

# 2026 Guide to Undergraduate Degrees, Majors and Courses in the Biological Sciences



## School of Biological Sciences Te Kura Mātauranga Koiora

**Website:** [www.wgtn.ac.nz/sbs](http://www.wgtn.ac.nz/sbs)

**Email:** [biosci@vuw.ac.nz](mailto:biosci@vuw.ac.nz)

**Office:** Te Toki a Rata Building, Level 2, Kelburn Campus

**Phone:** 04-463 5339 or 0800 22 77 55

**Office Hours:** Monday-Friday 9 am- 4:30 pm

*Updated August 2025*

## TABLE OF CONTENTS

|                                                                                      | Page         |
|--------------------------------------------------------------------------------------|--------------|
| <b>Welcome</b>                                                                       | <b>3</b>     |
| <b>Planning your studies</b>                                                         | <b>4</b>     |
| <b>Bachelor of Science (BSc) majors and their requirements</b>                       | <b>5</b>     |
| • <b>Biology</b>                                                                     | <b>6</b>     |
| • <b>Biotechnology</b>                                                               | <b>7</b>     |
| • <b>Cell and Molecular Bioscience</b>                                               | <b>8</b>     |
| • <b>Ecology and Biodiversity</b>                                                    | <b>9</b>     |
| • <b>Marine Biology</b>                                                              | <b>10</b>    |
| <b>Bachelor of Science (BSc) degree minors</b>                                       | <b>11</b>    |
| <b>Bachelor of Biomedical Science (BBMedSc) degree majors and their requirements</b> | <b>12</b>    |
| • <b>Human Genetics</b>                                                              | <b>13</b>    |
| • <b>Molecular Pathology</b>                                                         | <b>14</b>    |
| • <b>Molecular Pharmacology and Medicinal Chemistry</b>                              | <b>15</b>    |
| <b>Bachelor of Biomedical Science (BBMedSc) degree minors and their requirements</b> | <b>16</b>    |
| <b>Course Descriptions</b>                                                           | <b>17-26</b> |
| <b>Courses Listed by Trimester</b>                                                   | <b>27</b>    |

## Welcome!

The School of Biological Sciences offers two undergraduate degrees (the Bachelor of Science and the Bachelor of Biomedical Science), each with several distinct majors to choose from. This guide provides information on the requirements of each degree major, some example programmes of study, and descriptions of the courses we will offer in 2025.

We hope this guide is helpful in planning your studies, but if you have any questions, here are some ways to get additional help:

## FOR GENERAL INQUIRIES

If you have any general inquiries about your studies, the Tītoko Centre for Student Success is here to assist you. The team serves as the first point of contact for help with planning the courses necessary to complete your qualification, modifying your current courses or programs, overcoming challenges in your academic progress, connecting you with support services, and addressing various aspects of student life.

Every student at Te Herenga Waka—Victoria University of Wellington gets assigned a personal Student Success Adviser. You can find the name and contact details of your advisor using these instructions: <https://www.wgtn.ac.nz/students/tools-and-help/help-and-advice/your-adviser#find>

Or, if you don't know who your advisor is, you can also drop into the Tītoko office or contact the team by phone or email. Their hours are 9 am – 4 pm, Monday to Friday.

Tītoko Office: CO144, Ground floor, Cotton Building, Kelburn campus

Tītoko Email: [info@vuw.ac.nz](mailto:info@vuw.ac.nz)

Tītoko Phone: 0800 04 04 04 or +64 4 472 1000

## FOR QUESTIONS ABOUT SPECIFIC DEGREE MAJORS

If you have questions about one of our undergraduate majors, you can also contact one of our programme directors—their contact information is listed below.

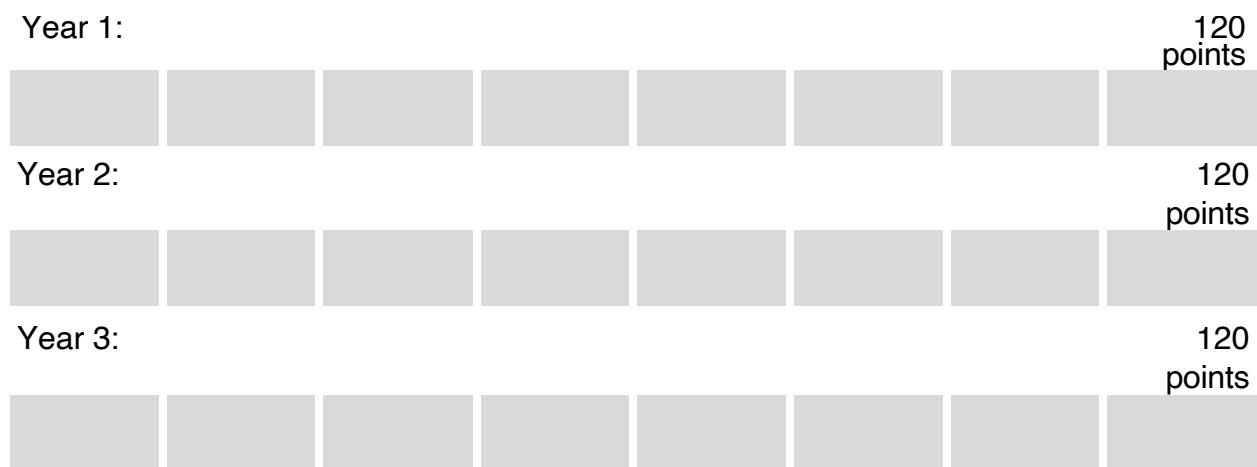
### Undergraduate Programme Directors

| Programme                        | Director name           | Contact email                                                              |
|----------------------------------|-------------------------|----------------------------------------------------------------------------|
| Biology                          | Dr Diane Ormsby         | <a href="mailto:Diane.Ormsby@vuw.ac.nz">Diane.Ormsby@vuw.ac.nz</a>         |
| Biomedical Sciences (all majors) | A/Prof Davide Comoletti | <a href="mailto:Davide.Comoletti@vuw.ac.nz">Davide.Comoletti@vuw.ac.nz</a> |
| Biotechnology                    | Prof David Ackerley     | <a href="mailto:David.Ackerley@vuw.ac.nz">David.Ackerley@vuw.ac.nz</a>     |
| Cell and Molecular Bioscience    | A/Prof Bronwyn Kivell   | <a href="mailto:Bronwyn.Kivell@vuw.ac.nz">Bronwyn.Kivell@vuw.ac.nz</a>     |
| Ecology and Biodiversity         | Prof Phil Lester        | <a href="mailto:Phil.Lester@vuw.ac.nz">Phil.Lester@vuw.ac.nz</a>           |
| Marine Biology                   | Prof James Bell         | <a href="mailto:James.Bell@vuw.ac.nz">James.Bell@vuw.ac.nz</a>             |

## FOR QUESTIONS ABOUT SPECIFIC COURSES

If you have questions about a specific course, please email the course coordinator (listed on pages 17-26). Staff email addresses follow the pattern of *firstname.lastname@vuw.ac.nz*.

## PLANNING YOUR STUDIES


Once you've chosen your Degree and Major and reviewed the requirements and courses, you can use the template below to plan your degree.

Start by adding the required courses for your Major to each year in the table below.

Then, add in any other courses you are interested in taking.

Note that generally, 100-level courses in the Sciences are worth 15 points (so you'll need to take eight courses in Year 1), but at 200-300-level, there is a mix of 15 and 20-point courses (so the number of courses you need may vary).

You need a total of 360 points for a BSc or BBMedSc degree.



If you have any questions or need help planning your degree, reach out to the team at Tītoko Centre for Student Success (page 3).

# THE BACHELOR OF SCIENCE (BSc)

## General Bachelor of Science Degree Requirements:

- A total of 360 points.
- At least 210 points must be from 200 and 300-level courses, including:
  - At least 150 points from courses listed for the BSc.
  - At least 75 points from 300-level courses listed for the BSc.
- 90 points can be from outside science (some combinations of majors may also permit up to an additional 60 outside points).
- One major from the BSc, i.e. Biology, Biotechnology, Cell and Molecular Bioscience, Ecology and Biodiversity or Marine Biology. See pages 6-10 for more information about these majors.
- Students can also take a second major, which can be from the BSc or any other first degree of the University

## General Bachelor of Science Minor Requirements:

- 60 points above the 100-level specified in the major, of which 15 points must be at the 300-level. See page 11 for more details.

