odd. 

T h e  xenon values for Is, I o and /no are shown in figure 5, and the total I 
in figure 6 ; the discontinuity in slope at Izli = a  is apparent.  T h e  values of ~/ 
obtained with this profile for Ar, Kr,  Xe are given in table 2. In, Ig and Iso 
separately give a - 6 ,  + 4 and + 3 per cent correction to 70 ; the total I gives 
a + 1 per cent correction. 

° @ 2  

@ 

. [ 3 2  

.i:,'f•'""',, z/d 

..... 

3 
I 

Figure 5. Interfacial terms In( ), Io( . . . . .  ) and Ino( . . . . . .  ) for the linear profile. 
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Dielectric functions at liquid surfaces 1393 

-3 _ _ ;  ~ . .~  z/d 

 _.o7 
Figure 6. Total interracial contribution for the linear density profile. 

5. r/ FOR THE EXPONENTIAL PROFILE 

The exponential profile is the most realistic of the model profiles considered 
here, and yet has the advantage that much of the required integration can be 
done analytically, both in the statistical mechanical expressions for the surface 
tension and surface energy [22], and also in the statistical mechanics of dielectric 
properties [2]. For this profile, 

O(z)= [1 - e x p  ( -  I*l/a)] sgn (z), 

Ol(z ) = [zl + a  exp ( -  [zlla), (34) 

O2(z) = [½z ~ + aS( 1 - e x p  ( - [z [/a)] sgn (z), 

os(z) =~ lz l  3 +aZlz I +a 3 exp ( - Izl/a). 

The  length a appropriate to T/v = 0.0703 was determined in [23] to be approxi- 
mately 0-415 d (this number  was obtained as a mean over two methods, and by 
averaging over Ar, Kr  and Xe data). The  corresponding 10-90 thickness [23] 
is t=(21og5)a~_l.34d.  Later calculations based on more realistic pair 
correlation functions confirmed that t is approximately 1-3 atomic diameters for 
argon near its triple point [21]. The  densities and pair correlations used here 

N i 

"N\ 

-2  -1 O 1 2 

Figure 7, The exponential ( ), linear ( . . . . .  ) and step (thin line) density profile 
used in the calculation of 71 (table 2). Also shown are markers at ~.nl+ ~nv and 
~nl + ?,~nv to indicate the determination of the 10-90 thickness t. 
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1394 J. Lekner 

are for T/v=0.719. We have correspondingly used a slightly larger value 
a = 0.425 d, obtained from the scaling law [24] 

( t o -  5 ~ '  
a( T)=a( Tt) \1Tc- T ] ' (35) 

with v=2/3,  Te/v=l'24, Tt/v=0"70. The resultant 10-90 thickness is 
t ~  1.37 d. The linear profile value corresponding to al=0.9 d is slightly 
larger (t ~ 1.44 d) ; the two profiles are compared in figure 7. 

The functions K n and K a may be obtained from (16), (17) and (34). K,~g 
was evaluated by numerical integration. The xenon values for I~, I a and I,a 
are shown in figure 8, and the total I in figure 9. The values of ~/ obtained 
with this profile for At, Kr and Xe are given in table 2. In, Ig and Ing separately 
give a - 5 ,  + 4 and + 4 per cent correction to ~70 ; the total I gives a + 2 per 
cent correction. These contributions are similar to those for the linear profile, 
despite the cusp in In(z1) due to the discontinuity in slope in the linear case. 

. 0 2  

0 

- .  02 

Figure 8. Interfacial terms Is( ), Ig( . . . . .  ) and Inn( . . . . . .  ) for the exponential  
profile. 

Figure 9. 

3 

. @3- 

- 3  
I 

-.  03 

Total  interfacial contr ibut ion for the exponential  density profile. 

6. TEMPERATURE DEPENDENCE 

Among the Verlet g~(r) data there is one other set of pair correlation function 
values lying near the liquid-vapour coexistence curve. This is at nd a= 0-65, 
T/v = 1.036. The length ae at this temperature takes the value 0.794 d accord- 
ing to (35), i.e. nearly twice the value assigned to it near the triple point. The 
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Dielectric [unctions at liquid surfaces 1395 

densities used in the calculation of 7/ values are shown in table 3. As in the 
previous calculations, we have used the experimental densities for the liquid in 
preference to the value 0.65/d s used in the molecular dynamics simulation. 
The  results (table 3) show a small increase in the value of ~, and a decrease in 
the effect of anisotropy. The  small change in the value of 71 despite the near 
doubling of the interface thickness t can be understood from the approximate 
proportionality (Appendix B) of % to (El--Ev) ~ t. As we move from the triple 
point toward the critical point, Ei--Ev and t obey (asymptotically) the scaling 
laws [ 2 4 ]  Ej - E v ~ (T c - T)P, t ~ (To - T) -~. Since 2fl ~_ v, the respective con- 
tributions to To approximately cancel. This  is shown in figure 10: the ~/ 
integrand has longer range but smaller maximum value at the higher temperature. 

