
Optics Communications 407 (2018) 22–26

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Nonexistence of exact solutions agreeing with the Gaussian beam on the
beam axis or in the focal plane
John Lekner *, Petar Andrejic
School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand

a r t i c l e i n f o

Keywords:
Gaussian beams
Nonparaxial beams
Paraxial beams

a b s t r a c t

Solutions of the Helmholtz equation which describe electromagnetic beams (and also acoustic or particle beams)
are discussed. We show that an exact solution which reproduces the Gaussian beam waveform on the beam axis does
not exist. This is surprising, since the Gaussian beam is a solution of the paraxial equation, and thus supposedly
accurate on and near the beam axis. Likewise, a solution of the Helmholtz equation which exactly reproduces
the Gaussian beam in the focal plane does not exist. We show that the last statement also holds for Bessel–Gauss
beams. However, solutions of the Helmholtz equation (one of which is discussed in detail) can approximate the
Gaussian waveform within the central focal region.
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1. Introduction

Acoustic, electromagnetic and particle beams are described by solu-
tions of the Helmholtz equation
(

∇2 + 𝑘2
)

𝜓 = 0. (1)

Eq. (1) results respectively from the linearized hydrodynamic equations,
the Maxwell equations, and the Schrödinger equation. The wavenumber
𝑘 = 𝜔∕𝑐 (with 𝜔 the angular frequency and 𝑐 the speed of sound or the
speed of light), or is related to the energy per particle, which for the
particle mass 𝑀 is ℏ2𝑘2∕2𝑀 .

The widely used but approximate solution known as the Gaussian
beam ([1], Section 16.7, [2], Section 20.3) is

𝜓𝐺 (𝑥, 𝑦, 𝑧) = 𝑏
𝑏 + 𝑖𝑧

exp

{

𝑖𝑘𝑧 −
𝑘
(

𝑥2 + 𝑦2
)

2 (𝑏 + 𝑖𝑧)

}

(2)

𝜓𝐺 is the fundamental mode solution of the paraxial equation, obtained
by setting 𝜓 = 𝑒𝑖𝑘𝑧𝐺 in the Helmholtz equation and then neglecting the
term 𝜕2𝑧𝐺 in the resulting equation for 𝐺 (given below). This amounts
to assuming that the dominant 𝑧-dependence of the beam lies in the 𝑒𝑖𝑘𝑧
factor (when propagation is in the 𝑧 direction, as is assumed here). For
axially symmetric solutions we omit the azimuthal derivative, so the
Helmholtz equation in cylindrical coordinates, with 𝜌 =

√

𝑥2 + 𝑦2 the
distance from the beam axis, takes the form
(

𝜕2𝜌 + 𝜌
−1𝜕𝜌 + 𝜕2𝑧 + 𝑘

2
)

𝜓 = 0. (3)
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The substitution 𝜓 = 𝑒𝑖𝑘𝑧𝐺 gives an equation for 𝐺, namely (𝜕2𝜌 +𝜌
−1𝜕𝜌+

2𝑖𝑘𝜕𝑧 + 𝜕2𝑧 )𝐺 = 0, in paraxial form (𝜕2𝜌 + 𝜌−1𝜕𝜌 + 2𝑖𝑘𝜕𝑧)𝐺 ≈ 0. This
paraxial equation has as fundamental solution 𝐺 = 𝑏

𝑏+𝑖𝑧 exp
{

− 𝑘𝜌2

2(𝑏+𝑖𝑧)

}

,
thus giving us 𝜓𝐺 of Eq. (2). Higher modes may be obtained by differen-
tiation of 𝜓𝐺 with respect to 𝑥, 𝑦 or 𝑧, since the differential equations
are unchanged by translation in any coordinate. 𝜓𝐺 depends on the
wavenumber 𝑘 and on the length 𝑏, which gives the longitudinal extent
of the focal region. The transverse extent in the focal plane is given by
𝑤0 =

√

2𝑏∕𝑘. Thus the Gaussian fundamental mode is characterized by
a single dimensionless parameter 𝑘𝑏. It may seem plausible that when
𝑘𝑏 ≫ 1 (focal region large longitudinally compared to 𝑘−1) the Gaussian
beam would become a satisfactory solution of the Helmholtz equation,
everywhere. This is not so: when 𝜓𝐺 is substituted into 𝑘−2𝜓−1

𝐺 times
the Helmholtz equation, we obtain ([2], Section 20.3), instead of zero,

2
𝑘2(𝑏+𝑖𝑧)2

− 2𝜌2

𝑘(𝑏+𝑖𝑧)3
+ 𝜌4

4(𝑏+𝑖𝑧)4
. It follows that the errors become small in

regions where both of the following inequalities hold:

𝑘2
(

𝑏2 + 𝑧2
)

≫ 1 and 𝑏2 + 𝑧2 ≫ 𝜌2 (4)

Fig. 1 shows the modulus and phase of 𝜓𝐺, for 𝑘𝑏 = 2. Since the
exponent of the modulus of 𝜓𝐺 tends to −𝑘𝑏𝜌2∕2𝑧2 = − (𝑘𝑏∕2) tan2𝜃 far
from the origin, the half-angle of the cone of divergence of the Gaussian
beam, obtained by setting the exponent equal to −1, is 𝜃 = arctan