# BIOLOGY (BIOL)

## Mātai Koiora

A Biology major introduces you to the wonder of life, in all its forms and at all levels, from molecules to ecosystems. The major begins with courses that introduce cell, plant, and animal biology. During your second and third years, you can follow your passion and choose courses that span the spectrum of biological disciplines. You can also combine elements of other majors for a more flexible and broader degree. A major in Biology serves as a foundation for broad and diverse career options. There are also pathways for postgraduate study and further specialisation – although if you think you might want to continue your studies, make sure you include the prerequisite courses for entry into your postgraduate programme of interest.

### REQUIRED COURSES

1. BIOL 111, BIOL 113, BIOL 114 and STAT 193 (or equivalent).
2. Any 60 points from BIOL/BMSC/BTEC 201–299.
3. Any 60 points from BIOL/BMSC/BTEC 301–399.

Below is an example programme of study for an undergraduate Biology major, which also meets the entry requirements for our postgraduate programmes in Cell and Molecular Bioscience (CBIO) and/or Molecular Microbiology (MBIO).

If you have any questions and/or need course advice, please feel free to contact the Biology Programme Director, Dr Diane Ormsby ([diane.ormsby@vuw.ac.nz](mailto:diane.ormsby@vuw.ac.nz)).

**Example programme of study** (the required courses for the Biology major are highlighted in bold).

|    | Year 1                                                                                                                                                 | Year 2                                                                                                   | Year 3                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| T1 | <b>BIOL 113: Biology of Plants</b><br><b>BIOL114: Biology of Animals</b><br>BTEC101: Introduction to Biotechnology<br>CHEM 113: Concepts of Chemistry* | BIOL244: Introductory Biochemistry<br>BIOL228: Animal Diversity<br>BIOL252: Cell & Developmental Biology | BMSC343 Advanced Genetics<br>BIOL325: Global Change Biology<br>BMSC301: Medical Microbiology |
| T2 | <b>BIOL111: Cell Biology</b><br><b>STAT193: Statistics in Practice</b><br>BIOL132: Biodiversity and Conservation<br>BMSC 117 The Biology of Disease    | BIOL236: Microbes & their Environments<br>BIOL241: Genetics<br>BTEC201: Molecular Biotechnology          | BIOL329: Evolution<br>BMSC334: Cell and Immunobiology<br>BMSC339: Cellular Regulation        |

\*Note: We recommend that students with a strong background in NCEA Chemistry take STAT 193 in Tri 1, and CHEM 121 in Tri 2 (instead of CHEM 113).

# BIOTECHNOLOGY (BTEC)

## Hangarau Koiora

Biotechnology is the application of biological sciences and technologies to solve real-world problems. While it has been used for decades - for example, to provide insulin for diabetics - its potential and its implications for society are still being realised. A major in Biotechnology provides a grounding in biotechnology and its underlying biological and chemical sciences. It is helpful to have some elementary knowledge of biology, chemistry and statistics. Students can specialise in areas such as bioactives and biodiscovery, protein and nucleic acid biotechnology or reproductive technologies. As well as gaining a sound scientific education, students consider cultural and ethical issues and are introduced to aspects of the commercial environment and technology transfer involved in bringing biotechnological developments to Aotearoa's marketplace, as well as internationally.

As a constantly progressing area of science, Biotechnology prepares students for a diverse array of career opportunities, with a focus on those in the biotech sector.

### REQUIRED COURSES

1. BTEC 101, BIOL 111, CHEM 121\* and one course from (CHEM 122, PHIL 106, PHIL361 or SCIS 211).
2. BTEC 201, BIOL 241, and two courses from (BIOL 236, BIOL 244, BIOL 252, CHEM 201, CHEM 205, CHEM 207, CHEM 208).
3. BTEC 301, SCIE 310\*\* and one course from (BIOL 340, BMSC 301, BMSC 334, BMSC 339, CHEM 301, CHEM 305, CHEM 307, CHEM 308, CHEM 309).

If you have any questions and/or need course advice, please feel free to contact the Biotechnology Programme Director, David Ackerley ([david.ackerley@vuw.ac.nz](mailto:david.ackerley@vuw.ac.nz))

**Example programme of study** (required courses for the BTEC major are highlighted in bold).

|    | Year 1                                                                                                                                                                                | Year 2                                                                                                                                               | Year 3                                                                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| T1 | <b>BTEC 101 Introduction to Biotechnology</b><br>STAT 193 Statistics in Practice<br>BIOL 114 Biology of Animals<br>SCIS 101 Science in Everyday Life*                                 | BIOL 244 Introductory Biochemistry<br>BIOL 252 Cell and Developmental Biology<br>SCIS 211 Contemporary Issues in Science, Environment and Technology | <b>BTEC 301 Biotechnological Techniques and Processes</b><br>BIOL 340 Genes and Genomes<br>BMSC 301 Medical Microbiology        |
| T2 | <b>BIOL 111 Cell &amp; Molecular Biology</b><br><b>CHEM 121 Chemistry of Life</b><br>MAOR 123 Te Iwi Māori me ān Tikanga/Māori Society and Culture<br>BIOL 117 The Biology of Disease | <b>BIOL 241 Genetics</b><br><b>BTEC 201 Molecular Biotechnology</b><br>BIOL 236 Microbes and their Environments                                      | <b>SCIE 310 Innovation and Entrepreneurship in Science**</b><br>BMSC 334 Cell and Immunobiology<br>BMSC 339 Cellular Regulation |

\*\*Note: Students without the NCEA requirements to enter directly into CHEM 121 Chemistry of Life should take CHEM 113 Concepts of Chemistry in Trimester 1 and CHEM 121 in Trimester 2. Students who can enter directly into CHEM 121 Chemistry of Life can take an alternative course such as SCIS 101 in Trimester 1, as shown above.

\*\* Not offered in 2026. Instead, two courses from the alternative offerings should be selected, with additional alternatives able to be considered with approval from the Programme Director.

# CELL AND MOLECULAR BIOSCIENCE (CBIO)

## Mātauranga Koiora Pūtau

The cutting edge of biology is at the cellular and molecular level. Only by understanding the molecular machinery inside cells and the interactions between cells can you understand the ongoing revolutions in medicine, agriculture, and even genomics-based disciplines such as modern ecology.

A major in Cell and Molecular Bioscience gives you this deep understanding of “the stuff too small to see”.

Courses in this major concentrate on areas such as biochemistry, molecular biology, cell biology, genetics, physiology, and pharmacology.

### REQUIRED COURSES

1. BIOL 111, BIOL 113, BIOL 114, and CHEM 121\*.
2. BIOL 241, BIOL 243, BIOL 244 and BIOL 252.
3. BIOL 340, BMSC 339 and one course from (BMSC 334, 335, 343, 354, BTEC 301).

If you have any questions and/or need course advice, please feel free to contact the Cell and Molecular Bioscience Programme Director, Dr Bronwyn Kivell ([Bronwyn.Kivell@vuw.ac.nz](mailto:Bronwyn.Kivell@vuw.ac.nz))

**Example programme of study** (required courses for the Cell and Molecular Bioscience major are highlighted in bold).

|    | Year 1                                                                                                                                                                                  | Year 2                                                                                                                   | Year 3                                                                                                                            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| T1 | <b>BIOL 113 Biology of Plants</b><br><b>BIOL 114 Biology of Animals</b><br>BTEC 101 Introduction to Biotechnology<br>CHEM 113 Concepts of Chemistry*                                    | <b>BIOL 244 Introductory Biochemistry</b><br><b>BIOL 252 Cell and Developmental Biology</b><br>BIOL 228 Animal Diversity | <b>BIOL 340 Genes and Genomes</b><br>BMSC 335 Physiology and Pharmacology 1<br>BTEC 301 Biotechnological Techniques and Processes |
|    |                                                                                                                                                                                         |                                                                                                                          |                                                                                                                                   |
|    |                                                                                                                                                                                         |                                                                                                                          |                                                                                                                                   |
|    |                                                                                                                                                                                         |                                                                                                                          |                                                                                                                                   |
| T2 | <b>BIOL 111 Cell &amp; Molecular Biology</b><br><b>CHEM 121 Chemistry of Life*</b><br>BMSC 117 The Biology of Disease<br>MAOR 123 Te Iwi Māori me āna Tikanga/Māori Society and Culture | <b>BIOL 241 Genetics</b><br><b>BIOL 243 Physiology and Pharmacology 1</b><br>BTEC 201 Molecular Biotechnology            | <b>BMSC 339 Cellular Regulation</b><br>BMSC 334 Cell and Immunobiology<br>BIOL 329 Evolution                                      |

\*Note: Students without the NCEA requirements to enter directly into CHEM 121 Chemistry of Life should take CHEM 113 Concepts of Chemistry in Trimester 1 and then CHEM 121 in Trimester 2. Students who can enter directly into CHEM 121 Chemistry of Life can take it in Trimester 2 and take an alternative course in Trimester 1.

