First the worst

Laurie and Winifred Bauer
Question 8 asked about ways of asserting that first place is not best:
8 If you don't come first at something, do you tell the winner that it is not best to be first, but better to be second, third, or in some other place? If so, how do children at your school say this?

There was a very common set of responses to this, but where the list stopped varied considerably from school to school. One school went as far as 21! The variation in the responses increased as the numbers increased, suggesting that there are well established answers for 1-3, and after that there is a good deal of invention. The data is categorised by considering the answers for each of the numbers where several responses were provided.

Zero

48 schools reported the form Zero the hero. This is apparently used as a rejoinder by the person who comes first if someone says "First the worst" to them. (There were also two reports of zero to hero, and one of zero hero.) 70% of the reports were in the North Island (note that North Island schools make up roughly 60% of the sample.)

First

The most common chant begins First the worst - 104 schools reported this. However, two other variants occurred several times: First the worse (8) and First worst (6). These did not show any pattern of regional distribution. No school reported a version which stopped after first: all had at least a version of second as well.

Second

There was almost no variation: Second the best was reported from 121 schools. There were four instances with either no article (second best) or an added copula (second is the best), but there was no pattern to their distribution.
There were just three schools where the chant stopped after Second the best.

Third

There was considerable variation in the answers for Third the These were (with the number of occurrences in brackets): the golden eagle (71); the golden princess (64); the nerd (35); the one/man with the hairy chest (11); the turd (3); the nerd that sat on a turd (2); the dirty dishcloth (2); the golden prince (2); the golden angel (2); the herd (1); the hairy ghost eating toast half-way up a lamp post (1); the horse that sat in the sauce (1); the golden bird (1); the stinking princess (1); the golden curry (1); the golden kiwi (1); the golden egg (1). Many of the responses commented on the fact that golden princess was restricted to girls. In most cases, golden eagle was specified as the corresponding term for boys, but golden prince is obviously an innovation to create a more exact parallel. The others fall into a number of groups. Nerd is a relatively recent innovation. (It probably has its origin in a 1950 Dr Seuss story, but did not gain currency until about 1970.) The rhyme with third is the obvious motivation for this innovation. The same is true for turd, and the combination of both these. An alternative approach to rhyme - making this line rhyme with the one above it - appears to have motivated the other relatively common response, involving hairy chest (princess probably counts as a rhyme for best in the traditional version). Several of the once-only responses are good examples of the
fun children have with these sorts of rhymes: they involve the use of other things that collocate with golden, such as kiwi, egg, curry. Some appear to have crept up the rhyme from fourth.
There are several of these forms with interesting distributions. Golden princess is very rare in the northern areas of the North Island, but is much more common in the central and southern areas of the country. Golden eagle is, correspondingly, widespread in the northern area, and less common further south. Nerd is largely a North Island form, but appears to be spreading to the South Island (where there are 5 occurrences). The hairy chest is found only in urban areas, but is found in both islands (4 times in Auckland, 4 in Wellington, once each in Christchurch, Timaru and Invercargill). Golden prince is only recorded twice, but both occurrences are in Christchurch. This data provides further support for the distinctness of the Northern Region of the North Island, but does not distinguish between the central and southern regions, although they are the more conservative areas here, as often elsewhere.
We enquired about the elaborations of this rhyme from colleagues who are members of the Children's Folklore e-mail list; while First the worst, second the best is well-known in Britain, very few extensions were reported: in West London in the early 1980's, they said First the worst, second the best, third the one with the hairy chest. This was also reported from Bedfordshire in May 2000.
In Sheffield in the mid 1980's, they said First the worst, second the best, and third the dirty donkey. However, it appears that continuations beyond second are very unusual in Britain. The common endings in New Zealand (golden princess/eagle) were not known to British colleagues working in the field of children's play, and are thus probably New Zealandisms.
Many schools report no further lines to this chant. 119 reported a line involving third, but only 40 reported a line involving fourth.

Fourth

The answers for fourth mostly involved dwarf (no doubt because of the difficulty of finding suitable rhymes). There was no evidence that answers sought to rhyme with earlier lines, but many contained several rhyming words, so that they had internal rhyme. The continuations for fourth we received (numbers in brackets) were: the dwarf that sat/fell/stood in the sauce (29), the horse who fell/sat/got covered in the/tomato sauce (8); the dwarf that went/got kicked up north (2), the dirty dishcloth (2); the golden eagle (2); the dork (2); the dwarf that blew off (1), the dwarf who sat in some gorse eating tomato sauce (1), the dwarf that fell off his horse (1); the ghost, eating toast, half-way up the lamp post (1); the king of the north (1). (There was quite a lot of variation in the precise wording of some of these.)
There is no apparent patterning in their distribution, but there are other points of interest. Firstly, it is interesting to consider what counts as a rhyme. In this connection it is worth noting that dishcloth in NZ does not normally have the pronunciation that rhymes with fourth. Secondly, some like the ghost appear to have borrowed a chunk from another rhyme. While most of the ends of the line with third were complimentary, it is interesting to see that by this stage, when we are largely dealing with innovative forms, most of the endings are at least funny, if not put-downs.
Fifth
Only 10 schools reported a line involving fifth, and no line occurred more than twice. The suggestions were: Fifth the witch, eating chips, half-way up the footy pitch;

Fifth the myth; fifth the gift; fifth the fish who made the wish; fifth the dirty dishcloth; fifth the dirty dishwasher; fifth the nif; fifth the golden eagle; fifth the golden princess. Nif may require some comment: it is sometimes written $n f$, but pronounced as the first spelling suggests, and stands for 'no friends/no friender'. Once again, the rhymes that are accepted are of some interest, and the dirty dishwasher is an amusing modern version, but there is little else of interest.