√

2∕𝑘𝑏.
The divergence angle defined in this way is 45◦ for 𝑘𝑏 = 2, and 30◦ for
𝑘𝑏 = 6.
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Fig. 1. 𝜓𝐺 (𝜌, 𝑧) in the focal region, plotted for 𝑘𝑏 = 2, for 𝑘 |𝑧| ≤ 10, 𝑘𝜌 ≤ 10. Shading
indicates modulus of the wavefunction (logarithmic scale, lighter colour indicates larger
modulus). The isophase surfaces are shown at intervals of 𝜋∕3. The phase is chosen to be
zero at the origin. The isophase contours that are multiples of 𝜋 are drawn with heavier
lines. The three-dimensional picture is obtained by rotating the figure about the beam axis
(the horizontal axis). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Many authors [3–10] have investigated methods to build up exact
solutions of the Helmholtz equation from solutions of the paraxial
equation, typically as expansions in powers of (𝑘𝑏)−1 or of 𝑤0∕𝑏 =
√

2∕𝑘𝑏. These expansions have problems, not just in complexity, but in
boundedness as well. A case in point is Wünsche’s [6] operator method,
which aims to get exact solutions from paraxial solutions by acting on
the latter with differential operators (given as infinite series of partial
derivatives with respect to 𝑧). We touch on this method in Appendix C.

Our aim here is different: we ask the question ‘can any physical
solution of the Helmholtz equation duplicate the Gaussian beam on the
axis, or in the focal plane?’ The answer to both questions is ‘no’, such
solutions do not exist. (By ‘physical’ is meant causal and having finite
beam invariants, as explained in the next Section.) This will be shown
in Sections 4 and 5. We also show, in Appendix B, that no Bessel–Gauss
beam can be the same in its focal plane as an exact solution. But first we
compare and contrast a recent exact solution with the Gaussian beam,
in Sections 2 and 3.

2. An exact solution and its properties

A recent paper [11] discusses solutions of the Helmholtz equation (1)
which represent transversely bounded beams, of the form

𝜓 (𝒓) = 𝑒𝑖𝑚𝜙 ∫

𝑘

0
𝑑𝑞𝑓 (𝑘, 𝑞) 𝐽𝑚

(

𝜌
√

𝑘2 − 𝑞2
)

𝑒𝑖𝑞𝑧. (5)

Beams of this form propagate along the 𝑧 direction. The wave mo-
tion is causal [11], meaning that far from the focal region there is
no backward propagation. Ref. [11] discusses wavefunctions with no
azimuthal dependence (𝑚 = 0), and gives an explicit expression for the
case where 𝑓 (𝑘, 𝑞) is proportional to 𝑞, in terms of Lommel functions of
two variables, or equivalently in terms of products of spherical Bessel
and Legendre functions. Proportionality to 𝑞 at small 𝑞 is sufficient to
ensure the finiteness of beam invariants and of physical quantities such
as the energy content per unit length of the beam ([11], Sections 5 and
6).

Wavefunctions of the form (5) can all be generalized to

𝜓 (𝒓) = 𝑒𝑖𝑚𝜙 ∫

𝑘

0
𝑑𝑞𝑓 (𝑘, 𝑞) 𝐽𝑚

(

𝜌
√

𝑘2 − 𝑞2
)

𝑒𝑖𝑞(𝑧−𝑖𝑏). (6)

The imaginary translation in 𝑧, which leads to the extra factor 𝑒𝑞𝑏 in
the integrand, leaves the Laplacian unchanged, so (6) is still an exact
solution of (1).

The 𝑚 = 0 beam with 𝑓 (𝑘, 𝑞) set equal to a constant in (6) does
approximate 𝜓𝐺 uniformly along the beam axis, with error of order
𝑒−𝑘𝑏. However, 𝑓 (𝑘, 𝑞) = constant is not physically possible: it does

Fig. 2. 𝜓𝑏 (𝜌, 𝑧) in the focal region, plotted for 𝑘𝑏 = 2, for 𝑘 |𝑧| ≤ 10, 𝑘𝜌 ≤ 10. Shading
indicates modulus of the wavefunction (logarithmic scale, lighter colour indicates larger
modulus). The isophase surfaces are shown at intervals of 𝜋∕3. The phase is chosen to be
zero at the origin. The isophase contours, other than those that are multiples of 𝜋, meet
on the zeros of 𝜓0 (𝜌, 𝑧), three of which are shown, at 𝑘𝜌 ≈ 4.77, 7.73 and 10.77. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

not give a finite energy content per unit length of the beam. For
example, the corresponding transverse magnetic (TM) beam has energy
content per unit length of the beam ([12], Eq. (26)) proportional to
∫ 𝑘0 𝑑𝑞𝑞

−1 (𝑘2 − 𝑞2
)

𝑒2𝑞𝑏, which diverges logarithmically.
As an example of a beam waveform which has all of the required

physical properties, we shall consider the wavefunction of Section 9
of [11]:

𝜓𝑏 (𝜌, 𝑧) =
𝑏2

[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
] ∫

𝑘

0
𝑑𝑞 𝑞 𝑒𝑞(𝑏+𝑖𝑧)𝐽0

(

𝜌
√

𝑘2 − 𝑞2
)

. (7)

The prefactor in (7) normalizes the wavefunction to unity at the origin
𝜌 = 0, 𝑧 = 0, for easier comparison with 𝜓𝐺 given in (2), which is also
normalized to unity at the origin.