# ECOLOGY AND BIODIVERSITY (EBIO)

## Mātai Hauropi, ngā Momo Koiora hoki

In this major, you will learn about the huge diversity of plants, animals and microorganisms that inhabit the Earth. After a broad introduction, the major in Ecology and Biodiversity focuses on areas of plant, animal and ecosystem diversity and function. Topics include physical and biological processes in ecology, genetics and molecular biology, statistics, plant ecology and conservation, animal ecology and behaviour, and evolution. You'll find it helpful to have some elementary knowledge of biology and statistics.

Study in Wellington offers access to unique centres of native biodiversity including the Otari-Wilton's Bush, Kapiti Island Nature Reserve and the urban ecosanctuary Zealandia.

For a career that has anything to do with the understanding and management of living things and their interactions with each other and with people, a BSc in Ecology and Biodiversity is ideal.

### REQUIRED COURSES

1. BIOL 111, BIOL 113, BIOL 114 and STAT 193.
2. BIOL 222; BIOL 241 or STAT 292; and 40 further points from (BIOL 227, BIOL 228, BIOL 236 or BIOL 241).
3. BIOL 327 and 40 further points from (BIOL 325, BIOL 328 or BIOL 329).

If you have any questions and/or need course advice, please feel free to contact the Ecology and Biodiversity Programme Director, Prof Phil Lester ([Phil.Lester@vuw.ac.nz](mailto:Phil.Lester@vuw.ac.nz))

**Example programme of study** (required courses for Ecology and Biodiversity are highlighted in bold. In some cases, the requirement is to take one of two specific courses; this is indicated by italics).

|    | Year 1                                                                                                                                                                                             | Year 2                                                                                                                    | Year 3                                                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| T1 | <b>BIOL 113 Biology of Plants</b><br><b>BIOL 114 Biology of Animals</b><br>GEOS 101: Our Dynamic Earth and Environment<br>GEOG 114: Sustainability: People and Environment                         | <b>BIOL 222 Ecology and Environment</b><br><i>STAT 292 Applied Statistics 2A</i><br>BIOL 228 Animal Diversity             | <b>BIOL 327 Population and Community Ecology</b><br>BIOL 325 Global Change Biology<br>GEOG 224 Geomorphology                      |
| T2 | <b>BIOL 111 Cell &amp; Molecular Biology</b><br><b>STAT 193 Statistics in Practice</b><br>MAOR 123 Te Iwi Māori me āna Tikanga/Māori Society and Culture<br>BIOL 132 Biodiversity and Conservation | <i>BIOL 241 Genetics</i><br>BIOL 227 Plants and Algae: Function and Diversity<br>BIOL 236 Microbes and their Environments | BIOL 328 Behaviour and Conservation Ecology<br>BIOL 329 Evolution<br>GEOG 214 Environment and Resources: New Zealand Perspectives |

# MARINE BIOLOGY (BMAR)

## Mātaí Koiora Moana

Marine Biology is the study of ocean organisms and how they interact with one another and their environment. New Zealand has one of the most extraordinary and unspoilt marine ecosystems in the world, and Te Herenga Waka, which has the closest campus to the sea, is a leader in the field of marine biology. The University has its own marine field station, the Coastal Ecology Laboratory (WUCEL), and its own research vessels, the tri-hull *Raukawa Challenger* and three aluminium vessels, *Pipi*, *Tuatua* and *Tipa*.

In addition to links with a host of New Zealand and international universities, the Marine Biology group has ties with industry and all the major players in the public sector of the marine industry. These include Crown research institutes such as NIWA, the Ministry of Fisheries and the Department of Conservation, all of which are in Wellington. These varied links mean that at Te Herenga Waka, you will learn both how the oceans work and how humans interact with the marine environment.

### REQUIRED COURSES

1. BIOL 111, BIOL 113, BIOL 114, and STAT 193.
2. BIOL 227, BIOL 228, BIOL 271 and STAT 292.
3. BIOL 371, BIOL 372, and BIOL 370.

If you have any questions and/or need course advice, please feel free to contact the Marine Biology Programme Director, Dr James Bell ([james.bell@vuw.ac.nz](mailto:james.bell@vuw.ac.nz))

**Example programme of study** (required courses for Marine Biology are highlighted in bold..

|    | <b>Year 1</b>                                                                                                                                                                                      | <b>Year 2</b>                                                                                                                | <b>Year 3</b>                                                                                                                                    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| T1 | <b>BIOL 113 Biology of Plants</b><br><b>BIOL 114 Biology of Animals</b><br>GEOS 101: Our Dynamic Earth and Environment<br>GEOG 114: Sustainability: People and Environment                         | <b>BIOL 228 Animal Diversity</b><br><b>STAT 292 Applied Statistics 2A</b><br>BIOL 222 Ecology and Environment                | <b>BIOL 370 Field Marine Ecology</b><br><b>BIOL 371 Marine Ecology</b><br>BIOL 325 Global Change Biology: The Ecology of Our Planet Under Stress |
| T2 | <b>BIOL 111 Cell &amp; Molecular Biology</b><br><b>STAT 193 Statistics in Practice</b><br>MAOR 123 Te Iwi Māori me āna Tikanga/Māori Society and Culture<br>BIOL 132 Biodiversity and Conservation | <b>BIOL 227 Plants and Algae: Function and Diversity</b><br><b>BIOL 271 Introductory Marine Ecology</b><br>BIOL 241 Genetics | <b>BIOL 372 Applied Marine Biology</b><br>BIOL 328 Behaviour and Conservation Ecology<br>BIOL 329 Evolution                                      |

# MINORS IN THE BACHELOR OF SCIENCE (BSc)

Biology, Biotechnology, Cell and Molecular Bioscience, Ecology and Biodiversity, and Marine Biology subjects are also available in the BSc as minors. You may also be able to have a minor in one of the subjects from the Bachelor of Biomedical Science\*.

To achieve a minor in one of these subjects, you must have at least 60 points at 200 level or above from the courses required for the major in that subject. Of those 60 points, at least 15 must be at the 300 level. Where our subjects have specialist codes (such as the BTEC code for Biotechnology), you must have at least 40 points for courses with that subject code.

Additionally, you cannot use a 300-level course to count towards two or more qualifications (e.g., a major and a minor or two minors). For example, you cannot use BIOL 340 to meet the requirements of a major in Biotechnology and a minor in Cell and Molecular Bioscience. You cannot have a major and a minor in the same subject.

Although minors are described in terms of courses at 200-level and above, remember that you will need to do 100-level courses to meet the prerequisite requirements of the courses you choose to take in your minor.

## Example minors

There are many combinations of courses you could take to meet the requirements of a minor\*. The examples given here are to illustrate how minors work. In designing your combination, note the above requirements and plan to meet the prerequisites for the courses you intend to take.

### **Biology**

40 points from BIOL/BMSC/BTEC 201–299 and any 20 points from BIOL/BMSC/BTEC 301–399.

### **Biotechnology**

BIOL 241, BTEC 201, 301

### **Cell and Molecular Bioscience**

Example 1: A genetics route: BIOL 241, 244, 340

Example 2: A cell biology route: BIOL 244, 252, BMSC 339

### **Ecology and Biodiversity**

BIOL 227, 228, 325

### **Marine Biology**

BIOL 228, 271, 372

\* There is one exception: *if you are majoring in Biology, Biotechnology or Cell and Molecular Bioscience in the BSc, you can't do a minor from the BBmedSc.*

# **BACHELOR OF BIOMEDICAL SCIENCE (BBmedSc)**

## **General Bachelor of Biomedical Science Degree Requirements:**

- A total of 360 points.
- At least 180 points must be from the 200 and 300 level.
- All BBmedSc majors must take:
  - BIOL 111, 114, BMSC 117, CHEM 121\*, STAT 193.
  - BIOL 241, 243, 244.
  - And the courses required for at least one major (i.e. Human Genetics, Molecular Pathology, or Molecular Pharmacology and Medicinal Chemistry. See pages x-y for more information about these majors.

