
PHYSICAL REVIEW E 103, 013311 (2021)

Definition and properties of logopoles of all degrees and orders
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Logopoles are a recently proposed class of solutions to Laplace’s equation with intriguing links to both solid
spheroidal and solid spherical harmonics. They share the same finite-line singularity as the former and provide a
generalization of the latter as multipoles of negative order. In a previous paper [Majic and Le Ru, Phys. Rev. Res.
1, 033213 (2019)], we introduced and discussed the properties and applications of these new functions in the
special case of axisymmetric problems (with azimuthal index m = 0). This allowed us to focus on the physical
properties without the added mathematical complications. Here we expand these concepts to the general case
m �= 0. The chosen definitions are motivated to conserve some of the most interesting properties of the m = 0
case. This requires the inclusion of Legendre functions of the second kind with degree −m � n < m (in addition
to the usual n � |m|) and we show that these are also related to the exterior spheroidal harmonics. We show that
logopoles can also be defined for n � m and discuss in particular logopoles of degree n = −m, which correspond
to the potential of line segments of uniform polarization density.

DOI: 10.1103/PhysRevE.103.013311

I. INTRODUCTION

The most commonly used solutions to Laplace’s equa-
tion are the so-called multipoles or solid spherical harmonics
(SSHs) of the form r−n−1Pm

n (cos θ )eimφ . Another widely ap-
plicable class of solutions is the prolate solid spheroidal
harmonics (PSSHs) of the form Qm

n (ξ )Pm
n (η)eimφ , where Pm

n
and Qm

n are the Legendre functions of the first and second
kinds. One fundamental difference between these solutions
is their singularity: a finite line for PSSHs as opposed to a
single point for SSHs. Both SSHs and PSSHs are usually
only considered for integer order m and integer degree with
n � |m| in order to have solutions with a bounded singularity
(often in physics n is termed the multipole order, but we
reserve this term for m). Other solutions, such as the SSHs of
the second kind (replacing Pm

n with Qm
n ) are typically excluded

because of their unbounded singularities.
Another class of solutions dubbed logopoles and denoted

Lm
n was introduced in Ref. [1] and shows similarities to

both SSHs and PSSHs. They exhibit many properties similar
to SSHs (recurrence relations, ladder operators) but have a
finite-line singularity like PSSHs. In Ref. [1], only logopoles
with m = 0 (which are then axisymmetric) were considered.
Promising applications of these new functions were discussed,
but to fully realize their potential, it is necessary to extend this
concept to m �= 0. As summarized in Sec. II, logopoles can
be introduced and defined from different perspectives: integral
representation, series definitions in terms of SSHs and PSSHs,
and ladder operators. There are different possibilities to gen-
eralize these definitions to m �= 0, and the one we propose
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conserves the most ideal properties of logopoles, especially
the finite-line singularity and the close link to SSHs. These
definitions are presented in Sec. III and their resulting proper-
ties are derived and discussed in Sec. IV.

In Ref. [1], extensive use is made of SSHs of the second
kind, rnQn(cos θ ), by taking linear combinations that cancel
out the singularities on the z axis towards z → ±∞, to create
spheroidal harmonics and logopoles, which have bounded
singularities. As discussed in Secs. III and V, the same can
be done for m > 0, but we found that this extension requires
harmonics containing Qm

n (cos θ ) with n < m and even n < 0.
Unlike Qm

n for n � m, which contain logarithmic terms, these
are purely rational functions. This also led us to consider
logopoles of negative degree Lm

−n, which are discussed in
Sec. VII. These also have potential physical applications, for
example, logopoles with n = −m correspond to uniform po-
larization densities on the focal segment. In addition, a new
integral expression for SSHs of the second kind is presented in
Ref. [1] for m = 0 and positive powers of r. This is extended
to m � 0 and negative powers of r in Sec. VI. Finally, we
discuss in Sec. VIII stable numerical schemes to compute
logopoles of any degree and order.

II. BACKGROUND

We first define the main notations and summarize the im-
portant definitions and properties of logopoles as introduced
in Ref. [1].

A. Coordinate systems

We use spherical coordinates (r, θ, φ; with u ≡ cos θ ) cen-
tered at the origin O, and cylindrical coordinates (z, ρ, φ), and
define two translated coordinate frames, centered at O′ and
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FIG. 1. Schematic of the offset spherical and spheroidal coordi-
nate systems.