We shall show that, for 𝑒𝑘𝑏 ≫ 1 and 𝜌2 ≪ 𝑏∕𝑘, where the Gaussian
waveform has some validity, the wavefunction 𝜓𝑏 corresponds closely
to it, provided that also |𝑧|≪ 𝑘𝑏2. There are no constraints on where 𝜓𝑏
may be used, being an exact solution of (1). Fig. 2 shows 𝜓𝑏 (𝜌, 𝑧) in the
focal region around the origin, for 𝑘𝑏 again set equal to 2.

On the beam axis 𝜌 = 0 we have

𝜓𝑏 (0, 𝑧) =
𝑏2

[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
] ∫

𝑘

0
𝑑𝑞 𝑞 𝑒𝑞(𝑏+𝑖𝑧)

=
( 𝑏
𝑏 + 𝑖𝑧

)2 𝑒𝑘(𝑏+𝑖𝑧) [𝑘 (𝑏 + 𝑖𝑧) − 1] + 1
[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
] . (8)

An explicit form of 𝜓𝑏 at a general point (𝜌, 𝑧) was found in [11],
using the fact that the expression (7) is a cylindrically symmetric non-
singular solution of the Helmholtz equation, and may thus be expanded
as a sum over products of Legendre polynomials and spherical Bessels,

𝜓𝑏 (𝜌, 𝑧) =
(𝑘𝑏)2

[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
]

∑

𝑎𝑛𝑃𝑛
( 𝑧 − 𝑖𝑏

𝑅

)

𝑗𝑛 (𝑘𝑅) ,

𝑅 = (𝑧 − 𝑖𝑏)
√

1 + 𝜌2∕(𝑧 − 𝑖𝑏)2. (9)

As in Ref. [11], 𝑅 is chosen as a branch of the complex radial coordinate
resulting from an imaginary displacement along the beam axis:

𝑟 =
√

𝜌2 + 𝑧2 → 𝑅 =
√

𝜌2 + (𝑧 − 𝑖𝑏)2. (10)

The coefficients 𝑎𝑛 in the expansion are given in [11], Appendix B. There
is only one non-zero odd coefficient, 𝑎1 = 2𝑖. The even coefficients we
shall rename as 𝑎2𝑛 = 𝐴𝑛, so that

𝜓𝑏 (𝜌, 𝑧) =
(𝑘𝑏)2

[

𝑒𝑘𝑏 (𝑘𝑏 − 1) + 1
]

{

2𝑖𝑃1
( 𝑧 − 𝑖𝑏

𝑅

)

𝑗1 (𝑘𝑅)

+
∞
∑

0
𝐴𝑛𝑃2𝑛

( 𝑧 − 𝑖𝑏
𝑅

)

𝑗2𝑛 (𝑘𝑅)

}

. (11)

23
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The full sequence of the coefficients of the even terms is (note that
(−1) !! = 1)

𝐴0 = 1, 𝐴𝑛 = −
(4𝑛 + 1) (2𝑛 − 3) !!

2𝑛 (𝑛 + 1) !

= −
2 (4𝑛 + 1) (2𝑛 − 3) !!

(2𝑛 + 2) !!
, 𝑛 = 1, 2, 3,… (12)

At the origin 𝜌 = 0, 𝑧 = 0 we have 𝑅 → −𝑖𝑏, 𝑃𝑛
(

𝑧−𝑖𝑏
𝑅

)

→ 𝑃𝑛 (1) = 1, so
(we set 𝑘𝑏 = 𝛽)

𝜓𝑏 (0, 0) =
𝛽2

[

𝑒𝛽 (𝛽 − 1) + 1
] {2𝑖𝑗1 (−𝑖𝛽) +

∞
∑

0
𝐴𝑛𝑗2𝑛 (−𝑖𝛽)}. (13)

The right-hand side is unity because of the identities given in Eq.(9.6)
of [11].

In the focal plane 𝑧 = 0 we have 𝑅 → −𝑖
√

𝑏2 − 𝜌2, so

𝜓𝑏 (𝜌, 0) =
𝛽2

[

𝑒𝛽 (𝛽 − 1) + 1
]

{

2𝑖𝑃1

(

𝑏
√

𝑏2 − 𝜌2

)

𝑗1
(

−𝑖𝑘
√

𝑏2 − 𝜌2
)

+
∞
∑

𝑛=0
𝐴𝑛𝑃2𝑛

(

𝑏
√

𝑏2 − 𝜌2

)

𝑗2𝑛
(

−𝑖𝑘
√

𝑏2 − 𝜌2
)

}

. (14)

There is a removable singularity on the circle 𝜌 = 𝑏 in the 𝑧 = 0
plane, since for large 𝑋 and small 𝑥

𝑃𝑛 (𝑋) ∼
(2𝑛 − 1) !!