Sixth and later

Only three schools reported this line, and each had a different termination: sixth the bitch, sixth the dirty dyke, and sixth the brick. Seventh, was likewise, rare: two schools, each with a different ending: seventh the devil, seventh's in heaven. One child from one school obligingly supplied a great many more: $8^{\text {th }}$ the great, $9^{\text {th }}$ the crime, $10^{\text {th }}$ the hen, $11^{\text {th }}$ in heaven, $12^{\text {th }}$ the cow, $13^{\text {th }}$ the pervert, $14^{\text {th }}$ the wharf, $15^{\text {th }}$ gets hurt, $16^{\text {th }}$ the wife, $17^{\text {th }}$ the latest, $18^{\text {th }}$ the greatest, $19^{\text {th }}$ can't fight, $20^{\text {th }}$ is plenty, $21^{\text {st }}$ the end. This makes the important point that the list is not closed: even if your standard list stops at third, you can create a line for fourth or any other desired number at will. The choice of termination is a matter of what can be tolerated as a rhyme for words which don't have perfect rhymes, and children are very flexible under these circumstances, as the continuation to 21 shows. Notice that sometimes a stem-rhyme is accepted (ninth - crime; tenth - hen), sometimes assonance will do (thirteen - pervert), but sometimes there appears to be no real basis for the choice, as in twelve and sixteen.

Statistical Analysis

The commonest forms for Third the ... were included in the statistical analysis: golden eagle, golden princess, nerd, one with the hairy chest, and the form Zero the hero was also included.

Golden eagle

Golden eagle is more common in the Northern Region than the Southern Region (p-value 0.0257), and more common in the Northern Region than the Central Region (p-value 0.0162). However, the Central and Southern Regions are not significantly different. It is also more common in the North Island than the South (p-value 0.0175). (Golden eagle is also nearly significantly more common in urban than rural schools, with the p-value 0.0550 .)
The interaction between Island and Main Region was considered for golden eagle. When Island is taken into account, there are no significant differences between the regions for golden eagle. When Main Region is taken into account, golden eagle is not significantly more common in the North Island than the South. The pvalues are smaller for the Region effect than for the Island effect, so the Region effect is stronger for golden eagle, but it is clear that these two factors are interdependent: it is a North Island form because it is a Northern Region form, and it is more common in the Northern Region to a substantial degree because it is more common in the North Island.

Golden princess

Golden princess is less common in the Northern Region than the Southern Region (p-value 0.0012) or the Central Region (p-value 0.0001), but the difference between the Southern Region and the Central Region is not significant. Golden princess is also a high decile form (p-value 0.0107), but the question then arises as
to whether that is because of the regionalisation of this form. Golden princess is less common in the North Island than the South (p-value 0.0004). Golden princess is more likely in Catholic than non-Catholic schools (p-value 0.0089), and again it must be asked whether this is because of its regionalisation. There are thus many interactions to consider for golden princess.
The first is between Decile and Main Region, where the question is whether golden princess is overall high decile because it is less common in the Northern Region which has a concentration of low decile schools. The p-value for the distribution of golden princess by Decile when Main Region is taken into account was not significant (0.0937), but the tendency was still towards high decile distribution. However, the p-values for its distribution by Main Region when decile is taken into account were 0.0012 for the Northern Region compared with the Southern, and 0.0001 for the Northern Region compared with the Central Region. This tells us that when Decile is taken into account, there is significantly less use of golden princess in the Northern Region than the Southern and Central Regions. Thus we can conclude that the regional effect is stronger than the Decile effect for golden princess. The high decile correlation is thus largely due to the regionalisation of this form.
Second, the interaction between Main Region and Island was considered. When Island is taken into account, golden princess is still significantly less common in the Northern Region than the Southern (p-value 0.0276), and less common in the Northern Region than the Central (p-value 0.0006). When Main Region is taken into account, golden princess is not significantly less common in the North Island than the South (p-value 0.4241). This means that for golden princess, the Main Region effect is stronger than the Island effect, and the Island effect is thus largely just a reflection of the Main Region distribution.
When Catholicity is taken into account, golden princess is significantly less likely in the Northern Region than the Southern (p-value 0.0014), and significantly less likely in the Northern Region than the Central Region. When Main Region is taken into account, golden princess is more likely in Catholic schools (p-value 0.0134). However, the p-value for the Region effect is considerably smaller than the p-value for the Catholic effect, so the region effect is stronger, though both are significant.
Next, the effects of the factors Catholic and Decile were considered. This showed that Catholic is still significant when Decile is taken into account (p-value 0.0173), but Decile is not quite significant when Catholic is taken into account (p-value 0.0523). Thus the Catholic effect is stronger, and to some extent the tendency to be high decile can be explained by the tendency of golden princess to be more common in Catholic schools.
Then Island and Catholic were considered. This shows that neither of these can explain the other to any great extent. When the distribution of Catholic schools is taken into account, Island is highly significant (0.0005); when Island is taken into account, Catholic is still significant (0.0096). The reason for this is that, in the absence of the Main Region factor, Island provides a representation of the regionalisation of this form, which is the most important factor. Thus Island has more importance than Catholic under these circumstances.
Finally, the interaction between Island and Decile was investigated. Perhaps not surprisingly after what was said in the previous paragraph, when Decile is taken into account the p-value for Island is significant (0.0014), but when Island is
taken into account the p-value for Decile is not quite significant (0.0539). Because Island represents the regionalisation, it has a stronger effect than Decile.
Thus overall, golden princess is first and foremost not a Northern Region form, but is more common in the Central and Southern Regions. The second most important factor for this form is Catholic. Because Island represents the regionalisation, it is more important than Decile, but it is not important when the Main Region factor is present. The Decile factor is least important, resulting largely from the Main Region distribution.