O′′, offset by +R and −R along the z axis (see Fig. 1). These
coordinates can be expressed as

ρ ′ = ρ =
√

x2 + y2, ρ ′′ = ρ,

z′ = z − R, z′′ = z + R,

r′ =
√

ρ2 + (z − R)2, r′′ =
√

ρ2 + (z + R)2,

u′ = cos θ ′ = z′/r′, u′′ = cos θ ′′ = z′′/r′′.

We also define adimensional “hat” coordinates that are scaled
by R, for example, r̂′ = r′/R.

The conventional prolate spheroidal coordinates (ξ, η, φ)
are defined with focal line O′′O′,

ξ = r′′ + r′

2R
, η = r′′ − r′

2R
, (1)

and we also use offset spheroidal coordinates with focal line
OO′,

ξ̄ = r + r′

R
, η̄ = r − r′

R
. (2)

B. Logopoles for m = 0

For convenience, we here reproduce the main formulas
from Ref. [1]. First, we define the external SSHs of the first
kind Sm

n and internal SSHs of the second kind S̃m
n :

Sm
n (r̂, θ, φ) = r̂−n−1Pm

n (cos θ )eimφ, (3)

S̃m
n (r̂, θ, φ) = r̂nQm

n (cos θ )eimφ. (4)

Logopoles for m = 0 can be defined either via an integral over
a line of charge,

L0
n =R

∫ 1

0

vndv√
ρ2 + (z − Rv)2

, (5)

or as an infinite series of multipoles,

L0
n (r̂, θ, φ) =

∞∑
k=0

S0
k

n + k + 1
, (6)

or as a finite sum of SSHs of the second kind,

L0
n = S̃0

n −
n∑

k=0

(
n

k

)
S̃0′

k . (7)

The prime means that the function is of coordinates centered
at O′: S̃0′

k = S̃0
k (r̂′, θ ′, φ). From these equivalent definitions,

one can show that L0
n can also be expressed as a finite sum of

PSSHs,

L0
n =

n∑
k=0

2n!2(2k + 1)

(n − k)!(n + k + 1)!
Q0

k (ξ̄ )P0
k (η̄), (8)

and vice versa,

Q0
n(ξ̄ )P0

n (η̄) =
n∑

p=0

(−)p+n(n + p)!

2 p!2(n − p)!
L0

p. (9)

Moreover, the ladder operator for multipole degree n, R∂z,
has the following effects:

R∂zS
0
n = −(n + 1)S0

n+1, (10)

R∂zS̃
0
n = nS̃0

n−1, (11)

R∂zL
0
n = nL0

n−1 − S0′
0 . (12)

The latter two equalities highlight the similarity between S̃0
n

and logopoles.
Finally, combining these properties, we proved in Ref. [1]

a new relationship between PSSHs and SSHs of the second
kind:

Q0
n(ξ )P0

n (η) =
n∑

k=0

(n + k)!

2k!2(n − k)!(2R)k

× [
(−)n+kr′′kQ0

k (cos θ ′′) − r′kQ0
k (cos θ ′)

]
.

(13)

III. GENERALIZATION OF LOGOPOLES
TO m � 0: DEFINITIONS

One could conceive of several possible generalizations of a
class of functions such as logopoles to include the index m, but
the definition we present stands out as being the most natural
in many respects.

A. Definition via ladder operations

Consider the angular momentum ladder operator

∂+ ≡ ∂x + i∂y = ∂

∂x
+ i

∂

∂y
(14)
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or in cylindrical and spherical coordinates,

∂+ = eiφ

[
∂ρ + i

ρ
∂φ

]
(15)

= eiφ

[
sin θ∂r + cos θ

r
∂θ + i

r sin θ
∂φ

]
. (16)

Acting on spherical harmonics, R∂+ is a ladder operator for
order m, explicitly [2]:

R∂+Sm
n = −Sm+1

n+1 , (17)

R∂+S̃m
n = −S̃m+1

n−1 . (18)

Our proposed definition of logopoles for m > 0 is via this
operation:

R∂+Lm
n = −Lm+1

n−1 . (19)

We will see how this definition applies naturally to many other
formulas for logopoles.