\*Note: If you have fewer than 16 NCEA Level 3 Achievement Standard credits in Chemistry, including two external standards or equivalent background, you must pass CHEM 113 in Trimester 1 before entering CHEM 121 (which is taught in both T1 and T2).

## **General Bachelor of Science Minor Requirements:**

- 60 points at 200-level or above from the courses listed for the majors in the degree. At least 15 points must be at 300-level and not counted towards a major or another minor. See page 16 for more details.

# HUMAN GENETICS (HGEN)

## Mātai Iranga

Majoring in Human Genetics will give you the skills and vocabulary to understand how systems work, how genes are encoded and interpreted correctly and how all the proteins in the cells function together. You'll learn how to carry out research that will contribute to this field of science. You will also learn about the links between genetics and cancer or diseases such as multiple sclerosis, reproductive dysfunction, drug addiction and neurodegenerative disease.

### REQUIRED COURSES

1. BIOL 111, BIOL 114, BMSC 117, CHEM 121, STAT 193 and COMP 132 (or 102 or 112).
2. BIOL 241, BIOL 243, BIOL 244 and BIOL 252.
3. BIOL 340, BMSC 339 and BMSC 343.
4. At least one further course from 200 or 300-level BIOL, BMSC, BTEC, COMP, DATA, PSYC or STAT courses.
5. An additional course from 300-level BIOL, BMSC, BTEC, COMP, DATA, PSYC or STAT courses.

If you have any questions and/or need course advice, please feel free to contact the Biomedical Science Programme Director, Dr Davide Comoletti ([davide.comoletti@vuw.ac.nz](mailto:davide.comoletti@vuw.ac.nz))

**Example programme of study for the HGEN major** (required courses are highlighted in bold).

|           | <b>Year 1</b>                                                                                                                                                                                  | <b>Year 2</b>                                                                                                                     | <b>Year 3</b>                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <b>T1</b> | <b>BIOL 114 Biology of Animals</b><br><b>STAT 193 Statistics in Practice</b><br><b>CHEM 113 Concepts of Chemistry*</b><br><b>PSYC 121 Foundations in Psychology 1</b>                          | <b>BIOL 244 Introductory Biochemistry</b><br><b>BIOL 252 Cell &amp; Developmental Biology</b><br><b>BIOL 228 Animal Diversity</b> | <b>BIOL 340 Genes and Genomes</b><br><b>BMSC 343 Advanced Genetics</b><br><b>BMSC 335 Physiology and Pathology 2</b> |
|           |                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                      |
|           |                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                      |
|           |                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                      |
| <b>T2</b> | <b>BIOL 111 Cell &amp; Molecular Biology</b><br><b>BMSC 117 The Biology of Disease</b><br><b>CHEM 121 Chemistry of Life</b><br><b>COMP 132 Programming for the Natural and Social Sciences</b> | <b>BIOL 241 Genetics</b><br><b>BIOL 243 Physiology and Pathology 1</b><br><b>BIOL 236 Microbes and their Environments</b>         | <b>BMSC 339 Cellular Regulation</b><br><b>BMSC 334 Cell and Immunobiology</b><br><b>BIOL329 Evolution</b>            |

Note: Students who meet the NCEA requirements to enter directly into CHEM 121 (T2) can replace CHEM 113 (T1) with an alternative course, such as WRIT 101 (Writing at University) or WRIT 151 (Writing in English as a Second Language).

# MOLECULAR PATHOLOGY (MOLP)

## Mātai Mate Rāpoi Ngota

The Molecular Pathology major investigates the structure of organs and how diseases are caused at a system level. You will examine the bacterial, viral, and parasitic microorganisms that can cause disease and how the immune system works. You'll also look at what happens to tissue and organ function when diseases take over the body.

### REQUIRED COURSES

1. BIOL 111, BIOL 114, BMSC 117, CHEM 121, STAT 193 and COMP 132 or PSYC 122 (or COMP 102 or 112).
2. BIOL 241, BIOL 243, BIOL 244 and BIOL 252.
3. BMSC 301, BMSC 334, BMSC 335, BIOL 340.

If you have any questions and/or need course advice, please feel free to contact the Biomedical Science Programme Director, Dr Davide Comoletti ([davide.comoletti@vuw.ac.nz](mailto:davide.comoletti@vuw.ac.nz))

**Example programme of study based on the Molecular Pathology (MOLP) major** (required courses are highlighted in bold).

|    | <b>Year 1</b>                                                                                                                                                  | <b>Year 2</b>                                                                                              | <b>Year 3</b>                                                                                      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| T1 | BIOL 114 Biology of Animals<br>STAT 193 Statistics in Practice<br>CHEM 113 Concepts of Chemistry <sup>1</sup><br>WRIT101 Writing at University                 | BIOL 244 Introductory Biochemistry<br>BIOL 252 Cell and Developmental Biology<br>BIOL 228 Animal Diversity | BMSC 301 Medical Microbiology<br>BIOL 340 Genes and Genomes<br>BMSC 335 Physiology and Pathology 2 |
| T2 | BIOL 111 Cell & Molecular Biology<br>CHEM 121 Chemistry of Life<br>BMSC 117 The Biology of Disease<br>COMP 132 Programming for the Natural and Social Sciences | BIOL 241 Genetics<br>BIOL 243 Physiology and Pathology 1<br>BIOL 236 Microbes and their Environments       | BMSC 334 Cell and Immunobiology<br>BMSC 339 Cellular Regulation<br>BMSC 354 Pharmacology           |

Note: Students who meet the NCEA requirements to enter directly into CHEM 121 (T2) can replace CHEM 113 (T1) with an alternative course, such as WRIT 101 (Writing at University) or WRIT 151 (Writing in English as a Second Language).

# MOLECULAR PHARMACOLOGY AND MEDICINAL CHEMISTRY (MPMC)

## Mātai Taka Rongoā, Matū Rongoā Hoki

This major will give you a solid grounding in the chemistry of the human body. You'll learn about modern chemical methods for synthesising drugs - and the application of those drugs, and how they work within a living system.

### REQUIRED COURSES

1. BIOL 111, BIOL 114, BMSC 117, CHEM 121, STAT 193 and COMP 132 or PSYC 122 (or COMP 102 or 112).
2. BIOL 241, BIOL 243, BIOL 244 and two courses from (CHEM 201, 205, 207, 208).
3. BMSC 335 and BMSC 354.
4. Two courses from (CHEM 301, 305, 307, 308 or 309).

If you have any questions and/or need course advice, please feel free to contact the Biomedical Science Programme Director, Dr Davide Comoletti ([davide.comoletti@vuw.ac.nz](mailto:davide.comoletti@vuw.ac.nz))

**Example programme of study for the Molecular Pharmacology and Medicinal Chemistry (MPMC) major.** Required courses are highlighted in bold. In some cases, the requirement is to take two courses from the given options; these courses are indicated in italics.

|           | <b>Year 1</b>                                                                                                                                                                                  | <b>Year 2</b>                                                                                                                                                            | <b>Year 3</b>                                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <b>T1</b> | <b>BIOL 114 Biology of Animals</b><br><b>STAT 193 Statistics in Practice</b><br><b>CHEM 113 Concepts of Chemistry</b><br><b>MAOR 123 Te Iwi Māori me āna Tikanga/Māori Society and Culture</b> | <b>BIOL 244 Introductory Biochemistry</b><br>BIOL 252 Cell and Developmental Biology<br><i>CHEM 208 Chemistry of Life: Organic, Biomolecular and Medicinal Chemistry</i> | <b>BMSC 335 Physiology and Pathology 2</b><br><i>CHEM 307 Advanced Experimental Techniques</i><br>BMSC301 Medical Microbiology |
| <b>T2</b> | <b>BIOL 111 Cell &amp; Molecular Biology</b><br><b>CHEM 121 Chemistry of Life</b><br><b>BMSC 117 The Biology of Disease</b><br><b>COMP 132 Programming for the Natural and Social Sciences</b> | <b>BIOL 241 Genetics</b><br><b>BIOL 243 Physiology and Pharmacology</b><br><i>CHEM 207 Experimental Chemistry and Spectroscopy</i>                                       | <b>BMSC 354 Pharmacology</b><br><i>CHEM 309 Chemical Biology and Medicinal Chemistry</i><br>BMSC 339 Cellular Regulation       |

Note: Students who meet the NCEA requirements to enter directly into CHEM 121 (T2) can replace CHEM 113 (T1) with an alternative course, such as WRIT 101 (Writing at University) or WRIT 151 (Writing in English as a Second Language).