Nerd
Nerd is more common in the North Island than the South (p-value 0.0109). It was not affected by any other factors.

One with the hairy chest

This ending was not significantly correlated with any of the factors we considered.

Zero the Hero

Zero the Hero did not correlate significantly with any of these factors, either. Note in particular that the tendency of Zero the hero to be North Island noted in the pre-statistical stage is not significant. However, there is some visible tendency for this to be Urban, and more common in Catholic schools.

Summary

Overall, the patterns which emerge are that golden eagle is a Northern Region form, that golden princess is a Central and Southern Region form, but that it also has a tendency to be Catholic, and that nerd is a North Island form, while the other two forms do not show significant patterning according to any of these variables.
The map of the three common endings for Third follows.

Map for Q8: $3^{\text {rd }}$ the... golden princess; golden eagle; nerd

Key
Note that the insets are not to scale, nor all on the same scale for practical reasons. Each box represents one school in both urban and rural areas.

\square	$3^{\text {rd }}$ the nerd	\square
$3^{\text {rd }}$ the golden eagle	See urban map insert	
\square	\square	$3^{\text {rd }}$ the golden princess

Q8 stats: Third the ...
Third the ... by Decile
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Estimate	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_e	0.0154	0.3766	-0.7227	0.7535	0.0409	0.9674
item	golden_p	-1.1895	0.3866	-1.9473	-0.4317	-3.077	0.0021
item	hairy_c	-1.6735	0.5550	-2.7614	-0.5857	-3.015	0.0026
item	nerd	-1.5874	0.4480	-2.4655	-0.7092	-3.543	0.0004
item	zero_the	-1.2413	0.4118	-2.0484	-0.4341	-3.014	0.0026
decile*item	golden_e	-0.0072	0.0589	-0.1226	0.1083	-.1215	0.9033
decile*item	golden_p	0.1527	0.0599	0.0354	0.2700	2.5507	$\mathbf{0 . 0 1 0 7}$
decile*item	hairy_c	-0.0347	0.0900	-0.2112	0.1417	-.3859	0.6995
decile*item	nerd	0.0736	0.0672	-0.0582	0.2054	1.0948	0.2736
decile*item	zero_the	0.0932	0.0625	-0.0293	0.2157	1.4912	0.1359
scale	0.9992	

Third the ... by Main Region
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	$\mathrm{Pr}>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_e	-0.9163	0.5916	-2.0758	0.2432	-1.549	0.1214
item	golden_p	0.5878	0.5578	-0.5054	1.6810	1.0538	0.2920
item	hairy_c	-1.2993	0.6513	-2.5759	-0.0227	-1.995	0.0461
item	nerd	-0.9163	0.5916	-2.0758	0.2432	-1.549	0.1214
item	zero_the	-0.9163	0.5916	-2.0758	0.2432	-1.549	0.1214
item*region1	golden_e, 1	1.4553	0.6522	0.1770	2.7336	2.2313	$\mathbf{0 . 0 2 5 7}$
item*region1	golden_e, 2	0.6061	0.6344	-0.6374	1.8496	0.9554	0.3394
item*region1	golden_e, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	golden_p, 1	-2.1353	0.6576	-3.4241	-0.8466	-3.247	$\mathbf{0 . 0 0 1 2}$
item*region1	golden_p, 2	-0.3300	0.6027	-1.5112	0.8513	-.5475	0.5841
item*region1	golden_p, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	hairy_c, 1	-1.2847	0.8325	-2.9164	0.3470	-1.543	0.1228
item*region1	hairy_c, 2	-0.3102	0.7187	-1.7188	1.0985	-.4315	0.6661
item*region1	hairy_c, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	nerd, 1	-0.1133	0.6637	-1.4141	1.1875	-.1708	0.8644
item*region1	nerd, 2	-0.3614	0.6521	-1.6394	0.9167	-.5542	0.5795
item*region1	nerd, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	zero_the, 1	0.4520	0.6512	-0.8243	1.7283	0.6941	0.4876
item*region1	zero_the, 2	0.1054	0.6405	-1.1499	1.3606	0.1645	0.8693
item*region1	zero_the, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	1.0000	

CONTRAST Statement Results

Contrast	DF	ChiSquare	Pr>Chi	Type
$1-2$ for golden_p	1	21.9255	$\mathbf{0 . 0 0 0 1}$	LR
$1-2$ for golden_e	1	5.7811	$\mathbf{0 . 0 1 6 2}$	LR
$1-2$ for hairy_c	1	0.0220	0.8822	LR
$1-2$ for nerd	1	0.3701	0.5429	LR
$1-2$ for zero_the	1	0.8946	0.3442	LR