B. Integral representation

Logopoles for m = 0 are easily interpreted as an integral
of a continuous finite line of charge [see Eq. (5)]. For m � 0,
this definition generalizes straightforwardly by applying the
ladder definition, (19), m times:

Lm
n = (−)mRm+1∂m

+

∫ 1

0

vn+mdv√
ρ2 + (z − Rv)2

. (20)

Equivalently we could note that the integrand in Eq. (20) is
equivalent to vn+mS0

0 (x, y, z − Rv), so by applying (17) we
can also write

Lm
n =

∫ 1

0
vn+mSm

m (x, y, z − Rv)dv (21)

or more explicitly

Lm
n = (2m − 1)!!Rm+1ρmeimφ

∫ 1

0

vn+mdv

(ρ2 + (z − Rv)2)m+1/2
,

(22)

which is a finite continuous line of multipoles of order m with
line density vn+m. In comparison, PSSHs have a similar inte-
gral representation with line density (1 − v2)m/2Pm

n (v) [3,4]:

Qm
n (ξ )Pm

n (η)eimφ = (−)m(2m − 1)!!Rm+1ρmeimφ

×
∫ 1

−1

(1 − v2)m/2Pm
n (v)dv

(ρ2 + (z − Rv)2)m+1/2
. (23)

C. Series of multipoles

The multipole series definition, Eq. (6), can also be gener-
alized using (19) and (17), to obtain

Lm
n =

∞∑
k=m

Sm
k

n + k + 1
, r > R. (24)

Using this series, Lm
n could in principle be defined for com-

plex n and integer m, as long as n + m �= −1,−2,−3 . . . .
Similarly, the Legendre functions Qm

n are also finite only
for n � −m. We discuss a possible extension to n < −m in
Sec. VII B.

D. Finite sum of multipoles of the second kind

As for the m = 0 case [Eq. (7)], the multipole series has
an analytic continuation expressible in terms of SSHs of the
second kind:

Lm
n = S̃m

n −
n∑

k=−m

(
n + m

k + m

)
S̃m′

k , n � −m. (25)

S̃m
n is singular on the entire z axis while Eq. (25) is singular

only on the line segment 0 � z � R due to cancellations be-
tween the functions.

Equation (25) contains Qm
k (u) for all k � −m. For k � m

they contain a logarithmic term, while for k < m they are
simply rational functions. Explicit expressions are tabulated
in Ref. [5] [differing by (−)m] for k � 0 only, and we present
some expressions for k < 0 in Appendix A 2. For k < m,
Qm

k (u) and Qm
−k−1(u) make up the two linearly independent so-

lutions of the Legendre differential equation, while Pm
k<m = 0.

IV. GENERALIZATION OF LOGOPOLES
TO m � 0: PROPERTIES

We now show how the definition for m � 0 in the previous
section translates to other properties of logopoles.

A. Other differential operators

Logopoles share similarities with SSHs regarding differ-
ential operators ∂z and r∂r , which both conserve harmonicity.
The effect of these on S̃m

n is

R∂zS̃
m
n = (n + m)S̃m

n−1, (26)

r∂r S̃m
n = nS̃m

n . (27)

Their effect on Lm
n is similar but with an inhomogeneous part:

R∂zL
m
n =(n + m)Lm

n−1 − Sm′
m , (28)

r∂rLm
n =nLm

n − Sm′
m . (29)

In contrast, the operators applied to the PSSHs result in infi-
nite series:

R∂z Qm
n (ξ )P−m

n (η) = −
∞∑

k = n + 1
k + n odd

(2k + 1)Qm
k (ξ )P−m

k (η), (30)

r∂r Qm
n (ξ )P−m

n (η)

= −
∞∑

k = n
k + n even

(2k + 1 − δnkn)Qm
k (ξ )P−m

k (η), (31)

R∂+ Qm
n (ξ )P−m

n (η)eimφ

= −
∞∑

k = n + 1
k + n odd

(2k + 1)Qm+1
k (ξ )P−m−1

k (η)ei(m+1)φ. (32)

Equations (30) and (32) are derived in Ref. [6], while (31) is
presented without proof. The Legendre functions of negative
order P−m

n are here used only to simplify prefactors; see Ap-
pendix A 1 for their definitions.
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B. Recurrence relations

Logopoles also obey similar recurrence relations to the
SSHs. The recurrence relation on n presented in Ref. [1]
generalizes to

(n − m + 1)Lm
n+1 − ẑ(2n + 1)Lm

n + r̂2(n + m)Lm
n−1

= (r̂′)1−mPm
m (cos θ ′)eimφ, n � m, (33)

which is similar to the recurrence for SSHs with an in-
homogeneous term. It can be proved by substituting an
explicit expression for the logopoles, for example, Eq. (25). In
Sec. VIII C this recursion is used to stably compute logopoles
of high degree in the region r < R.