# **MINORS IN THE BACHELOR OF BIOMEDICAL SCIENCE (BBMedSc)**

The subjects of the BBMedSc degree can also be taken as minors. To get a minor in a BBMedSc subject, you must have at least 60 points at 200-level or above from the courses listed for the majors in the degree, including those listed for the subjects below. At least 15 points must be at 300-level and not counted towards a major or minor.

## **Example minors**

There are many combinations of courses you could take to meet the requirements of a minor\*. The examples given here are to illustrate how minors work. In designing your combination, note the above requirements and plan to meet the prerequisites for the courses you intend to take.

You can also choose to minor in a subject from another undergraduate degree. There is one exception: due to the overlap in courses, you are not allowed to take a minor in Biology, Biotechnology or Cell and Molecular Science from the BSc if you are doing a BBmedSc.

### **Human Genetics minor**

Example: BIOL 241, 252, BMSC 343

Complete at least 15 points at 200-level or above from the Human Genetics major.

### **Molecular Pathology minor**

Example: BIOL 243, BMSC 335

Complete at least 15 further points at 200-level or above from the Molecular Pathology major.

### **Molecular Pharmacology and Medicinal Chemistry minor**

Example: BIOL 243 or 244; BMSC 354, CHEM 208

Complete at least 15 further points at 200-level or above from the Molecular Pharmacology and Medicinal Chemistry major.

## COURSE DESCRIPTIONS

These are the planned courses for 2025. However, the university may cancel courses due to insufficient resources, student demand, or other unforeseen circumstances.

Check online for up-to-date information, as well as more detailed course information (e.g. syllabus, timetable) at <https://www.wgtn.ac.nz/study/programmes-courses/courses>

### HOW TO USE THIS GUIDE

| Course   | Course reference number | Title              | Points | Trimester(s) |
|----------|-------------------------|--------------------|--------|--------------|
| BIOL 000 | CRN 000                 | BIOLOGY COURSE XYZ | 15 PTS | Tri 2        |

### 100-LEVEL COURSES

|          |         |                               |        |       |
|----------|---------|-------------------------------|--------|-------|
| BIOL 111 | CRN 566 | CELL AND<br>MOLECULAR BIOLOGY | 15 PTS | Tri 2 |
|----------|---------|-------------------------------|--------|-------|

*Course coordinator: A/Prof Monica Gerth*

This course will explore the molecular basis of life, providing students with a strong foundation in cell biology. Key concepts will include the structure and function of major cell types, biological chemistry and metabolism, and cell division and development. We'll explore these concepts using a variety of examples from across the tree of life, including plants, animals and microbes.

|          |          |                                |        |       |
|----------|----------|--------------------------------|--------|-------|
| BIOL 113 | CRN 7037 | BIOLOGY OF PLANTS<br>AND FUNGI | 15 PTS | Tri 1 |
|----------|----------|--------------------------------|--------|-------|

*Course coordinator: Dr Nicola Day*

An exploration into the structure, function and biodiversity of plants and fungi, emphasising their adaptations to different environments, their interactions with other organisms, and their fundamental importance to humanity. It offers a solid foundation for students who wish to pursue a career in plant sciences, ecology, conservation biology or biotechnology and is a key element of the Ecology and Biodiversity major. Extensive previous knowledge of plant biology is not required, but secondary school biology is helpful.

|              |          |                    |        |       |
|--------------|----------|--------------------|--------|-------|
| BIOL 114     | CRN 7038 | BIOLOGY OF ANIMALS | 15 PTS | Tri 2 |
| Restriction: |          | BMSC 114           |        |       |

*Course coordinator: Dr Julian Day-Cooney*

An introduction to animal structure and function. This course is largely based on the biology of mammals with a strong emphasis on human biology, but comparison is made throughout with other animals. The aim is to demonstrate the structural and functional unity of animals and their variety and diversity as expressed in evolutionary terms. It is not assumed that students have extensive previous knowledge of the subject, and those who do will find differences in scope and emphasis from school studies.

|          |         |                                  |        |       |
|----------|---------|----------------------------------|--------|-------|
| BIOL 132 | CRN 568 | BIODIVERSITY AND<br>CONSERVATION | 15 PTS | Tri 2 |
|----------|---------|----------------------------------|--------|-------|

*Course coordinator: Prof Phil Lester*

An introduction to the diversity, management, and conservation of microbial, plant and animal communities. Using key taxa or ecosystems as examples, students will gain an appreciation of the current issues facing the world's biodiversity, and explore possible methods for conservation, including habitat restoration, translocation, and predator control.

**BMSC 117 CRN 8739 THE BIOLOGY OF DISEASE****15 PTS Tri 2***Course coordinator: Dr Julian Day-Cooney*

The nature and origin of disease. Bacteria and viruses: structure, identification and classification. Mechanisms of infection, pathogenesis, virulence, host susceptibility, immunity, epidemiology. Control strategies, new technologies. New organisms. Invertebrate and fungal parasites. Ecological and cultural aspects of disease.

**BTEC 101 CRN 11092****INTRODUCTION TO BIOTECHNOLOGY****15 PTS Tri 1***Course coordinator: Prof David Ackerley*

The aims of this course are to provide a solid understanding of the pure and applied science underlying the biotechnology industry, and to provide insight into the cultural and ethical values, and economic and political issues, that this science must align with. Particular focus in lectures will be given to the techniques and applications of recombinant biotechnology in microbes, plants and animals; harnessing natural resources; health-related biotechnology; reproductive biotechnology; environmental biotechnology and regulation of biotechnology.

**CHEM 113 CRN 17147****CONCEPTS OF CHEMISTRY****15 PTS Tri 1**

Prerequisites: We strongly recommend students who have not completed level 2 NCEA Chemistry to take CHEM 191 over the summer  
Restrictions: CHEM 114, 115

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:  
<https://www.wgtn.ac.nz/courses/CHEM/113/2024/offering?crn=17147>*

**CHEM 121 CRN 35059****CHEMISTRY OF LIFE****15 PTS Tri 2**

Prerequisites: CHEM 113 or 16 NCEA Level 3 Achievement Standard credits in Chemistry including two external standards or equivalent background in Chemistry

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:  
<https://www.wgtn.ac.nz/courses/CHEM/121/>*

**CHEM 191 CRN 23006****INTRODUCTORY CHEMISTRY****15 PTS Tri 3**

Restrictions: CHEM 113, 114, 121,122

This summer bridging course provides basic chemical concepts and laboratory skills as a preparation for studying chemistry at the university level. It is designed for those with little or no background in chemistry or to be a refresher course for those who have studied chemistry in the past. In this course, you will study the big ideas of science and chemistry, explore the fundamental building blocks of matter, and the connections between energy and reactions. You will also investigate these concepts whilst building your practical skills over a three-day block in the laboratory.

This course is an online/distance course **except** for a short three-day block of labs in February that must be completed in person at the Kelburn Campus.