Third the \ldots by Sub-Region
Analysis Of Initial Parameter Estimates

parameter		DF	Estimate	Std Err	ChiSquare	Pr>Chi
intercept	0	0.0	0.0000	.	.	
item	golden_e	1	-0.9163	0.5916	2.3988	0.1214
item	golden_p	1	0.5878	0.5578	1.1105	0.2920
item	hairy_c	1	-1.2993	0.6513	3.9792	0.0461
item	nerd	1	-0.9163	0.5916	2.3988	0.1214
item	zero_the	1	-0.9163	0.5916	2.3988	0.1214
item*region2	golden_e, 1	1	2.5257	1.2450	4.1157	$\mathbf{0 . 0 4 2 5}$
item*region2	golden_e, 2	1	-0.6931	1.2450	0.3100	0.5777
item*region2	golden_e, 3	1	2.2380	0.8165	7.5133	$\mathbf{0 . 0 0 6 1}$
item*region2	golden_e, 4	1	1.2264	0.7124	2.9634	0.0852
item*region2	golden_e, 5	1	-0.1823	0.8913	0.0418	0.8379
item*region2	golden_e, 6	1	1.2840	0.7335	3.0643	0.0800
item*region2	golden_e, 7	1	1.1394	0.8944	1.6229	0.2027
item*region2	golden_e, 8	1	0.2231	1.0488	0.0453	0.8315
item*region2	golden_e, 9	1	0.4643	0.7640	0.3693	0.5434
item*region2	golden_e, 10	1	0.0690	0.9090	0.0058	0.9395
item*region2	golden_e, 11	0	0.0000	0.0000	.	.
item*region2	golden_p, 1	1	-1.2809	1.0301	1.5463	0.2137
item*region2	golden_p, 2	1	-25.9531	131502.576	0.0000	0.9998
item*region2	golden_p, 3	1	-2.7279	0.9327	8.5537	$\mathbf{0 . 0 0 3 4}$
item*region2	golden_p, 4	1	-1.7918	0.7265	6.0829	$\mathbf{0 . 0 1 3 6}$
item*region2	golden_p, 5	1	-1.6864	0.8692	3.7640	0.0524
item*region2	golden_p, 6	1	-0.0282	0.7124	0.0016	0.9685
item*region2	golden_p, 7	1	-1.8405	0.9767	3.5511	0.0595
item*region2	golden_p, 8	1	0.1054	1.0301	0.0105	0.9185
item*region2	golden_p, 9	1	2.2454	1.1704	3.6804	0.0551
item*region2	golden_p, 10	1	-1.4351	0.8873	2.6159	0.1058
item*region2	golden_p, 11	0	0.0000	0.0000	.	.
item*region2	hairy_c, 1	1	-24.0660	131502.576	0.0000	0.9999
item*region2	hairy_c,2	1	-24.0660	131502.576	0.0000	0.9999
item*region2	hairy_c,3	1	-0.0225	0.8608	0.0007	0.9792
item*region2	hairy_c,4	1	-24.0660	63171.7942	0.0000	0.9997
item*region2	hairy_c,5	1	0.2007	0.9320	0.0464	0.8295
item*region2	hairy_c,6 6	1	-0.2048	0.8543	0.0575	0.8105

item*region2	hairy_c,7	1	-0.7802	1.2447	0.3929	0.5308
item*region2	hairy_c, 8	1	-24.0660	131502.576	0.0000	0.9999
item*region2	hairy_c, 9	1	0.0465	0.8635	0.0029	0.9570
item*region2	hairy_c,10	1	-0.8979	1.2391	0.5252	0.4687
item*region2	hairy_c,11	0	0.0000	0.0000	.	.
item*region2	nerd,1	1	1.6094	1.0488	2.3548	0.1249
item*region2	nerd,2	1	0.2231	1.0488	0.0453	0.8315
item*region2	nerd,3	1	-0.1133	0.7883	0.0207	0.8857
item*region2	nerd,4	1	-0.7885	0.8034	0.9631	0.3264
item*region2	nerd,5	1	0.5798	0.8324	0.4852	0.4861
item*region2	nerd,6	1	0.3567	0.7392	0.2328	0.6294
item*region2	nerd,7	1	-1.1632	1.2145	0.9172	0.3382
item*region2	nerd,8	1	-24.4490	131502.576	0.0000	0.9999
item*region2	nerd,9	1	-1.1632	0.9552	1.4827	0.2234
item*region2	nerd,10	1	-24.4490	101861.457	0.0000	0.9998
item*region2	nerd,11	0	0.0000	0.0000	.	.
item*region2	zero_the, 1	1	0.9163	1.0083	0.8258	0.3635
item*region2	zero_the, 2	1	0.2231	1.0488	0.0453	0.8315
item*region2	zero_the, 3	1	0.8109	0.7491	1.1720	0.2790
item*region2	zero_the, 4	1	0.1054	0.7284	0.0209	0.8850
item*region2	zero_the, 5	1	-0.1823	0.8913	0.0418	0.8379
item*region2	zero_the, 6	1	0.7340	0.7303	1.0101	0.3149
item*region2	zero_the, 7	1	-0.3365	0.9964	0.1140	0.7356
item*region2	zero_the, 8	1	0.2231	1.0488	0.0453	0.8315
item*region2	zero_the, 9	1	0.2231	0.7746	0.0830	0.7733
item*region2	zero_the, 10	1	-1.2809	1.2088	1.1230	0.2893
item*region2	zero_the, 11	0	0.0000	0.0000	.	.
scale	0	1.0	0.0000		.	