A recurrence relation on m can be found by substituting
the Legendre function recurrence 2mPm

n = tan θ (Pm+1
n + (n −

m + 1)(m + n)Pm−1
n ) into (24):

Lm+1
n = 2m cot θeiφLm

n − [
(n − m + 1)(m + n)Lm−1

n

+ Sm−1′
m − (n − m + 1)Sm−1′

m−1

]
e2iφ. (34)

Unfortunately this is numerically unstable in the direction of
increasing m in all space, in particular, near the z axis.

For varying m and n, there are multiple possible re-
currence relations. For example, by substituting the recur-
rence sin θPm+1

n = (n + m + 1) cos θPm
n − (n − m + 1)Pm

n+1
into (24),

Lm+1
n = eiφ

sin θ

[
(n + m)r̂Lm

n−1 − (n − m) cos θLm
n

+ (cos θ − r̂)Sm′
m

]
. (35)

Again this is numerically unstable in the direction of increas-
ing m, particularly near the z axis.

C. Explicit expressions of logopoles

Logopoles of low degree and order may be calculated,
for example, via the finite sum of S̃m

k and S̃m′
k in Eq. (25).

However, since this sum suffers numerically from catastrophic
cancellation, it is best to use offset spheroidal coordinates
ξ̄ , η̄, where expressions do not explicitly involve subtraction
of similar terms near the z axis. Some low orders for m = 1, 2
are

L1
−1 = S̃1

−1 − S̃1′
−1 = R

cos θ − cos θ ′

ρ
eiφ (36)

= 4
√

1 − η̄2ξ̄√
ξ̄ 2 − 1(ξ̄ 2 − η̄2)

eiφ, (37)

L1
0 = 2

ξ̄ − η̄

√
1 − η̄2

ξ̄ 2 − 1
eiφ, (38)

L1
1 = L1

0 + Q1
1(ξ̄ )P1

1 (η̄)eiφ, (39)

L2
−2 = 8

η̄2 − 1

ξ̄ 2 − 1

3η̄2ξ̄ − (η̄2 − 1)ξ̄ 3 − 3ξ̄ 5

(ξ̄ 2 − η̄2)3 ei2φ, (40)

L2
0 = 4

2ξ̄ 2 − 1 + ξ̄ η̄

(ξ̄ − η̄)3

1 − η̄2

ξ̄ 2 − 1
ei2φ, (41)

L2
1 = −2

3ξ̄ 2 − 2 + η̄2

(ξ̄ − η̄)3

1 − η̄2

ξ̄ 2 − 1
ei2φ. (42)

FIG. 2. Intensity plots of a representative selection of low-degree
logopoles and PSSHs for orders m = 1, 2. For better visualization,
the functions have been transformed by scaling and taking the arc-
sinh, which is similar to plotting on a log scale but allows for
negative values. Red represents positive; white, 0; and blue, negative.
The PSSHs have been translated up the z axis for a closer visual
comparison. R = 1. The logopoles and Qm

n functions were computed
via forward recurrence, which has no visible error at these low orders.

Figure 2 plots a representative selection of logopoles and
PSSHs. For n = −m, these expressions coincide with (81).

D. Logopoles expanded as a series of offset multipoles

In Ref. [1] logopoles were used to express the potential of a
point charge near a dielectric sphere as a series of line images.
This essentially required a multipole series for logopoles cen-
tered at O′. For dipolar or higher-order multipole sources near
a sphere, the generalization of this series is needed:

Lm
n =

∞∑
k=m

(−)k+m (n + m)!(k − m)!