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:  
<https://www.wgtn.ac.nz/courses/CHEM/191/>*

|                 |                                                                             |                                                        |               |              |
|-----------------|-----------------------------------------------------------------------------|--------------------------------------------------------|---------------|--------------|
| <b>CHEM 122</b> | <b>CRN 35060</b>                                                            | <b>CHEMISTRY OF MATTER, ENERGY AND THE ENVIRONMENT</b> | <b>15 PTS</b> | <b>Tri 2</b> |
| Prerequisites:  | CHEM 114 or (A- or better in CHEM 113 and concurrent enrolment in CHEM 114) |                                                        |               |              |
| Restrictions:   | CHEM 204                                                                    |                                                        |               |              |

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:*  
<https://www.wgtn.ac.nz/courses/CHEM/122/>

|                 |                                                                                                                 |                               |               |              |
|-----------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|--------------|
| <b>STAT 193</b> | <b>CRN 1791/11333</b>                                                                                           | <b>STATISTICS IN PRACTICE</b> | <b>15 PTS</b> | <b>Tri 1</b> |
|                 | <b>CRN 4442/6164</b>                                                                                            |                               |               | <b>Tri 2</b> |
|                 | <b>CRN 17069</b>                                                                                                |                               |               | <b>Tri 3</b> |
| Restrictions:   | MATH 277, QUAN 102                                                                                              |                               |               |              |
| Streams:        | 1/3: Stream A (CRN 1791) Stream B (CRN 11333)<br>2/3: Stream A (CRN 4442) Stream B (CRN 6164)<br>3/3: CRN 17069 |                               |               |              |

*Please check the School of Mathematics and Statistics for further information:*  
<https://www.wgtn.ac.nz/courses/STAT/193/>

## 200-LEVEL COURSES

|                         |                 |                                             |               |              |
|-------------------------|-----------------|---------------------------------------------|---------------|--------------|
| <b>BIOL 219</b>         | <b>CRN 8828</b> | <b>NEW ZEALAND FLORA &amp; FAUNA</b>        | <b>15 PTS</b> | <b>Tri 3</b> |
| Prerequisite: 60 points |                 | <i>Course coordinator: Prof Kevin Burns</i> |               |              |

A field course that explores the unique flora and fauna of Aotearoa, New Zealand. This course covers the basic principles of species interactions and how they can shape the ecology and evolution of native trees. The reading materials will cover how New Zealand's flora and fauna parallel that of other isolated islands. Daily field trips will reinforce the concepts learned in lectures and give hands-on experience with native plants and animals.

|                                                                                                               |                  |                                |               |              |
|---------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|---------------|--------------|
| <b>BIOL 222</b>                                                                                               | <b>CRN 15180</b> | <b>ECOLOGY AND ENVIRONMENT</b> | <b>20 PTS</b> | <b>Tri 1</b> |
| <i>Course coordinators: Dr Rachael Shaw &amp; Dr Nicola Day</i>                                               |                  |                                |               |              |
| Prerequisites: STAT 193 & 30 points from<br>(BIOL 111, 113, 114, 132, ENVI/GEOG 114, ESCI/GEOG 111, ESCI 112) |                  |                                |               |              |
| Restrictions: GEOG 222                                                                                        |                  |                                |               |              |

The course will focus on physical and biological processes in terrestrial environments and ecosystem functioning. The field trip will introduce techniques relevant to field-based enquiry in ecology, environmental and earth science.

**Note:** Students who enroll in field courses must be physically able and must have a good level of physical fitness. If you are unable to undertake a field course like BIOL 222 which is required for your major, please contact your Titoko advisor to support you in making alternative arrangements that will enable you to complete your major.

|                                             |                 |                                                 |               |              |
|---------------------------------------------|-----------------|-------------------------------------------------|---------------|--------------|
| <b>BIOL 227</b>                             | <b>CRN 9214</b> | <b>PLANTS AND ALGAE: FUNCTION AND DIVERSITY</b> | <b>20 PTS</b> | <b>Tri 2</b> |
| Prerequisite: BIOL 111 or BIOL 219; BIOL113 |                 | <i>Course coordinator: Prof Joe Zuccarello</i>  |               |              |

Plant and algal diversity and structure with emphasis on adaptations of the whole organism; evolution of photosynthetic organisms (including blue-green bacteria, algae and plants) and their physiology.

|                        |                 |                                             |               |              |
|------------------------|-----------------|---------------------------------------------|---------------|--------------|
| <b>BIOL 228</b>        | <b>CRN 9215</b> | <b>ANIMAL DIVERSITY</b>                     | <b>20 PTS</b> | <b>Tri 1</b> |
| Prerequisite: BIOL 114 |                 | <i>Course coordinator: Prof Kevin Burns</i> |               |              |

Diversity, form and function of animals; an overview of the taxonomic and morphological diversity of all animals; focused study of selected terrestrial and aquatic taxa, including sponges, cnidarians, annelids, molluscs, arthropods and vertebrates (including fish, amphibians, reptiles, birds and mammals).

|                        |                  |                                                |               |              |
|------------------------|------------------|------------------------------------------------|---------------|--------------|
| <b>BIOL 236</b>        | <b>CRN 10761</b> | <b>MICROBES AND THEIR ENVIRONMENTS</b>         | <b>20 PTS</b> | <b>Tri 2</b> |
| Prerequisite: BIOL 111 |                  | <i>Course coordinator: A/Prof Monica Gerth</i> |               |              |

Microbes may be small, but they are mighty. They make up ~15% of the biomass on Earth and are critical drivers of ecological processes. This course will introduce the physiological and biochemical diversity of microbes. It will also explore the important roles that microbes play in different environments (soil, water, and within hosts).

**BIOL 241 CRN 9055****GENETICS****20 PTS Tri 2**

Prerequisite: BIOL 111

*Course coordinator: A/Prof Melanie McConnell*

An introduction to the structure, behaviour, and regulation of chromosomes, genes and DNA; and to the processes of heredity and the mechanisms by which genetic information is transmitted and expressed in animals (including humans), plants and micro-organisms. Introduction to population genetics. DNA technologies and the ethics of their use.

**BIOL 243 CRN 9057 PHYSIOLOGY AND PATHOLOGY 1****20 PTS Tri 2**

Prerequisites: BIOL 111, 114; one of CHEM 113-121

*Course coordinator: A/Prof Davide Comoletti*

Restriction: BIOL 253

The functioning and roles of the peripheral nervous system and endocrine/neuroendocrine systems in the control of activity of the cardiovascular, respiratory, renal and reproductive systems. The emphasis is on human physiology. For these systems, mechanisms of disease (pathological processes) will be presented alongside normal and abnormal physiology.

**BIOL 244 CRN 18337 INTRODUCTORY BIOCHEMISTRY****20 PTS Tri 1**

Prerequisites: BIOL 111; CHEM 113 or 114 or 121

*Course coordinator: Dr Lifeng Peng*

Restriction: BIOL/BMSC 239, 240, BMSC 244

An introduction to the relationship between structure and function of proteins, including catalysis and its regulation; the mechanisms and roles of metabolic processes in the interconversion of molecules in animals, plants and micro-organisms.

**BIOL 252 CRN 9056 CELL AND DEVELOPMENTAL BIOLOGY****20 PTS Tri 1**

Prerequisites: BIOL 111, 114

*Course coordinator: Dr Diane Ormsby*

Restriction: BMSC 252

This course expands on topics introduced in first-year cell biology, covering the structure and behaviour of cells in terms of underlying molecular events and the role of cells in the physiology and development of the whole organism.

**BIOL 271 CRN 9216 INTRODUCTORY MARINE ECOLOGY****20 PTS Tri 2**

Prerequisites: 60 points, including BIOL 114

*Course coordinator: Prof Simon Davy*

An introductory course focusing on marine biology and ecology. This course introduces students to the diversity and physiology of marine organisms, biological oceanography, the structure and function of marine ecosystems such as the deep sea, polar seas, rocky shores, mangrove forests and coral reefs and marine conservation issues.