𝑛!
𝑋𝑛, 𝑗𝑛 (𝑥) ∼

𝑥𝑛

(2𝑛 + 1) !!
. (15)

Thus as 𝜌→ 𝑏 the quantity in braces in (14) tends to

1 +
2𝛽
3

+
∞
∑

𝑛=1
𝐴𝑛

(

−𝛽2
)𝑛

(4𝑛 + 1) (2𝑛) !
= 1 +

2𝛽
3

−
∞
∑

𝑛=1

(

−𝛽2∕4
)𝑛

𝑛! (𝑛 + 1) ! (2𝑛 − 1)
. (16)

The final sum may be evaluated as

1 − 2
3
[

𝐽0 (𝛽) + 𝛽−1𝐽1 (𝛽)
]

−
2𝛽2

3
[

𝐽0 (𝛽) − 𝛽−1𝐽1 (𝛽)
]

+
𝜋𝛽2

3
[

𝐽0 (𝛽)𝐻1 (𝛽) − 𝐽1 (𝛽)𝐻0 (𝛽)
]

. (17)

In this expression 𝐽0, 𝐽1are the usual Bessel functions, and𝐻0,𝐻1are the
related Struve functions (Chapters 10 and 11 of [13]).

The focal plane wavefunction (14) is real for all 𝜌. It becomes
oscillatory for 𝜌 > 𝑏, in which case

𝛽−2
[

𝑒𝛽 (𝛽 − 1) + 1
]

𝜓𝑏 (𝜌, 0) =
2𝑏

√

𝜌2 − 𝑏2
𝑗1
(
√

𝜌2 − 𝑏2
)

+
∞
∑

𝑛=0
𝐴𝑛𝑃2𝑛

(

−𝑖𝑏
√

𝜌2 − 𝑏2

)

𝑗2𝑛
(

𝑘
√

𝜌2 − 𝑏2
)

. (18)

When 𝜌2 ≫ 𝑏2 the identity (B1) of [11] shows that the right-hand side
of (18) tends to 2𝐽1 (𝑘𝜌) ∕𝑘𝜌. As expected, there is an infinite number of
circles of wavefunction zeros in the focal plane, at which the different
isophase surfaces from opposite sides of the focal plane can meet ([2],
Section 20.1.4).

The divergence angle of the beam is found in Appendix A. For large
𝑘𝑏 it is the same as for the Gaussian beam, 𝜃 ≈

√

2∕𝑘𝑏.

3. The ratio of 𝝍𝑮 (𝝆, 𝒛) to 𝝍𝒃 (𝝆, 𝒛)

Both 𝜓𝐺 (𝜌, 𝑧) and 𝜓𝑏 (𝜌, 𝑧) are normalized to unity at the origin,
chosen as the centre of the focal region. On the beam axis we have,
and with 𝛽 = 𝑘𝑏, 𝜁 = 𝑘𝑧,

𝜓𝐺 (𝜌, 𝑧) =
(

𝛽
𝛽 + 𝑖𝜁

)

𝑒𝑖𝜁 ,

𝜓𝑏 (0, 𝑧) =
(

𝛽
𝛽 + 𝑖𝜁

)2 [(𝛽 + 𝑖𝜁 − 1) 𝑒𝛽+𝑖𝜁 + 1
]

(𝛽 − 1) 𝑒𝛽 + 1
𝜓𝐺 (0, 𝑧)
𝜓𝑏 (0, 𝑧)

=
(𝛽 + 𝑖𝜁 ) 𝑒𝑖𝜁

[

(𝛽 − 1) 𝑒𝛽 + 1
]

𝛽
[

(𝛽 + 𝑖𝜁 − 1) 𝑒𝛽+𝑖𝜁 + 1
] . (19)

Fig. 3. Ratio of the moduli |
|

𝜓𝐺 (𝜌, 𝑧) ∕𝜓𝑏 (𝜌, 𝑧)|| in the focal region, plotted for 𝑘𝑏 = 2.
Shading indicates modulus of the ratio (colour bar indicates value of modulus ratio minus
unity, so zero corresponds to the best agreement). The ratio tends to infinity at the zeros
of 𝜓𝑏 (𝜌, 0), one of which is shown, at 𝑘𝜌 ≈ 4.77. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Thus the ratio of 𝜓𝐺 to 𝜓𝑏 on the axis is, for 𝛽 ≫ 1,
𝜓𝐺 (0, 𝑧)
𝜓𝑏 (0, 𝑧)

=
(𝛽 + 𝑖𝜁 ) (𝛽 − 1)
𝛽 (𝛽 + 𝑖𝜁 − 1)

+ 𝑂
(

𝑒−𝛽
)

= 1 −
𝑖𝜁
𝛽2

+ 𝑂
(

𝛽−3
)

+ 𝑂
(

𝑒−𝛽
)

. (20)

It follows that the ratio of the beam wavefunctions is close to unity when
𝛽 ≫ 1 and also |𝑧|≪ 𝑘𝑏2.

We do not expect close correspondence far from the origin in the
focal plane 𝑧 = 0, since the Gaussian beam has no zeros in the focal
plane, while 𝜓𝑏 (𝜌, 0) has an infinity of zeros, as we saw in the previous
Section. Expansion of (14) in powers of 𝜌 gives

𝜓𝐺 (𝜌, 0)
𝜓𝑏 (𝜌, 0)

= 1 + 1
4

(

2𝛽2 − 4𝛽 + 4
)

+ 𝛽2 − 4
𝑒𝛽 (𝛽 − 1) + 1

𝜌2

𝑏2
+ 𝑂

(

𝜌4

𝑏4

)

. (21)

For 𝑘𝑏 = 𝛽 ≫ 1 the leading terms become 1 + 𝑘𝜌2∕2𝑏 (for 𝛽 ≪ 1 we
find 1 + 𝜌2∕2𝑏2). Thus there is close correspondence, in the focal plane,
between the Gaussian beam and the exact solution if 𝑘𝑏 ≫ 1 and 𝜌2 ≪
𝑏∕𝑘.