(n + k + 1)!
Sm′

k (r′ > R). (43)

E. Separated form of logopoles

Here we generalize the expression of logopoles in terms
of their logarithmic and nonlogarithmic parts (Eq. (B3) in
Ref. [1]). Starting from the finite sum (25), we write Qm

n =
Pm

n Q0
0 − W m

n−1 and use the translation relation for regular
spherical harmonics [7],

n∑
k=m

(
n + m

k + m

)
r̂′kPm

k (u′) = r̂nPm
n (u). (44)
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(note that Pm
n = 0 for −m < n < m and m > 0) to get

Lm
n =

(
r̂n

[
Pm

n (u)L0 − W m
n−1(u)

]

+
n∑

k=−m

(
n + m

k + m

)
r̂′kW m

k−1(u′)

)
eimφ. (45)

For m = 0, W m
n−1(x) are polynomial, so the singularity on 0 <

z < R is entirely contained within L0. For m > 0, however,
note that W m

n−1 contain (1 − u2)−m/2 which are singular on the
z axis; see Appendix A 1.

F. Relationships between logopoles and offset
spheroidal harmonics

Expression (9) of offset spheroidal harmonics as a finite
sum of logopoles can be generalized to

Qm
n (ξ̄ )Pm

n (η̄)eimφ = (n + m)!

(n − m)!

n∑
p=0

(−)p+n(n + p)!

2 p!(p + m)!(n − p)!
Lm

p ,

(46)

which may be derived from the integral representations, ex-
panding the Legendre functions in terms of (v + 1)n,

Pm
n (v)(1 − v2)m/2

= (n + m)!

(n − m)!

n∑
p=0

(−)p+n+m(n + p)!

2p p!(p + m)!(n − p)!
(v + 1)p+m, (47)

and shifting v → 2v − 1.
But the inverse relationship expressing logopoles in terms

of PSSHs [Eq. (8)] cannot be simply generalized to m > 0 and
requires an infinite series. This can be obtained by substituting
the series for Sm

k in terms of Qm
p (ξ̄ )Pm

p (η̄) from Ref. [8] into the
multipole series for Lm

n :

Lm
n =

∞∑
k=m

Sm
k

n + k + 1

=
∞∑

p=m

[
p∑

k=m

2p + 1

n + k + 1

2(p + k)!(−)p+k+m

(p − k)!k!(k − m)!

(p − m)!

(p + m)!

]

× Qm
p (ξ̄ )Pm

p (η̄)eimφ. (48)

We may define the expansion coefficients βm
np as the sum over

k:

Lm
n =

∞∑
p=m

βm
npQm

p (ξ̄ )Pm
p (η̄)eimφ. (49)

For m = 0 only, the coefficients vanish if p > n. Unfortu-
nately for m > 0 the sum in Eq. (48) for βm

np is numerically
unstable and produces large errors for p � 20. See Ap-
pendix B for more details.

G. Relationships between logopoles and centered
spheroidal harmonics

Spheroidal harmonics centered about the origin with foci at
z = −R, R can be expressed in terms of geometrically trans-
formed logopoles, shifted and flipped in the z direction:

Lm
n (z → R − z) = (−)mRm+1∂m

+

∫ 1

0

(1 − v)n+mdv√
ρ2 + (z − Rv)2

,

(50)

Lm
n (z → R + z) = (−)mRm+1∂m

+

∫ 0

−1

(1 + v)n+mdv√
ρ2 + (z − Rv)2

.

(51)

The integral form of Qm
n (ξ )Pm

n (η), (23), contains the integrand
(1 − v2)m/2Pm

n (v). To expand this in powers of v + 1 and v −
1 we take the expansion of Pn(v) in terms of powers of (v − 1)
and integrate m times by

∫ 1
v

dv (using 8.752.2 in Ref. [9]) to
get

(1 − v2)m/2P−m
n (v) =

n∑
p=0

(−)m(n + p)!(1 − v)p+m

2p p!(p + m)!(n − p)!
. (52)

Comparing this with the line integral expressions for
Qm

n (ξ )Pm
n (η) [Eq. (23)], Lm

p (z → z − R) [Eq. (50)], and
Lm

p (z → R + z) [Eq. (51)], we deduce

Qm
n (ξ )P−m

n (η)eimφ

=
n∑

p=0

(−)p(n + p)!

2p+1 p!(p + m)!(n − p)!