**BTEC 201 CRN 11093 MOLECULAR BIOTECHNOLOGY****20 PTS Tri 2**

Prerequisites: BIOL 111, BTEC 101

*Course coordinator: Prof David Ackerley*

The aims of this course are to introduce the biotechnology industry, through examples of biotechnological innovation, introduction to microbial, plant and animal biotechnology, harnessing natural resources, health-related biotechnology and placing these in the context of cultural and ethical values and political issues. A key focus will be the understanding of important biotechnological processes and events at a molecular level.

|                 |                 |                                                 |               |              |
|-----------------|-----------------|-------------------------------------------------|---------------|--------------|
| <b>CHEM 207</b> | <b>CRN36108</b> | <b>EXPERIMENTAL CHEMISTRY AND SPRECTROSCOPY</b> | <b>20 PTS</b> | <b>Tri 2</b> |
|-----------------|-----------------|-------------------------------------------------|---------------|--------------|

Prerequisite: 15 points from CHEM 121, 122 (or 114, 115)

Restrictions: CHEM 205 or 206

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:*  
<https://www.wgtn.ac.nz/courses/CHEM/207/>

|                 |                 |                                                                          |               |              |
|-----------------|-----------------|--------------------------------------------------------------------------|---------------|--------------|
| <b>CHEM 208</b> | <b>CRN36109</b> | <b>CHEMISTRY OF LIFE: ORGANIC, BIOLMOLECULAR AND MEDICINAL CHEMISTRY</b> | <b>20 PTS</b> | <b>Tri 1</b> |
|-----------------|-----------------|--------------------------------------------------------------------------|---------------|--------------|

Prerequisite: 15 points from CHEM121 (or 114)

Restriction: CHEM201

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:*  
<https://www.wgtn.ac.nz/courses/CHEM/208/>

|                 |                  |                              |               |              |
|-----------------|------------------|------------------------------|---------------|--------------|
| <b>STAT 292</b> | <b>CRN 18331</b> | <b>APPLIED STATISTICS 2A</b> | <b>15 PTS</b> | <b>Tri 1</b> |
|-----------------|------------------|------------------------------|---------------|--------------|

Prerequisites: STAT 193 or a comparable background in Statistics

*Please check the School of Mathematics and Statistics for further information:*  
<https://www.wgtn.ac.nz/courses/STAT/292/>

## 300-LEVEL COURSES

|                 |                  |                                                                      |                     |
|-----------------|------------------|----------------------------------------------------------------------|---------------------|
| <b>BIOL 325</b> | <b>CRN 19701</b> | <b>GLOBAL CHANGE BIOLOGY: THE ECOLOGY OF OUR PLANET UNDER STRESS</b> | <b>20 PTS Tri 1</b> |
|-----------------|------------------|----------------------------------------------------------------------|---------------------|

Prerequisites: 40 points from 200-level BIOL courses    *Course coordinator: Dr Christopher Cornwall*

This course introduces the eco-physiological responses of plants and animals to environmental and anthropogenic stress, with an emphasis on the effects of changes in global climate and land use. It focuses on biological functions as they are affected by interactions with their physical, chemical, and biotic environments.

|                 |                 |                                         |                     |
|-----------------|-----------------|-----------------------------------------|---------------------|
| <b>BIOL 327</b> | <b>CRN 9218</b> | <b>POPULATION AND COMMUNITY ECOLOGY</b> | <b>20 PTS Tri 1</b> |
|-----------------|-----------------|-----------------------------------------|---------------------|

Prerequisites: BIOL/GEOG 222 and 15 points from 200-level BIOL, ENVI or STAT courses    *Course coordinator: A/Prof Stephen Hartley*

This course will cover practical and conceptual approaches to the study of plant and animal ecology; covering population dynamics, community structure and ecosystem ecology.

|                 |                 |                                           |                     |
|-----------------|-----------------|-------------------------------------------|---------------------|
| <b>BIOL 328</b> | <b>CRN 9219</b> | <b>BEHAVIOUR AND CONSERVATION ECOLOGY</b> | <b>20 PTS Tri 2</b> |
|-----------------|-----------------|-------------------------------------------|---------------------|

Prerequisite: BIOL/GEOG 222 and 15 point from 200-level ENVI or STAT courses    *Course coordinator: Dr Rachael Shaw*

This course will cover the behaviour and conservation ecology of animals and plants. The course will include ethology and sociobiology, and ecological, genetic and biogeographic principles relevant to biological conservation. Topics will incorporate pest control, environmental impact assessment, and conservation priority ranking. Case studies and issues of topical interest will be debated.

|                 |                 |                  |                     |
|-----------------|-----------------|------------------|---------------------|
| <b>BIOL 329</b> | <b>CRN 9220</b> | <b>EVOLUTION</b> | <b>20 PTS Tri 2</b> |
|-----------------|-----------------|------------------|---------------------|

Prerequisite: 40 points from 200-level BIOL, BMSC, BTEC    *Course coordinator: A/Prof Peter Ritchie*

Origin and development of concepts about biological history, including the establishment of modern experimental methods for understanding pattern and process in the origin of new species

|                 |                  |                                        |                     |
|-----------------|------------------|----------------------------------------|---------------------|
| <b>BIOL 333</b> | <b>CRN 38017</b> | <b>THE BRAIN IN HEALTH AND DISEASE</b> | <b>15 PTS Tri 2</b> |
|-----------------|------------------|----------------------------------------|---------------------|

Prerequisites: BIOL243 and/or PSYC201 plus 60 points BIOL, BMSC, HLWB PYSC courses    *Course coordinator: A/Prof Bronwyn Kivell & Dr Jules Day-Cooney*

This course covers the components of the brain and how they integrate. This includes key cell types, signalling pathways, and neurochemistry. For these systems, mechanisms of disease will be presented alongside normal and abnormal physiology.

|                 |                 |                          |                     |
|-----------------|-----------------|--------------------------|---------------------|
| <b>BIOL 340</b> | <b>CRN 9598</b> | <b>GENES AND GENOMES</b> | <b>20 PTS Tri 1</b> |
|-----------------|-----------------|--------------------------|---------------------|

Prerequisites: BIOL/BMSC 241, 244    *Course coordinator: Dr Darren Day*  
Restrictions: BMSC 340

Recombinant DNA technology, biotechnology, gene organisation, expression, chemical genetics and evolution in higher organisms, bioinformatics, and comparative genomics.

|                                                    |                  |                                                                  |                     |
|----------------------------------------------------|------------------|------------------------------------------------------------------|---------------------|
| <b>BIOL 370</b>                                    | <b>CRN 19801</b> | <b>FIELD MARINE ECOLOGY</b>                                      | <b>20 PTS Tri 1</b> |
| Prerequisites: BIOL 271, STAT 292                  |                  | <i>Course coordinator: Dr Alice Rogers &amp; Prof James Bell</i> |                     |
| Restrictions: BIOL 272, 373, SCIE 304 in 2018-2020 |                  |                                                                  |                     |

A research-based course of sampling, analysis, and independent projects, which includes several days of intensive fieldwork and laboratories. PLEASE NOTE: There are two different streams of this course running in 2025. Stream 1 (CRN 19801) will take place 10-16 February, and will be shore-based, where we work in the intertidal zone. Information on Stream 2 (CRN 33237) is listed below. See details for each stream in the course content description at <https://www.wgtn.ac.nz/courses/biol/370/2025/offering?crn=19801>

|                                   |                 |                                            |                     |
|-----------------------------------|-----------------|--------------------------------------------|---------------------|
| <b>BIOL 371</b>                   | <b>CRN 9221</b> | <b>MARINE ECOLOGY</b>                      | <b>20 PTS Tri 1</b> |
| Prerequisites: BIOL 271, STAT 292 |                 | <i>Course coordinator: Prof Jeff Shima</i> |                     |

Focusing on marine system quantitative ecology; teaching encourages students to think critically while investigating ecological processes and impacts upon population dynamics and community structure across various marine settings (e.g., soft shores, rocky and coral reefs). The course emphasises quantitative methods including design, statistical analysis and interpretation of field experiments and observational studies.

|                              |                 |                                            |                     |
|------------------------------|-----------------|--------------------------------------------|---------------------|
| <b>BIOL 372</b>              | <b>CRN 9222</b> | <b>APPLIED MARINE BIOLOGY</b>              | <b>20 PTS Tri 2</b> |
| Prerequisites: BIOL 228, 271 |                 | <i>Course coordinator: Prof James Bell</i> |                     |

The biology, form, and function of selected New Zealand marine invertebrate groups with special emphasis given to species of economic or cultural significance; the biological, ecological, legal, and economic background to fisheries, fisheries management and aquaculture worldwide and in New Zealand.

|                                          |                 |                                                |                     |
|------------------------------------------|-----------------|------------------------------------------------|---------------------|
| <b>BMSC 301</b>                          | <b>CRN 8747</b> | <b>MEDICAL MICROBIOLOGY</b>                    | <b>20 PTS Tri 1</b> |
| Prerequisites: BMSC/BIOL 244 or BTEC 201 |                 | <i>Course coordinator: Dr Joanna Mackichan</i> |                     |