Third the ... by Island
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Estimate	Std Err	Lower	Upper	Z	Pr $>\mid \mathrm{Z}$
intercept	0.0000	
item	golden_e	-0.5390	0.2746	-1.0772	-0.0008	-1.963	0.0497
item	golden_p	0.4643	0.2721	-0.0690	0.9976	1.7065	0.0879
item	hairy_c	-1.6740	0.3632	-2.3859	-0.9620	-4.608	0.0000
item	nerd	-1.9661	0.4036	-2.7571	-1.1752	-4.872	0.0000
item	zero_the	-1.0296	0.3008	-1.6192	-0.4401	-3.423	0.0006
item*island	golden_e, 1	0.8204	0.3453	0.1435	1.4973	2.3756	$\mathbf{0 . 0 1 7 5}$
item*island	golden_e, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	golden_p,	-1.2559	0.3523	-1.9464	-0.5653	-3.565	$\mathbf{0 . 0 0 0 4}$
item*island	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	hairy_c, 1	-0.3348	0.4848	-1.2851	0.6154	-.6907	0.4898
item*island	hairy_c, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	nerd, 1	1.1745	0.4615	0.2700	2.0790	2.5451	$\mathbf{0 . 0 1 0 9}$
item*island	nerd, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	zero_the, 1	0.5245	0.3692	-0.1990	1.2481	1.4208	0.1554
item*island	zero_the, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	1.0000	

Third the ... by Catholic
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000						
item	golden_e	0.2513	0.5040	-0.7364	1.2390	0.4987	0.6180
item	golden_p	1.0986	0.5774	-0.0330	2.2302	1.9029	0.0571
item	hairy_c	-1.0986	0.5774	-2.2302	0.0330	-1.903	0.0571
item	nerd	-1.0986	0.5774	-2.2302	0.0330	-1.903	0.0571
item	zero_the	0.2513	0.5040	-0.7364	1.2390	0.4987	0.6180
item*catholic	golden_e, 1	-0.3583	0.5335	-1.4039	0.6873	-. 6716	0.5018
item* catholic	golden_e, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item* catholic	golden_p, 1	-1.5810	0.6047	-2.7663	-0.3958	-2.615	0.0089
item* catholic	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*catholic	hairy_c, 1	-0.8737	0.6360	-2.1203	0.3729	-1.374	0.1695
item* catholic	hairy_c, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*catholic	nerd, 1	-0.0308	0.6121	-1.2305	1.1690	-. 0503	0.9599
item* catholic	nerd, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*catholic	zero_the, 1	-1.0376	0.5380	-2.0921	0.0170	-1.928	0.0538
item*catholic	zero_the, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	1.0000						

Third the ... by Urban/Rural
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_e	0.3773	0.2650	-0.1421	0.8967	1.4236	0.1546
item	golden_p	-0.0339	0.2604	-0.5443	0.4765	-.1302	0.8964
item	hairy_c	-1.7148	0.3621	-2.4245	-1.0051	-4.736	0.0000
item	nerd	-0.9045	0.2875	-1.4679	-0.3410	-3.146	0.0017
item	zero_the	-0.3075	0.2635	-0.8239	0.2089	-1.167	0.2432
item*urb_rur	golden_e, 1	-0.6582	0.3430	-1.3305	0.0141	-1.919	0.0550
item*urb_rur	golden_e, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*urb_rur	golden_p, 1	-0.5394	0.3439	-1.2134	0.1346	-1.569	0.1167
item*urb_rur	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*urb_rur	hairy_c, 1	-0.2048	0.4851	-1.1556	0.7460	-.4221	0.6729
item*urb_rur	hairy_c, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*urb_rur	nerd, 1	-0.4247	0.3910	-1.1911	0.3417	-1.086	0.2774
item*urb_rur	nerd, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*urb_rur	zero_the, 1	-0.6416	0.3567	-1.3406	0.0574	-1.799	0.0720
item*urb_rur	zero_the, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	1.0000	

Third the ... by Decile and Main Region, Model 1
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	Pr> $\backslash \mathrm{Z} \mid$
intercept	0.0000	
item	golden_e	-1.7315	1.6153	-4.8975	1.4346	-1.072	0.2838
item	golden_p	-2.2747	1.3465	-4.9138	0.3645	-1.689	0.0912
item	hairy_c	-3.8877	1.3157	-6.4665	-1.3089	-2.955	0.0031
item	nerd	-0.1062	1.1800	-2.4190	2.2066	-.0900	0.9283
item	zero_the	1.2646	1.4611	-1.5991	4.1283	0.8655	0.3868
decile*item	golden_e	0.1386	0.2354	-0.3228	0.6001	0.5888	0.5560
decile*item	golden_p	0.5347	0.2688	0.0079	1.0615	1.9893	$\mathbf{0 . 0 4 6 7}$
decile*item	hairy_c	0.2116	0.1252	-0.0339	0.4570	1.6896	0.0911
decile*item	nerd	-0.1426	0.1716	-0.4789	0.1937	-.8310	0.4060
decile*item	zero_the	-0.4230	0.2373	-0.8880	0.0420	-1.783	0.0746
item*region1	golden_e, 1	2.5887	1.7233	-0.7889	5.9663	1.5022	0.1331
item*region1	golden_e, 2	0.7507	1.7274	-2.6349	4.1363	0.4346	0.6639
item*region1	golden_e, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	golden_p, 1	0.7613	1.4932	-2.1653	3.6878	0.5098	0.6102
item*region1	golden_p, 2	1.8852	1.4721	-1.0002	4.7705	1.2806	0.2003
item*region1	golden_p, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	hairy_c,	-2.6762	2.3667	-7.3148	1.9624	-1.131	0.2581
item*region1	hairy_c, 2	0.0476	1.9070	-3.6899	3.7852	0.0250	0.9801
item*region1	hairy_c, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

