USING MACHINE LEARNING TO AUTOMATE **CERVICAL PRE-CANCER SCREENING**

DEMELZA ROBINSON,¹KEVIN HOONG¹, W. BASTIAAN KLEIJN¹, ALEXANDER DORONIN¹, JEAN REHBINDER², JEREMY VIZET², ANGELO PIERANGELO², AND TATIANA NOVIKOVA²

PROBLEM

DETECTING CERVICA CANCER IN EARLY PRE-MALIGANT PHASE (CIN3) CAN IMPROVE SURVIVAL

CURRENT SCREENING MEASURES LACK SENSITIVITY AND RELY ON HUMAN EYE.

SOLUTION

NOVEL OPTICAL TECHNIQUE. MUELLER ARIMETRY, CAN DETECT MICRO-TURAL TISSUE CHANGES ASSOCIATED WITH PRE-CANCER

USE MACHINE I FARNING TO RELATE THESE CHANGES TO GOLD STANDARD HISTOPATHOLOGY LABELS

DATASET

2 DATA TYPES TO RELATE:

- HISTOPATHOLOGICAL LABELS VS. PRECANCEROU
- TISSUE-LIGHT INTERACTION INFO

DATA SPLITTING

- 2 APPROACHES COMPARED:
- · 90:10 TRAIN: TEST SPLIT RANDOMLY • DECISION TREE DT SHUFFLE ALL PIXELS AND SPLIT INTO TRAIN • MULTI-LAYER PERCEPTRON MLP (90%) + TEST (10%) SETS. REPEATED 30 • 1D CONVOLUTIONAL NEURAL TIMES THEN AVERAGED. NETWORK 1D CNN • LEAVE-ONE-OUT CROSS-VALIDATION
- EACH TISSUE SAMPLE WITHELD FROM TRAINING AS TEST SET, RESULTS AVERAGED.

QUANTITATIVE RESULTS

	AUC OR ACCURACY	SPECIFICITY (TNR)	SENSITIVITY (TPR)
	90:10 TRAIN-TEST SPLIT		
DT	0.962±0.00	0.977±0.00	0.946±0.00
MLP	0.986±0.00	0.99l±0.00	0.98l±0.0l
ID CNN	0.964±0.00	0.978±0.00	0.952±0.01
	LEAVE-ONE-OUT CROSS-VALIDATION (LIOCV)		
DT	0.762±0.20	0.822±0.l6	O.697±O.23
MLP	O.8O3±O.23	0.846±0.22	0.756±0.25
ID CNN	0.8l2±0.2l	0.85l±0.20	O.763±O.25

MEAN + STANDARD DEVIATIONS ACROSS THE THREE ML TECHNIQUES AND TWO SPLITTING APPROACHES.

DECISION TREE

ID CNN

WHOLE SAMPLE EVALUATION ON UNSEEN DATA. HISTOPATHO-LOGY LINES INDICATE CONFIRMED UNDERLYING DISEASED OR HEALTHY TISSUE TO COMPARE MODEL PREDICTIONS WITH.

MLP

ML MODELS 3 METHODS COMPARED:

CIN3 PRED

HEALTHY PRED

HEALTHY HISTO

CIN3 MASK

HEALTHY MASK

ÉCOLE POLYTECHNIQU

CONCLUSION

TS ILLUSTRATE HOW THE CONVENTIONAL 90:10 SPLITTING APPROACH CAN YIELD DECEPTIVE-HIGH PERFORMANCE.

MORE REALISTIC LIOCV STILL AINS PROMISING PERFORMANCE SUGGESTS MORE WORK NEEDED BEFORE CLINICAL DEPLOYMENT

NEXT STEPS

A SHORTCOMING OF THE CURRENT APPROACH IS THAT WHEN NEW SAMPI THE DATA WE CAN ADDRESS THIS PROBLEM USING UNCERTAINTY ESTIMATION

BAYESIAN **I ATISTICS**

WE WILL USE A BAYESIAN APPROACH POINT ESTIMATES LIKE IN THIS WORK.

MODE = PREDICTED OUTPUT.

SPREAD = MODEL UNCERTAINTY

THIS WILL REFLECT HOW CONFIDENT 1AKE CLINICAL DEPLOYMENT MORE FEASIBLE.