Table 3. Values of ~ for the exponential profile at T=  1.036 v ,  with ae=0.794 d. The 
density data are from the references of table 1. 

Ar Kr Xe 

1-036 v(K) 121-4 169-0 234-2 
0-65/da(A -3) 0.01647 0-01354 0.01051 

nl(A -3) 0.01730 0-01415 0.01098 
nv(A -3) 0.00098 0-00087 0-00063 

- ~7/d 0.0722 0-1132 0-1876 
- ~o /d  0.0711 0-1115 0-1849 
~/-% 1.015 1-015 1-015 

. 15  

-4 -2  0 2 z / d  

Figure 10. Integrand of - , / a t  T = O . 7 1 9 v  ( ) and T =  1-036v ( . . . .  ). 

7. DISCUSSION 

The  numerical values for E± and E, of CL,  based on approximating the pair 
correlation function by its dilute gas limit, lead to ~//%~_0.8 near the triple 
point of Ar, Kr  and Xe. This  apparent  20 per cent decrease in the magnitude 
of ~/has been shown here to be not only an overestimate, but  even of the wrong 
sign. T h e  more realistic estimates of the pair correlation function give three 
contributions to the interface or inhomogenei ty term 1 ;  of these I n was over- 
estimated by CL,  and the two other  terms Ig and Ing (neglected by CL)  both 
contr ibute to ~7 in opposition to [n- T h e  net result is a small increase of 2 
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1396 J. Lekner 

per cent in the magnitude of 7. These results appear surprising at first, since 
the density changes by a factor of about 350 on passing from vapour to liquid 
(for Ar near the triple point), while the pair correlation function suffers a 
moderate change (figure 1). The explanation lies in the fact that a structureless 
fluid (g-= 1) would have an isotropic dielectric function, of the Clausius- 
Mossotti form, no matter how large the change of density at the interface (see 
(5-7)). The deviation of g from unity is thus all-important, and moderate 
changes in g through the interface lead to appreciable effects. Because of a 
large amount of cancellation, the overall change in ~ due to anisotropy is seen to 
be negligible for monatomic fluids. This makes it a plausible first approxi- 
mation to neglect such non-orientational anisotropy in estimates of ~7 due to 
molecular orientation at the interface [25]. 

APPENDIX A 

Reflection o I light by a planar liquid-vapour interlace 

For the s-wave, in which the electric field is perpendicular to the plane of 
incidence (here the zx  plane), l: = (0, Ev, 0) and E u satisfies 

tO  2 

V 2 Ev+E j~ -~ Eu=O. (A 1) 

The operative dielectric function for the s-wave is • tt, since the electric field is 
always parallel to the surface. When • it is purely a function of z (which is the 
assumption here), E v = exp ( iKx)E(z) ,  where E(z)  satisfies 

d2E ( ~°~ ) 
. . . .  K S E = 0  (A 2) dz 2 F • i~ c 2 

and K = ~/~l(eo/c) sin 0 a = ~¢%~(~o/c) sin 02. The s-wave reflection amplitude is 
then given by [26] 

r~= q~-q2 1-4qxq2 I dz z +O(qa) 3 (A 3) 
ql + q2 - ~ • 1  - E2 ) 

where qi= X/¢i(o~/c ) cos 0 i and the step dielectric function %--½(•l+E2)-  
~(el -- •2) sgn (z) is located so as to make 

oo 

j dz ( • , , - • o ) = 0 .  (A 4) 
- -0O 

Thus r~ is given by the step value ro=(ql-q2)/(ql+q2 ) to the zeroth and first 
orders in the interface thickness (characterized by the length a), when the step 
reference profile is at z = 0 and (A 4) is satisfied. 

For the p-wave, B=(0,  Bu, 0) and 

~Bu = i• oJ OB u oJ 
~z " c Ex' bx = - i • ± - -  (A5)  

These equations are the anisotropic generalizations of the usual time-harmonic 
relation V x B=  -i•(oJ/c)E. From the complementary relation V x l: =i(o~/c)B 
we find 

~z ~x = i -c  By. (A 6) 
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Dielectric [unctions at liquid surfaces 1397 

All fields have exp (iKx) as the x-dependence, so (A 5) and (A 6) reduce to 

~z -~z + -d B = O, (A7) 

where Bu(z , x)=exp  (iKx)B(z). The corresponding equation for an isotropic 
~(z) is [27] 

d ( l d B ~  (oJ 2 K 2) 
-~z\ 7 ~ffz ] + -~ B = O. (A8)  

To find the reflection amplitude rp to first order in the interface thickness, 
we will use a generalization of the comparison identity derived in [9]. This 
identity is derived by multiplying (A 7) by B 0, the solution of (A 8) with ,=%,  
and subtracting from this the complementary expression. We find 

d ( B o C _ B C o ) = K 2 ( 1  1 )  dz - ~ - ~  BBo-(E,,-Eo)CCo, (A 9) 

where 

C -  1 dB and dB° ,,, C°=! (A 10) 
% dz" 