item*region1	nerd, 1	-1.1729	1.3520	-3.8228	1.4770	-. 8675	0.3857
item*region1	nerd, 2	-2.4466	1.3856	-5.1624	0.2692	-1.766	0.0774
item*region1	nerd, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	zero_the, 1	-2.3806	1.5807	-5.4788	0.7176	-1.506	0.1321
item*region1	zero_the, 2	-3.4549	1.6150	-6.6202	-0.2896	-2.139	0.0324
item*region1	zero_the, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
dec*itm*rg1	golden_e, 1	-0.2019	0.2577	-0.7070	0.3031	-. 7837	0.4332
dec*itm*rg1	golden_e, 2	-0.0352	0.2510	-0.5271	0.4568	-. 1401	0.8886
dec*itm*rg1	golden_e, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
dec*itm*rg1	golden_p, 1	-0.5406	0.2913	-1.1116	0.0303	-1.856	0.0634
dec*itm*rg1	golden_p, 2	-0.4332	0.2826	-0.9871	0.1207	-1.533	0.1253
dec*itm*rg1	golden_p, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
dec*itm*rg1	hairy_c, 1	0.3944	0.2651	-0.1251	0.9139	1.4881	0.1367
dec*itm*rg1	hairy_c, 2	-0.0167	0.2147	-0.4374	0.4041	-. 0776	0.9382
dec*itm*rg1	hairy_c, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
dec*itm*rg1	nerd, 1	0.1933	0.2068	-0.2120	0.5985	0.9347	0.3499
dec*itm*rg1	nerd, 2	0.3304	0.1969	-0.0556	0.7164	1.6777	0.0934
dec*itm*rg1	nerd, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
dec*itm*rg1	zero_the, 1	0.5535	0.2591	0.0458	1.0613	2.1367	0.0326
dec*itm*rg1	zero_the, 2	0.6284	0.2553	0.1280	1.1289	2.4615	0.0138
dec*itm*rg1	zero_the, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	0.9800						

Third the ... by Decile in Northern Region Only

parameter		Est.	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_e	0.8589	0.6014	-0.3198	2.0377	1.4282	0.1532
item	golden_p	-1.5111	0.6456	-2.7765	-0.2456	-2.340	0.0193
item	hairy_c	-6.5731	1.9741	-10.4423	-2.7039	-3.330	0.0009
item	nerd	-1.2773	0.6608	-2.5725	0.0179	-1.933	0.0533
item	zero_the	-1.1143	0.6041	-2.2984	0.0698	-1.844	0.0651
decile*item	golden_e	-0.0636	0.1049	-0.2691	0.1420	-.6063	0.5443
decile*item	golden_p	-0.0064	0.1125	-0.2268	0.2141	-.0566	0.9549
decile*item	hairy_c	0.6072	0.2337	0.1493	1.0652	2.5987	$\mathbf{0 . 0 0 9 4}$
decile*item	nerd	0.0504	0.1156	-0.1761	0.2769	0.4359	0.6629
decile*item	zero_the	0.1303	0.1041	-0.0737	0.3342	1.2518	0.2106
scale	0.9650	

Third the ... by Decile in Central Region Only

parameter		Est.	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_e	-1.7222	1.6145	-4.8866	1.4422	-1.067	0.2861
item	golden_p	-2.2908	1.3411	-4.9194	0.3377	-1.708	0.0876
item	hairy_c	-3.8071	1.2214	-6.2009	-1.4132	-3.117	0.0018
item	nerd	-0.1228	1.1806	-2.4367	2.1911	-.1040	0.9172
item	zero_the	1.2324	1.4508	-1.6110	4.0759	0.8495	0.3956
decile*item	golden_e	0.1354	0.2355	-0.3261	0.5970	0.5751	0.5652
decile*item	golden_p	0.5392	0.2701	0.0099	1.0686	1.9965	$\mathbf{0 . 0 4 5 9}$
decile*item	hairy_c	0.1968	0.1178	-0.0340	0.4276	1.6708	0.0948
decile*item	nerd	-0.1414	0.1727	-0.4798	0.1970	-.8189	0.4129
decile*item	zero_the	-0.4165	0.2320	-0.8712	0.0382	-1.795	0.0726
scale	0.9688	