This course charts the development of the microbiology field up to the present day. The course features an in-depth investigation of microorganisms at the genetic and phenotypic levels and examines their role in infectious diseases. Students will acquire practical experience in the characterisation and identification of microbes using both classical and modern techniques. This course includes six 4-hour laboratory classes. Students are advised to check the laboratory class times before course enrolment.

|                                  |                  |                                                |                     |
|----------------------------------|------------------|------------------------------------------------|---------------------|
| <b>BMSC 334</b>                  | <b>CRN 15262</b> | <b>CELL AND IMMUNOBIOLOGY</b>                  | <b>20 PTS Tri 2</b> |
| Prerequisite: BMSC/BIOL 241, 252 |                  | <i>Course coordinator: Prof Anne La Flamme</i> |                     |
| Restrictions: BIOL 334           |                  |                                                |                     |

The cellular and molecular basis of the immune system, its organisation, reactions and controls in health and disease. Topics covered include the activation, differentiation and control of specific cell functions and immunological methods in research.

|                             |                  |                                                 |                     |
|-----------------------------|------------------|-------------------------------------------------|---------------------|
| <b>BMSC 335</b>             | <b>CRN 15263</b> | <b>PHYSIOLOGY AND PATHOLOGY II</b>              | <b>20 PTS Tri 1</b> |
| Prerequisite: BIOL/BMSC 243 |                  | <i>Course coordinator: A/Prof Peter Pfeffer</i> |                     |
| Restriction: BIOL 335       |                  |                                                 |                     |

The course covers (1) the physiology and pathology of skeletal muscle, the gastrointestinal tract and the liver, (2) the anatomy, function and diseases of the brain, (3) energy homeostasis, (4) human embryology and (5) reproductive physiology and pathology with a focus on the male.

|                                   |                  |                                           |                     |
|-----------------------------------|------------------|-------------------------------------------|---------------------|
| <b>BMSC 339</b>                   | <b>CRN 15265</b> | <b>CELULAR REGULATION</b>                 | <b>20 PTS Tri 2</b> |
| Prerequisites: BMSC/BIOL 244, 252 |                  | <i>Course coordinator: Dr Lifeng Peng</i> |                     |
| Restriction: BIOL 339             |                  |                                           |                     |

Consideration of molecular processes which affect normal cell structure and function and their regulation. Abnormalities, including cancer, are also described.

|                                            |                  |                                               |                     |
|--------------------------------------------|------------------|-----------------------------------------------|---------------------|
| <b>BMSC 343</b>                            | <b>CRN 19861</b> | <b>ADVANCED GENETICS</b>                      | <b>20 PTS Tri 1</b> |
| Prerequisite: BMSC/BIOL 241                |                  | <i>Course coordinator: Dr Andrew Munkacsy</i> |                     |
| Restrictions: BIOL 343, BIOL/BMSC 341, 342 |                  |                                               |                     |

In this course, we survey experimental approaches in genetics, from classical screens to genome-wide analyses, examining a variety of genetic model organisms and their specific applications, cytogenetics, chromosomal abnormalities and associated genetic counselling issues in humans. Fundamentals are applied to searches for complex disease genes and understanding genetic variation in human populations.

|                                                                  |                 |                                                       |                     |
|------------------------------------------------------------------|-----------------|-------------------------------------------------------|---------------------|
| <b>BMSC 354</b>                                                  | <b>CRN 8756</b> | <b>PHARMACOLOGY</b>                                   | <b>20 PTS Tri 2</b> |
| Prerequisite: 35 points from (BIOL/BMSC 243, 244, CHEM 115, 201) |                 | <i>Course coordinator: Prof Paul Teesdale-Spittle</i> |                     |

Review of the principles of pharmacology; transport across the blood-brain barrier and placental membrane; drug bio-transformations and application to prodrugs; assay techniques; quantification of drug absorption, distribution and elimination kinetics; drug targets; drug design; illustrative case studies.

|                        |                  |                                                      |                     |
|------------------------|------------------|------------------------------------------------------|---------------------|
| <b>BTEC 301</b>        | <b>CRN 11094</b> | <b>BIOTECHNOLOGICAL<br/>TECHNIQUES AND PROCESSES</b> | <b>20 PTS Tri 1</b> |
| Prerequisite: BTEC 201 |                  | <i>Course coordinator: Prof Janet Pitman</i>         |                     |

The aims of this course are to provide a solid understanding of the pure and applied science underlying the biotechnology industry, and to provide insight into the cultural and ethical values, and economic and political issues, that this science must align with. Particular focus in lectures will be given to the techniques and processes involved in development of therapeutics, vaccines, and diagnostics, and to stem cell and genetic technologies. A six-week laboratory component will provide hands-on experience with key techniques and concepts introduced in both BTEC 201 and BTEC 301.

|                                                   |                  |                                             |                     |
|---------------------------------------------------|------------------|---------------------------------------------|---------------------|
| <b>CHEM 307</b>                                   | <b>CRN 36112</b> | <b>ADVANCED EXPERIMENTAL<br/>TECHNIQUES</b> | <b>20 PTS Tri 1</b> |
| Prerequisites: CHEM 207 (OR one of CHEM 205, 206) |                  |                                             |                     |
| Restrictions: CHEM305 or CHEM 306                 |                  |                                             |                     |

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:  
<https://www.wgtn.ac.nz/courses/CHEM/307/>*

|                                 |                  |                                                     |                     |
|---------------------------------|------------------|-----------------------------------------------------|---------------------|
| <b>CHEM 309</b>                 | <b>CRN 36114</b> | <b>CHEMICAL BIOLOGY AND<br/>MEDICINAL CHEMISTRY</b> | <b>20 PTS Tri 2</b> |
| Prerequisite: CHEM 208 (or 201) |                  |                                                     |                     |

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:  
<https://www.wgtn.ac.nz/courses/CHEM/309/>*

**CHEM 310**

**CRN 36115**

**REACTIVITY, MOLECULES  
AND MATERIALS**

**20 PTS Tri 1**

Prerequisite: CHEM 210 OR (CHEM 202 and CHEM 203)

Restrictions: Any of CHEM 302, 303 or CHEM 311, 312 in 2024

*Please check the School of Chemistry and Physical Sciences (SCPS) for further information:*  
<https://www.wgtn.ac.nz/courses/CHEM/310/>

## COURSES BY TRIMESTER

### Trimester 1

|          |                                         |
|----------|-----------------------------------------|
| BIOL 113 | Biology of Plants                       |
| BIOL 114 | Biology of Animals                      |
| BIOL 222 | Ecology & Environment                   |
| BIOL 228 | Animal Diversity                        |
| BIOL 244 | Introductory Biochemistry               |
| BIOL 252 | Cell & Developmental Biology            |
| BIOL325  | Global Change Biology                   |
| BIOL 327 | Population and Community Ecology        |
| BIOL 340 | Genes and Genomes                       |
| BIOL 370 | Field Marine Ecology                    |
| BIOL 371 | Marine Ecology                          |
| BMSC 301 | Medical Microbiology                    |
| BMSC 335 | Physiology & Pathology II               |
| BMSC 343 | Advanced Genetics                       |
| BTEC 101 | Introduction to Biotechnology           |
| BTEC 301 | Biotechnological Techniques & Processes |

### Trimester 2

|          |                                          |
|----------|------------------------------------------|
| BIOL 111 | Cell & Molecular Biology                 |
| BIOL 132 | Biodiversity and Conservation            |
| BIOL 227 | Plants and Algae: Function and Diversity |
| BIOL 236 | Microbes & Environments                  |
| BIOL 241 | Genetics                                 |
| BIOL 243 | Physiology & Pharmacology                |
| BIOL 271 | Introductory Marine Ecology              |
| BIOL 328 | Behaviour and Conservation Ecology       |
| BIOL 329 | Evolution                                |
| BIOL 333 | The Brain in Health and Disease          |
| BIOL 372 | Applied Marine Biology                   |
| BMSC 117 | The Biology of Disease                   |
| BMSC 334 | Cell and Immunobiology                   |
| BMSC 339 | Cellular Regulation                      |
| BMSC 354 | Pharmacology                             |
| BTEC 201 | Molecular Biotechnology                  |

### Trimester 3

|          |                           |
|----------|---------------------------|
| BIOL 219 | New Zealand Flora & Fauna |
|----------|---------------------------|



VICTORIA UNIVERSITY OF  
**WELLINGTON**  
TE HERENGA WAKA