To sum up the correspondence between 𝜓𝐺 (𝜌, 𝑧) and 𝜓𝑏 (𝜌, 𝑧):
it is close within the region (surrounding the focus) defined by
{

|𝑧|≪ 𝑘𝑏2, 𝜌2 ≪ 𝑏∕𝑘
}

provided 𝑘𝑏 ≫ 1. Fig. 3 shows the ratio of the
moduli |

|

𝜓𝐺 (𝜌, 𝑧) ∕𝜓𝑏 (𝜌, 𝑧)|| in the focal region, for 𝑘𝑏 = 2.

4. Proof that an exact match to 𝝍𝑮 (𝟎, 𝒛) does not exist

It is known ([2], Section 20.1.1) that any solution of the Helmholtz
Eq. (1) which is independent of the azimuthal angle may be written as

𝜓 (𝜌, 𝑧) = 1
2𝜋 ∫

2𝜋

0
𝑑𝜃 𝑔 (𝑧 + 𝑖𝜌 cos 𝜃) 𝑒−𝑖𝑘𝜌 sin 𝜃 . (22)

On the beam axis 𝜓 (0, 𝑧) = 𝑔 (𝑧). Restricting ourselves to causally propa-
gating beams (no backward propagation far from the focal region [11])
gives 𝜓 (𝜌, 𝑧) of the form (6) with 𝑚 = 0. Equating the axial value to the
Gaussian beam value, we have

𝜓 (0, 𝑧) = 𝑔 (𝑧) = ∫

𝑘

0
𝑑𝑞𝑓 (𝑘, 𝑞) 𝑒𝑞(𝑏+𝑖𝑧) = 𝑏

𝑏 + 𝑖𝑧
𝑒𝑖𝑘𝑧. (23)

The last equality is an integral equation for the function 𝑓 (𝑘, 𝑞) (which
could in addition depend on parameters such as the length 𝑏). Without
loss of generality we may write 𝑓 (𝑘, 𝑞) = 𝑏𝑒−𝑘𝑏ℎ (𝑘, 𝑞). Then

∫

𝑘

0
𝑑𝑞ℎ (𝑘, 𝑞) 𝑒𝑞(𝑏+𝑖𝑧) = 𝑒𝑘(𝑏+𝑖𝑧)

𝑏 + 𝑖𝑧
. (24)

In terms of the dimensionless variables 𝜉 = 𝑘 (𝑏 + 𝑖𝑧) , 𝜂 = 𝑞 (𝑏 + 𝑖𝑧) this
Volterra integral equation of the first kind becomes

𝑒𝜉 = ∫

𝜉

0
𝑑𝜂 ℎ

(

𝜉
𝑏 + 𝑖𝑧

,
𝜂

𝑏 + 𝑖𝑧

)

𝑒𝜂 . (25)
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A solution independent of 𝑧 is required, so ℎ (𝑘, 𝑞) has to be a function
of one variable, the ratio 𝑞∕𝑘. Thus (25) reads

𝑒𝜉 = ∫

𝜉

0
𝑑𝜂 ℎ

(

𝜂
𝜉

)

𝑒𝜂 , or, with𝜂 = 𝜉𝑡, 𝑒
𝜉

𝜉
= ∫

1

0
𝑑𝑡 ℎ (𝑡) 𝑒𝜉𝑡. (26)

We shall argue that (26) has no physical solution. The function ℎ (𝑡)
would have to be such that ∫ 1

0 𝑑𝑡ℎ (𝑡) diverges, while ∫ 1
0 𝑑𝑡ℎ (𝑡) 𝑒

𝜉𝑡 does
not, for any 𝜉 ≠ 0. This makes a physical solution unlikely. To proceed
further we note that 𝜉 is a complex variable, and that the left-hand side
of the last equation has a simple pole at the origin. The contour integral
around the origin of the complex 𝜉 plane gives

∮ 𝑑𝜉 𝑒
𝜉

𝜉
= 2𝜋𝑖. (27)

As long as ℎ (𝑡) is smooth enough (which is needed for a physical beam
with finite invariants), we can change the order of integration in the
double integral on the right-hand side:

∮ 𝑑𝜉 ∫

1

0
𝑑𝑡 ℎ (𝑡) 𝑒𝜉𝑡 = ∫

1

0
𝑑𝑡 ℎ (𝑡)∮ 𝑑𝜉 𝑒𝜉𝑡 = ∫

1

0
𝑑𝑡 ℎ (𝑡) 0 = 0. (28)

We have thus reached a contradiction, which implies that no solution
of the required form exists.

The same conclusion follows by considering the Laplace transform of
Eq. (26) at 𝑧 = 0, written in the form 𝑒𝛽 = 𝛽 ∫ 1

0 𝑑𝑡ℎ (𝑡) 𝑒
𝛽𝑡, 𝛽 = 𝑘𝑏. Taking

Laplace transforms with respect to 𝛽 of both sides, we obtain, for 𝑠 > 1,

∫

∞

0
𝑑𝛽 𝑒𝛽(1−𝑠) = ∫

1

0
𝑑𝑡 𝑓 (𝑡)∫

∞

0
𝑑𝛽 𝛽 𝑒𝛽(𝑡−𝑠) or

1
𝑠 − 1

= ∫

1

0
𝑑𝑡

𝑓 (𝑡)
(𝑠 − 𝑡)2

.
(29)

The leading asymptotic terms for large 𝑠 are 𝑠−1 on the left-hand side,
and 𝑠−2 on the right-hand side. Again we have reached a contradiction.