× [
Lm

p (z → R − z) + (−)n+mLm
p (z → R + z)

]
. (53)

H. Orthogonality and completeness

Logopoles are positive functions (for φ = 0), which means
they cannot be orthogonal with respect to the L2 inner product
with a positive weight function, because the inner product of
any two logopoles will always be greater than 0. And unlike
the SSHs or the PSSHs, logopoles do not form a complete
basis for potentials which decay as 1/r towards ∞, despite
the fact that they are a finite linear combination of PSSHs.
As a specific example we attempt to expand Green’s function
1/|r − r0| for some point r0. An attempt can be made starting
with the expansion in terms of Qn(ξ̄ )Pn(η̄),

R

|r − r0| =
∞∑

m=−∞

∞∑
n=|m|

2(2n + 1)Qm
n (ξ̄ )P−m

n (η̄)

× Pm
n (ξ̄0)P−m

n (η̄0), ξ̄ > ξ̄0, (54)

then applying the expansion of spheroidal harmonics in terms
of logopoles [Eq. (46)] and rearranging the order of summa-
tion,

R

|r − r0| =
∞∑

m=−∞

∞∑
k=0

∞∑
n=max(|m|,k)

(2n + 1)Pm
n (ξ̄0)P−m

n (η̄0)

× (−)n+k+m(n + k)!

k!(k + m)!(n − k)!
Lm

k (r), (55)

but the coefficient of Lk (r) is given by a series over n
which diverges for any r0; the coefficients increase with the

013311-5



MATT MAJIC AND ERIC C. LE RU PHYSICAL REVIEW E 103, 013311 (2021)

exponential factor in Pn(ξ̄0) →∼ ξ n
0 for ξ0 > 1, while Pn(η̄0)

behaves sinusoidally with n [10], and for ξ0 = 1 (r0 on the
line segment) the coefficients increase with the polynomial
(n + k)!/(n − k)!. This is related to the fact that the mono-
mial basis vn is incomplete in that it cannot expand the delta
function δ(v − z0), which is the charge distribution of the
Green for r0 on the line segment. Instead, the Legendre basis
Pn(v) can be used to expand the delta function, as δ(v − z0) =∑∞

n=0(2n + 1)Pn(z0)Pn(v).

V. NEW RELATIONSHIP BETWEEN SPHEROIDAL AND
SPHERICAL HARMONICS OF THE SECOND KIND

We now present the generalization of the expansion of
PSSHs in terms of SSHs of the second kind [Eq. (13)]:

Qm
n (ξ )P−m

n (η)

=
n∑

k=0

(n + k)!

2k!(k + m)!(n − k)!

×
[

(−)n+k+m

(
r′′

2R

)k

Qm
k (u′′) −

(
r′

2R

)k

Qm
k (u′)

]
. (56)

As for m = 0, the linear combination of offset SSHs of the
second kind ensures that their singularities exactly cancel for
|z| > R, so the resulting sum is only singular on the segment
from O′ to O′′. Equation (56) can be proved by substituting
the expansion of offset spheroidal harmonics in terms of lo-
gopoles [Eq. (46)] and expanding the logopoles in terms of S̃m

n
and S̃m′

n . A double sum arises, which can be simplified using
the same identity as used in the m = 0 case.

Similarly to the finite sum for logopoles, Eq. (25), the sum
here involves Qm

k (u) with k < m which are linearly indepen-
dent of Qm

k (u) and Pm
k (u) with k � m and do not contain a

logarithmic term (see Appendix A 2).
It is insightful to look at the logarithmic part of Eq. (56).

Using the identity (A5), Qm
n (ξ ) = Q0

0(ξ )Pm
n (ξ ) − W m

n−1(ξ ), we
can break down Eq. (56) and examine the Q0

0(ξ ) part. The
regular spheroidal harmonics Pm

n (ξ )Pm
n (η) can be expanded in

terms of offset solid spherical harmonics,

Pm
n (ξ )P−m

n (η) =
n∑

k=m

(−)n+k+m(n + k)!

k!(k + m)!(n − k)!

(
r′′

2R

)k

Pm
k (u′′),

(57)

which is proved in Ref. [8] in an offset frame. Pm
n (ξ )Pm

n (η)
can also be expanded in terms of Sm′

k with similar coefficients
by reflecting Eq. (57) about z = 0 and using the parity of
the Legendre polynomials. Multiplying Eq. (57) by Q0

0(u′′),
and the corresponding Sm′

k expansion by Q0
0(u′), subtracting

these equations, and noting the relation Q0
0(ξ ) = [Q0

0(u′′) −
Q0

0(u′)]/2 leads to

Pm
n (ξ )Q0

0(ξ )P−m
n (η) =

n∑
k=m

(n + k)!