On integrating (A 9) from z = - oo to oo and using the asymptotic form [9] 

• ~/'2 exp (iqxz) - % exp ( - tqlz ) *--B(z) --> tp exp (iq2z), (A 11 ) 

we find the comparison identity for an anisotropic system : 

' 

Here Q~=qd% To lowest order in the interface thickness, we can replace 
BB o by Bo2(0) and CC o by Co2(0) in the integrand. The second term in the 
integral is zero because of (a  4), so with Bo(O)=2Qd(Q1 + Q2) ((58) of [9]) we 
find 

Qg.- Qx 2iQIK 2 D ~- O(qa) 2, (A 13) 
$'P - -  0 2  "Jv 9 1  ( 0 1  + Q2)  2 

where the length D is given by 

D= J dz - . (A 14) 
--00 

Using (A 4), D may be written in three equivalent forms, all of which explicitly 
display the necessary invariance of rp/r, with respect to the choice of origin : 

, 1 , 2 D  = d z  E 1 "]- E,~ --  - -  - -  f II 
- ~  EA_ 

az(q-El)( ' l - 'd+ f az(,l-E,,) --oo EA_ --o0 

J°O d z  ( ' l  - -  " )("  U --  "9) ..~ , l ,  2 ? d z ( ) H  i f ' l ) "  
f , 1 

-00 Ell --00 
(A 15) 
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1398 J. Lekner 

At the Brewster angle 0B, defined by Q1 = Q2 [9], rpo = 0, rs0 = (El - E2)1(¢1 + Ez) 
and the first order p-wave reflection amplitude becomes 

i oJ EXE 2 D .  ( A  16) 
2 c 

Equation (3) follows from (A 15) and (A 16). 

APPENDIX B 

Values o[ 71o [or some simple dielectric [unction profiles 

We give analytic results for the integral 
oo 

7o = J dz  ( ' - ' 1 ) ( "  - "z) (B 1 ) 
--OO E 

for three simple functional forms of ¢(z) (the first three of table 1, [26]). The  
dielectric function ~(z), with its limiting values ¢ ( -oo )=E1  and ~(oo)=E2, is 
assumed to be real and positive everywhere. The  form of (B 1) s h o w s  that 
7/o is then negative definite if c(z) is monotonic. The  profiles are conveniently 
written in terms of a function [ with limiting values + 1 at + oo : 

,(z) = ½('1 +,2)  - ½('1 - ,~)[(z/a). (B 2) 

(Compare the expression (9) for the density.) The  results are summarized in 
the following table : 

P r o f i l e  ~ ( x )  - -  71o/a 

x ([x[<l)  2,1,~ ,~ 
L i n e a r  ~l + E~ - l o g  - -  

s g n  x ( I x [  > 1 )  e 1 - , 3  "3 

E1 + ~z ~1 + E~ 
E x p o n e n t i a l  s g n  x (1 - -  e x p  ( - j x [ ))  ~i l o g  - -  + e3 l o g  - -  

2*3 2¢t 

Hyperbolic tangent tanh 2 (~1 - ~2) log 
E2 

A s  E 1 - E  2 - -~0 ,  the leading term in -70  is proportional to (El -  E2) z a, as is evident 
from the form of (B 1). The  integrations leading to the values in the table are 
elementary, although the subtraction of two divergent integrals is useful in the 
case of the Fermi (or hyperbolic tangent) profile 

~1 ~2 ~t + ~2 exp (z/a) (B 3) 
E(z) = 1 + exp (z/a) -~ 1 + exp ( - z/a) = 1 + exp (z/a) ' 

for which we have : 

-7o/a=(~l-E2) 2 S drleXpx 1 
- ~o + exp x E 1 + E~ exp x 

~o 1 1 
E2) 2 "Jo dy 1 +y  "1 + 
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Dielectric lunctions at liquid surfaces 1399 Y/11 / 
=(E~--ES) lim So dy 

v-~o l + y  ~ + y  

E 2 

= (E 1 -E2)  log c2. (B 4) 
E 2 

The Fermi profile has the useful property that when the density has a Fermi 
shape, the Clausius-Mossotti  functional form for E(z) also has a Fermi shape, 
shifted toward the denser medium : when 

where 

n(z )  = nl + nv exp  (z/a), ( B 5 ) 
1 + exp  (z/a) 

E 1 + E v exp [(z + A)/a] (B 6) 
ECM(Z)= l + e x p  ( z + A ) / a ]  ' 

A = a log (1  -- ~zrCXnv~ ( ' I + 2 ~  
1 --_ ~--~-n~ni ] = a log \ ~ ] .  (B7)  

Since B is invariant to change of origin, (B 4) applies to the profile (B 6). Other 
profiles have a similar (though approximate) shift of the Clausius-Mossotti  
functional form relative to the density : figure 1 of [2] illustrates the shift for 
an exponential density profile. 
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