5. An exact solution with Gaussian profile in the focal plane does
not exist

The general form of a causally propagating cylindrically symmetric
beam is (on changing the variable of integration in (5) from 𝑞 to
𝜅 =

√

𝑘2 − 𝑞2)

𝜓 (𝜌, 𝑧) = ∫

𝑘

0
𝑑𝜅 𝜅 ℎ (𝑘, 𝜅) 𝑒𝑖𝑧

√

𝑘2−𝜅2𝐽0 (𝜅𝜌) . (30)

The extra factor of 𝜅 has been inserted for convenience in the application
of Hankel transforms. In the focal plane 𝑧 = 0 this is to be of Gaussian
form:

𝜓 (𝜌, 0) = ∫

𝑘

0
𝑑𝜅 𝜅 ℎ (𝑘, 𝜅) 𝐽0 (𝜅𝜌) = exp

(

−
𝑘𝜌2

2𝑏

)

. (31)

Taking the Hankel transform of (31) by operating with ∫ ∞
0 𝑑𝜌𝜌𝐽0

(

𝜅′𝜌
)

,
we get

∫

𝑘

0
𝑑𝜅 𝜅 ℎ (𝑘, 𝜅)∫

∞

0
𝑑𝜌 𝜌 𝐽0

(

𝜅′𝜌
)

𝐽0 (𝜅𝜌)

= ∫

∞

0
𝑑𝜌 𝜌 𝐽0

(

𝜅′𝜌
)

exp
(

−
𝑘𝜌2

2𝑏

)

. (32)

The Hankel transform of a Gaussian is proportional to a Gaussian
(formula 10.22.51 of [13]),

∫

∞

0
𝑑𝜌 𝜌 𝐽0 (𝜅𝜌) exp

(

−
𝑘𝜌2

2𝑏

)

= 𝑏
𝑘
exp

(

− 𝑏𝜅
2

2𝑘

)

. (33)

The Hankel transform of a Bessel function is proportional to a Dirac
delta,

∫

∞

0
𝑑𝜌 𝜌 𝐽0

(

𝜅′𝜌
)

𝐽0 (𝜅𝜌) = 𝜅−1𝛿
(

𝜅′ − 𝜅
)

. (34)

Let 𝑈 (𝑘, 𝜅) be unity for 0 ≤ 𝜅 ≤ 𝑘, and zero otherwise. Thus (32) reads,
on dropping the prime on 𝜅′,

𝑈 (𝑘, 𝜅)ℎ (𝑘, 𝜅) = 𝑏
𝑘
exp

(

− 𝑏𝜅
2

2𝑘

)

. (35)

The left-hand side is nonzero only in the interval 0 ≤ 𝜅 ≤ 𝑘, while
the right-hand side is nonzero on the entire positive real line. Thus
there is no solution. To have a causal and non-divergent solution of the
Helmholtz equation, we restrict the range in (30) to the interval (0, 𝑘),
but the resultant Hankel transform is not that of a Gaussian.

6. Discussion

The ‘paraxial’ Gaussian beam waveform (2), and its generalizations
the Laguerre–Gauss and Hermite–Gauss waveforms, have been widely
used. However, they are known to fail for strongly focused beams. It is
interesting that, despite (2) being the solution of a paraxial equation,
and thus presumed to be accurate close to the beam axis, the fact is that
no exact solution of the Helmholtz equation can reproduce the Gaussian
beam waveform on the axis. Thus the ‘paraxial’ Gaussian beam cannot
give an exact representation of physical beams, even on the beam axis.
It does remain a useful approximation within the focal region provided
𝑏2 + 𝑧2 ≫ 𝜌2 and 𝑘2

(

𝑏2 + 𝑧2
)

≫ 1, as we saw in Section 1. (These
inequalities are satisfied when 𝑘𝑏 ≫ 1, 𝜌 ≪

√

𝑏∕𝑘, |𝑧| ≪ 𝑘𝑏2, in accord
with the results of Section 3.)

In Appendix B we show that the simplest Bessel–Gauss beam also
cannot be the basis of an exact solution. This is more surprising, since
the Bessel–Gauss beam does have the expected zeros in the focal plane.

In Appendix C we discuss the transformation of solutions of the
paraxial equation into solutions of the Helmholtz equation, in parallel
to a method proposed by Wünsche [6]. We show that the resultant
‘solutions’ have non-physical divergences.