2k!(k + m)!(n − k)!

×
[

(−)n+k+m

(
r′′

2R

)k

Pm
k (u′′)Q0(u′′)

−
(

r′

2R

)k

Pm
k (u′)Q0(u′)

]
, (58)

which provides a simple proof of the equality of the logarith-
mic part of Eq. (56).

VI. INTEGRAL REPRESENTATION OF SSHS
OF THE SECOND KIND

In Ref. [1], the regular solid spherical harmonics of the
second kind for m = 0 were shown to be equivalent to a line
source distribution on the entire z axis, regularized by a sum
of multipoles from sources at ∞, of infinite magnitude. By
applying S̃m

n = (−R)m∂m
+ S̃n+m to the m = 0 case, we get, for

n � −m,

S̃m
n = lim

μ→∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2m − 1)!!

2
ρm

∫ μ

−μ

Rm+1sign(v)vn+mdv

(ρ2 + (z − Rv)2)m+1/2

−
n−1∑

k = m
n − k odd

μn−k

n − k
r̂kPm

k (u)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

eimφ, (59)

which is the potential of sources on the z axis and at r = ∞.
For n � m the sum over k vanishes and the integral is finite so
no regularization is needed. The radius R only appears here
since it is included as a scaling factor in the definition of
S̃m

n . Equation (59) has been checked in Mathematica for small
integer n and m. Comparison with the integral expression for
logopoles, Eq. (20), shows that the source distributions of
logopoles are finite truncations (or regularizations) of those
for SSHs of the second kind.

Equation (59) can also be rewritten so as to regularize the
integrand itself, avoiding the need for limits:

S̃m
n = 1

2

∫ ∞

−∞

⎛
⎜⎜⎜⎝sign(v)vn+mSm

m (x, y, z − Rv)

−
n−1∑

k = m
n − k odd

vn−k−1Ŝm
k (x, y, z)

⎞
⎟⎟⎟⎠dv. (60)

For completeness we present the analogous formula for the
exterior SSHs of the second kind, which can be derived by
applying the Kelvin transform S̃m

n → S̃m
n (r → 1/r)/r,

r̂−n−1Qm
n (u) = lim

μ→0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2m − 1)!!

2
ρm

×
(∫ −μ

−∞
+

∫ ∞

μ

)
Rm+1v−n−1+mdv

(ρ2 + (z − Rv)2)m+1/2

−
n−1∑

k = m
n − k odd

μk−n

n − k
r̂−k−1Pm

k (u)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (61)

013311-6



DEFINITION AND PROPERTIES OF LOGOPOLES … PHYSICAL REVIEW E 103, 013311 (2021)

for n � −m. This line source distribution diverges at the
origin and is regularized by a finite sum of multipoles of
infinite strength. Equation (61) can also be rewritten so as to
regularize the integrand itself:

r̂−n−1Qm
n (u)eimφ = 1

2

∫ ∞

−∞

⎛
⎜⎜⎜⎝v−n−1+mSm

m (x, y, z − Rv)

−
n−1∑

k = m
n − k odd

vk−n−1Sm
k (x, y, z)

⎞
⎟⎟⎟⎠dv. (62)

VII. FURTHER GENERALIZATION TO NEGATIVE
DEGREES AND ORDERS

The sum, (25), provides a means to define logopoles of
negative degree when n � −m. We now discuss their prop-
erties in detail.

A. Lowest degree: n = −m

1. Definition

For a given m, the lowest integer n for which Lm
n is finite

is n = −m. The integral expression, Eq. (20), shows that Lm
−m

is the potential of a uniform distribution of transverse 2m mul-
tipoles on the line segment 0 < z < R. The explicit formula
from the analytic continuation, Eq. (25), is

Lm
−m = S̃m

−m − S̃m′
−m

= eimφ

ρ̂m

[
sinm θQm

−m(cos θ ) − sinm θ ′Qm
−m(cos θ ′)

]
. (63)

(1 − u2)m/2θQm
−m(u) is an odd polynomial in u (see

Appendix A 2):

Qm
−m(u) = (2m − 1)!!