Third the ... by Decile in Southern Region Only

parameter		Est.	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_e	0.8589	0.6014	-0.3198	2.0377	1.4282	0.1532
item	golden_p	-1.5111	0.6456	-2.7765	-0.2456	-2.340	0.0193
item	hairy_c	-6.5731	1.9741	-10.4423	-2.7039	-3.330	0.0009
item	nerd	-1.2773	0.6608	-2.5725	0.0179	-1.933	0.0533
item	zero_the	-1.1143	0.6041	-2.2984	0.0698	-1.844	0.0651
decile*item	golden_e	-0.0636	0.1049	-0.2691	0.1420	-.6063	0.5443
decile*item	golden_p	-0.0064	0.1125	-0.2268	0.2141	-.0566	0.9549
decile*item	hairy_c	0.6072	0.2337	0.1493	1.0652	2.5987	$\mathbf{0 . 0 0 9 4}$
decile*item	nerd	0.0504	0.1156	-0.1761	0.2769	0.4359	0.6629
decile*item	zero_the	0.1303	0.1041	-0.0737	0.3342	1.2518	0.2106
scale	0.9650	

Third the ... by Decile and Main Region, Model 2
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_e	-1.1815	0.6963	-2.5462	0.1832	-1.697	0.0897
item	golden_p	-0.0680	0.6612	-1.3639	1.2279	-.1028	0.9181
item	hairy_c	-4.8696	1.5495	-7.9065	-1.8327	-3.143	0.0017
item	nerd	-1.4670	0.7756	-2.9871	0.0531	-1.892	0.0586
item	zero_the	-1.6281	0.8289	-3.2528	-0.0034	-1.964	0.0495
decile*item	golden_e	0.0417	0.0642	-0.0842	0.1676	0.6493	0.5161
decile*item	golden_p	0.1112	0.0663	-0.0188	0.2412	1.6764	0.0937
decile*item	hairy_c	0.3418	0.1361	0.0750	0.6086	2.5105	$\mathbf{0 . 0 1 2 1}$
decile*item	nerd	0.0895	0.0680	-0.0437	0.2227	1.3168	0.1879
decile*item	zero_the	0.1159	0.0651	-0.0117	0.2434	1.7807	0.0750

item*region1	golden_e, 1	1.5294	0.6593	0.2372	2.8215	2.3198	$\mathbf{0 . 0 2 0 4}$
item*region1	golden_e, 2	0.5951	0.6371	-0.6535	1.8437	0.9341	0.3503
item*region1	golden_e, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	golden_p, 1	-2.0354	0.6296	-3.2694	-0.8014	-3.233	$\mathbf{0 . 0 0 1 2}$
item*region1	golden_p, 2	-0.3921	0.5686	-1.5065	0.7224	-.6895	0.4905
item*region1	golden_p, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	hairy_c, 1	0.2988	1.2045	-2.0620	2.6597	0.2481	0.8041
item*region1	hairy_c, 2	-0.1442	1.1716	-2.4404	2.1520	-.1231	0.9020
item*region1	hairy_c, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	nerd, 1	-0.0002	0.6994	-1.3711	1.3706	-.0004	0.9997
item*region1	nerd, 2	-0.4131	0.6767	-1.7395	0.9132	-.6105	0.5415
item*region1	nerd, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	zero_the, 1	0.5973	0.7287	-0.8309	2.0255	0.8197	0.4124
item*region1	zero_the, 2	0.0432	0.6967	-1.3223	1.4087	0.0620	0.9505
item*region1	zero_the, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	0.9957	

Third the ... by Island and Main Region, Model 2
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_e	-0.9163	0.5916	-2.0758	0.2432	-1.549	0.1214
item	golden_p	0.5878	0.5578	-0.5054	1.6810	1.0538	0.2920
item	hairy_c	-2.5649	1.0377	-4.5989	-0.5310	-2.472	0.0134
item	nerd	-0.9163	0.5916	-2.0758	0.2432	-1.549	0.1214
item	zero_the	-0.9163	0.5916	-2.0758	0.2432	-1.549	0.1214
item*reg1	golden_e, 1	1.2023	0.7986	-0.3630	2.7675	1.5054	0.1322
item*reg1	golden_e, 2	0.4914	0.6688	-0.8194	1.8022	0.7348	0.4625
item*reg1	golden_e, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*reg1	golden_p, 1	-1.7676	0.8025	-3.3406	-0.1947	-2.203	$\mathbf{0 . 0 2 7 6}$
item*reg1	golden_p,2	-0.1629	0.6391	-1.4154	1.0896	-.2549	0.7988
item*reg1	golden_p, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*reg1	hairy_c, 1	-0.9918	1.4671	-3.8673	1.8837	-.6760	0.4990
item*reg1	hairy_c, 2	-0.4555	1.2654	-2.9357	2.0247	-.3599	0.7189
item*reg1	hairy_c, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*reg1	nerd, 1	-2.2981	0.9580	-4.1759	-0.4204	-2.399	$\mathbf{0 . 0 1 6 5}$
item*reg1	nerd, 2	-1.6740	0.8416	-3.3235	-0.0244	-1.989	$\mathbf{0 . 0 4 6 7}$
item*reg1	nerd, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*reg1	zero_the, 1	-0.0898	0.8177	-1.6923	1.5128	-.1098	0.9126
item*reg1	zero_the, 2	-0.1515	0.6871	-1.4983	1.1952	-.2206	0.8254
item*reg1	zero_the, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	golden_e, 1	0.2530	0.4609	-0.6503	1.1564	0.5490	0.5830
item*island	golden_e, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	golden_p,	-0.3677	0.4601	-1.2694	0.5340	-.7993	0.4241

item*island	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	hairy_c, 1	0.9727	0.8981	-0.7876	2.7330	1.0831	0.2788
item*island	hairy_c, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	nerd, 1	2.1848	0.6909	0.8306	3.5390	3.1621	$\mathbf{0 . 0 0 1 6}$
item*island	nerd, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*island	zero_the, 1	0.5417	0.4945	-0.4275	1.5110	1.0955	0.2733
item*island	zero_the, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	1.0000	