As regards the exact solution 𝜓𝑏 (𝜌, 𝑧), we note that, by construction,
it contains no ‘evanescent’ waves (namely those decaying or growing
exponentially with 𝑧). This is because the variable 𝑞 which appears as
𝑒𝑖𝑞𝑧 in the integrand defining 𝜓𝑏 (𝜌, 𝑧) is real in its entire range. The
absence of evanescent waves is in contrast to much literature on beams
in which 𝑞 = 𝑘𝑧 =

√

𝑘2 − 𝑘2𝑥 − 𝑘2𝑦 is allowed to be imaginary, leading to
exponential growth or decay. Exponential growth with 𝑧 is not physical.
It can be avoided by choosing different branches of the square root
for positive and negative 𝑧, or equivalently by replacing 𝑒𝑖𝑞𝑧 by 𝑒𝑖𝑞|𝑧|.
However, this leads to backward propagation for negative 𝑧, and the
resulting wavefunction is no longer a solution of the Helmholtz equation
at 𝑧 = 0, because the derivative of |𝑧| is a step function, and the second
derivative a delta function. Evanescent waves exist, for example, within
the medium of smaller refractive index in total reflection, but have no
part in free space propagation far from material boundaries, in our view.

Appendix A. Divergence angle of the 𝝍𝒃 (𝝆, 𝒛) beam

We wish to examine how the beam expands away from the axis. The
behaviour is complicated within the focal region, but simplifies when
|𝑧| ≫ 𝑏, 𝑟 ≫ 𝑏 and 𝑘𝑟 ≫ 1. Let us find the asymptotic form of the un-
normalized wavefunction, which from (11) is

𝛹 (𝜌, 𝑧) = 2𝑖𝑃1
( 𝑧 − 𝑖𝑏

𝑅

)

𝑗1 (𝑘𝑅) +
∞
∑

0
𝐴𝑛𝑃2𝑛

( 𝑧 − 𝑖𝑏
𝑅

)

𝑗2𝑛 (𝑘𝑅) . (A1)

Since 𝑅2 = 𝑟2 − 2𝑖𝑏𝑧 + 𝑏2, we have 𝑅 ≈ 𝑟 − 𝑖𝑏𝑧∕𝑟. The argument of the
Legendre polynomials is therefore 𝑧∕𝑟 = cos 𝜃 plus correction terms of
order 𝑏∕𝑧 and 𝑏𝑧∕𝑟2, which we can neglect. However, 𝑘𝑅 ≈ 𝑘𝑟− 𝑖𝑘𝑏𝑧∕𝑟,
and the imaginary part is important because it leads to hyperbolic terms
in the spherical Bessel functions, for which the asymptotic forms for
large |𝜁 | are

𝑗1 (𝜁 ) → −
cos 𝜁
𝜁

, 𝑗2𝑛 (𝜁 ) → (−)𝑛
sin 𝜁
𝜁

. (A2)

We also know from equation (3.20) of [11] that
∞
∑

0
(−)𝑛𝐴𝑛𝑃2𝑛 (cos 𝜃) = 2 |cos 𝜃| . (A3)
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Hence the asymptotic form of (A1) is, on setting 𝑘𝑅 ≈ 𝑘𝑟 − 𝑖𝑘𝑏 cos 𝜃,
2
𝑘𝑟

{−𝑖 cos 𝜃 cos (𝑘𝑟 − 𝑖𝑘𝑏 cos 𝜃) + |cos 𝜃| sin (𝑘𝑟 − 𝑖𝑘𝑏 cos 𝜃)}

= −
2𝑖 |cos 𝜃|

𝑘𝑟
exp

[

𝑖𝑘𝑟sgn (cos 𝜃) + 𝑘𝑏 |cos 𝜃|
]

. (A4)

The asymptotic ratio of the moduli (off-axis to on-axis) of 𝛹 is therefore

|𝛹 (𝜌, 𝑧) ∕𝛹 (0, 𝑧)| → cos2𝜃𝑒−𝑘𝑏(1−|cos 𝜃|). (A5)

When 𝑘𝑏 is large compared to unity the exponent in (A5) is −1 when
𝜃 ≈

√

2∕𝑘𝑏, which is the same as for the Gaussian beam for large 𝑘𝑏,
given below Eq. (4). For comparison, for 𝜓𝐺 the asymptotic ratio of
the moduli (off-axis to on-axis) is 𝑒−(𝑘𝑏∕2)tan2𝜃 , quite different from (A5)
except at small 𝜃.

Appendix B. An exact solution reproducing the simplest Bessel–
Gauss beam in the focal plane does not exist

Bessel–Gauss beams, in their simplest azimuthally symmetric form,
are defined by the focal plane wavefunction being set equal to that of
the Gaussian beam times a Bessel function of order zero [14]:

𝜓 (𝜌, 0) = 𝑒−𝑘𝜌
2∕2𝑏𝐽0 (𝑘𝜌) . (B1)

Comparison with exact solutions of the form (30) gives the equality, on
𝑧 = 0,

𝜓 (𝜌, 0) = ∫

𝑘

0
𝑑𝜅 𝜅 ℎ (𝑘, 𝜅) 𝐽0 (𝜅𝜌) = 𝑒−𝑘𝜌

2∕2𝑏𝐽0 (𝑘𝜌) . (B2)

The function ℎ (𝑘, 𝜅) is to be found, if possible. Let 𝑈 (𝑘, 𝜅) be unity for
0 < 𝜅 < 𝑘, and zero otherwise. Then (B2) is the Hankel transform of
𝑈 (𝑘, 𝜅)ℎ (𝑘, 𝜅):

𝜓 (𝜌, 0) = ∫

∞

0
𝑑𝜅 𝜅 𝑈 (𝑘, 𝜅)ℎ (𝑘, 𝜅) 𝐽0 (𝜅𝜌) . (B3)