CONTRAST Statement Results

Contrast	DF	ChiSquare	Pr>Chi	Type
$1-2$ for golden_p	1	11.6346	$\mathbf{0 . 0 0 0 6}$	LR
$1-2$ for golden_e	1	2.6820	0.1015	LR

Third the ... by Catholic and Main Region, Model 2

Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	$\operatorname{Pr}>\|\mathrm{Z}\|$
intercept	0.0000		.				
item	golden_e	-0.7507	0.8741	-2.4638	0.9624	-. 8589	0.3904
item	golden_p	2.1322	0.8813	0.4049	3.8595	2.4195	0.0155
item	hairy_c	-2.7278	1.4942	-5.6563	0.2007	-1.826	0.0679
item	nerd	-0.6860	0.8625	-2.3765	1.0045	-. 7953	0.4264
item	zero_the	0.3210	0.8230	-1.2921	1.9341	0.3900	0.6965
item*region1	golden_e, 1	1.6851	0.7148	0.2840	3.0862	2.3573	0.0184
item*region1	golden_e, 2	0.7925	0.7037	-0.5868	2.1717	1.1261	0.2601
item*region1	golden_e, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	golden_p, 1	-2.1548	0.6766	-3.4810	-0.8287	-3.185	0.0014
item*region1	golden_p, 2	-0.4401	0.6201	-1.6554	0.7752	-. 7098	0.4778
item*region1	golden_p, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	hairy_c, 1	-0.0643	1.1678	-2.3532	2.2247	-. 0550	0.9561
item*region1	hairy_c, 2	0.0553	1.1273	-2.1541	2.2647	0.0491	0.9609
item*region 1	hairy_c, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	nerd, 1	-0.2004	0.6761	-1.5254	1.1247	-. 2964	0.7669
item*region1	nerd, 2	-0.4685	0.6640	-1.7699	0.8329	-. 7056	0.4804
item*region1	nerd, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*region1	zero_the, 1	0.2944	0.6637	-1.0064	1.5952	0.4436	0.6573
item*region1	zero_the, 2	-0.1812	0.6591	-1.4729	1.1106	-. 2749	0.7834
item*region1	zero_the, 3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*catholic	golden_e, 1	-0.4533	0.5750	-1.5802	0.6737	-. 7883	0.4305
item*catholic	golden_e, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*catholic	golden_p, 1	-1.6622	0.6720	-2.9794	-0.3450	-2.473	0.0134
item* ${ }^{*}$ catholic	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*catholic	hairy_c, 1	0.2429	1.0720	-1.8582	2.3440	0.2266	0.8207
item*catholic	hairy_c, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

item* catholic	nerd, 1	-0.1249	0.6187	-1.3377	1.0878	-.2019	0.8400
item* * catholic	nerd, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item* * catholic	zero_the, 1	-1.1319	0.5624	-2.2342	-0.0297	-2.013	$\mathbf{0 . 0 4 4 1}$
item* catholic	zero_the, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	0.9995	

Third the golden princess by Catholic and Decile, Model 2
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	Pr $>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_p	0.2996	0.7009	-1.0741	1.6733	0.4275	0.6690
decile*item	golden_p	0.1206	0.0621	-0.0012	0.2423	1.9409	0.0523
item* catholic	golden_p, 1	-1.4729	0.6187	-2.6856	-0.2602	-2.381	$\mathbf{0 . 0 1 7 3}$
item*catholic	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	0.9995	

Third the golden princess by Catholic and Island, Model 2
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter		Est.	Std Err	Lower	Upper	Z	Pr> $>\mathrm{Z} \mid$
intercept	0.0000	
item	golden_p	1.9179	0.6600	0.6244	3.2114	2.9061	0.0037
item*island	golden_p, 1	-1.2760	0.3669	-1.9951	-0.5569	-3.478	0.0005
item*island	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
item*catholic	golden_p, 1	-1.6388	0.6326	-2.8787	-0.3989	-2.591	$\mathbf{0 . 0 0 9 6}$
item*catholic	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
scale	1.0008	

Third the golden princess by Decile and Island, Model 2
Analysis Of GEE Parameter Estimates - Empirical Standard Error Estimates

parameter	Estimate	Std	Err	Lower	Upper	Z	Pr $>\|\mathrm{Z}\|$
intercept	0.0000	
item	golden_p	-0.3078	0.4861	-1.2605	0.6450	-.6331	0.5266
item*island	golden_p, 1	-1.1401	0.3575	-1.8408	-0.4393	-3.189	$\mathbf{0 . 0 0 1 4}$
item*island	golden_p, 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
decile*item	golden_p	0.1196	0.0621	-0.0020	0.2413	1.9273	0.0539
scale	0.9994	