Taking the inverse Hankel transform of (B2) by operating with
∫ ∞
0 𝑑𝜌𝜌𝐽0

(

𝜅′𝜌
)

, and using (34), we get (dropping the primes on 𝜅)

𝑈 (𝑘, 𝜅)ℎ (𝑘, 𝜅) = ∫

∞

0
𝑑𝜌 𝜌 𝑒−𝑘𝜌

2∕2𝑏𝐽0 (𝜅𝜌) 𝐽0 (𝑘𝜌) . (B4)

The right-hand side of (B4) is a special case of Weber’s second exponen-
tial integral ([15], Section 13.31), and is equal to

𝑏
𝑘
exp

(

𝑏
(

𝑘2 + 𝜅2
)

2𝑘

)

𝐼0 (𝜅𝑏) . (B5)

Thus we again have a contradiction, since 𝑈 (𝑘, 𝜅)ℎ (𝑘, 𝜅) is nonzero only
when 0 < 𝜅 < 𝑘, while the expression (B5) is not.

Appendix C. Converting solutions of the paraxial equation into
solutions of the Helmholtz equation

Wünsche [6] has found operators which formally convert solutions
of the paraxial equation into solutions of the Helmholtz equation. We
shall give an equivalent method here, and at the same time demonstrate
the weakness of such constructions.

The (approximate) paraxial equation is, from Section 1 and for
axially-symmetric solutions,
(

𝜕2𝜌 + 𝜌
−1𝜕𝜌 + 2𝑖𝑘𝜕𝑧

)

𝐺 ≈ 0, 𝜓 (𝜌, 𝑧) = 𝑒𝑖𝑘𝑧𝐺 (𝜌, 𝑧) . (C1)

The paraxial equation is solved by 𝐺 = 𝑒−𝑖𝑞𝑧𝐽0
(

𝜌
√

2𝑘𝑞
)

for any 𝑞. Su-
perposition with weight function 𝑘−1𝑔 (𝑘, 𝑞) gives the general (regular)
paraxial solution,

𝐺 (𝜌, 𝑧) = 𝑘−1 ∫

∞

0
𝑑𝑞 𝑔 (𝑘, 𝑞) 𝑒−𝑖𝑞𝑧𝐽0

(

𝜌
√

2𝑘𝑞
)

. (C2)

The substitution 𝑞 = 𝜅2∕2𝑘 gives us

𝐺 (𝜌, 𝑧) = 𝑘−2 ∫

∞

0
𝑑𝜅 𝜅 𝑔

(

𝑘, 𝜅2∕2𝑘
)

𝑒−𝑖𝑧𝜅
2∕2𝑘𝐽0 (𝜅𝜌) . (C3)

As an example, let us match (C3) to the Gaussian beam (2), for which

𝐺 (𝜌, 𝑧) = 𝑏
𝑏 + 𝑖𝑧

exp
{

−
𝑘𝜌2

2 (𝑏 + 𝑖𝑧)

}

. (C4)

To find the corresponding function 𝑔, we take the Hankel trans-
form of (C4) equated to (C3), using (33) and (34): operation with
∫ ∞
0 𝑑𝜌𝜌𝐽0

(

𝜅′𝜌
)

gives

𝑏
𝑘
𝑒−

𝜅
′2
2𝑘 (𝑏+𝑖𝑧) = 𝑘−2𝑔

(

𝑘, 𝜅
′2∕2𝑘

)

𝑒−𝑖𝑧𝜅
′2∕2𝑘. (C5)

Hence the weight function corresponding to the fundamental Gaussian
mode is 𝑔

(

𝑘, 𝜅2∕2𝑘
)

= 𝑘𝑏𝑒−𝑏𝜅2∕2𝑘; substitution in (C3) gives 𝐺 =
𝑏

𝑏+𝑖𝑧 exp
{

− 𝑘𝜌2

2(𝑏+𝑖𝑧)

}

. Note there is no cut-off in the integration at 𝜅 = 𝑘.
As in Section 5, such a weight function leads to an exact solution of the
Helmholtz equation of the form

𝜓 (𝜌, 𝑧) = 𝑏
𝑘 ∫

∞

0
𝑑𝜅 𝜅 𝑒−𝑏𝜅

2∕2𝑘𝑒𝑖𝑧
√

𝑘2−𝜅2𝐽0 (𝜅𝜌) . (C6)

This integral reproduces the Gaussian beam waveform in the focal
plane. On the beam axis the integral can be evaluated in terms of error
functions. We find that it grows without bound on the beam axis for
negative 𝑧 large compared to

√

2𝑏∕𝑘, in proportion to 𝑧𝑒𝑘𝑧2∕2𝑏. Thus
(C6) is not a physical wavefunction. On the other hand, if the integral in
(C6) is terminated at 𝜅 = 𝑘, the resulting wavefunction is a well-behaved
member of the generalized Bessel beam family [11], and in fact reduces
to the proto-beam of [11] when 𝑘𝑏 → 0.

The same problem consequent (in our approach) from infinite range
in the integral, arises in Wünsche’s method of converting solutions of
the paraxial equation into solutions of the Helmholtz equation, but in
another guise. In evaluating the correction to the Gaussian beam on the
beam axis, Wünsche ([6], Section 5 and Appendix B) also finds the error
functions which result from setting 𝜌 = 0 in (C6).
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