(1 − u2)m/2

m−1∑
k=0

(−)m+k

2k + 1

(
m − 1

k

)
u2k+1. (64)

While the explicit expression, Eq. (63), is simple, it is numer-
ically unstable near the z axis for z < 0 and z > R, showing
catastrophic cancellation particularly for higher m, since it
is expressed as the difference between two functions which
individually diverge toward the z axis (as ρ−m), but their sub-
traction goes to 0 (as ρm). See Sec. VIII B for a numerically
stable expression.

2. Angular integral expression for Lm
−m

From Eq. (64), we can deduce that the Legendre functions
of the second kind may instead be represented as an integral:

Qm
−m(cos θ ) = (−)m (2m − 1)!!

sinm θ

∫ π/2

θ

sin2m−1 θ̄ d θ̄ . (65)

Then from Eq. (63) we have

Lm
−m = (−)m(2m − 1)!!

Rm

ρm

∫ θ ′

θ

sin2m−1 θ̄ d θ̄ eimφ. (66)

This form is similar to that used in Ref. [11] to describe
uniformly charged line segments in 2m + 3 dimensions where
the electrostatic force decays as 1/r2m+1. This aligns with
the interpretation of Lm

−m as a distribution of transverse 2m

multipoles on the line segment which share this 1/r2m+1 decay
factor.

3. Recurrence relation for Lm
−m

Logopoles Lm
−m obey a first-order recurrence relation for

increasing m,

Lm+1
−m−1 =2

m

ρ
Lm

−meiφ +(2m − 1)!!ρm−1

(
u

r2m
− u′

r′2m

)
ei(m+1)φ,

(67)

which can be derived from Eq. 2.263.3 in Ref. [9]. Equation
(67) is stable in the forward direction (increasing m) at least
for ρ > 0, 0 < z < R, due to the fact that in this region, both
Lm

−m and the inhomogeneous term have a positive sign, so the
two terms are added with no loss of precision. This stability is
confirmed by numerical tests.

B. Logopoles for n < 0, m = 0

One can also generalize further to n < −m, with mod-
ifications. For simplicity we consider m = 0. For n =
−1,−2,−3 . . . , the series definition, (24), has a singular
term, which can be avoided if we redefine logopoles for n < 0
to start the series from k = n:

L−n ≡
∞∑

k=n

Sk

k − n + 1
. (68)

These logopoles can be expressed as convergent integrals by
expanding the integrand of (5) in terms of spherical harmonics
and truncating the series as done in Eq. (68),

L−n =
∫ 1

0
v−n

[
S0(x, y, z − Rv) −

n−1∑
k=0

vkSk (x, y, z)

]
dv,

(69)

which shows that L−n has the structure of a line charge on
the segment 0 < z � R with distribution z−n, regularized by
multipoles of degree k = 0, 1, . . . , n − 1 of infinite strength.
This is similar to the charge distribution for the SSHs of the
second kind in Eq. (62).

In fact, L−1 is used as an approximate solution in Ref. [12]
for the reflected potential of a point charge near a dielectric
sphere of high relative dielectric constant ε. L−1 has a finite
line charge distribution of 1/z, which closely matches the
image line charge ∝ z−ε/(ε+1) when ε is large. It has a simple
closed-form expression:

L−1 = R

r
log

2r

r − Ru + r′ . (70)

The recurrence properties of these functions are more com-
plicated than for n � 0. By applying ∂z to (68) we find

R∂zL−n = −nL−n−1 − R

r′ +
n∑

k=0

Sk, (71)
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FIG. 3. A representative sample of logopoles for n < 0. The
arcsinh of the functions is plotted for better visualization. Red repre-
sents positive; blue, negative; and white, 0. R = 1. The functions are
singular on the axial line segment 0 � z � R.

and by applying the recurrence for the Legendre polynomials
we find

nL−n = (2n + 1)
z

R
L−n−1 − (n + 1)

r2

R2
L−n−2

− r′

R
+ r′2

R2

n∑
k=0

Sk + r2

R2
Sn+1 − Sn. (72)

This recurrence relation was used to find explicit formulas
for the lowest degrees. These are expressed stably in terms
of spherical harmonics and offset spheroidal coordinates as

L−1 = S0 log
(ξ̄ + η̄)2

ξ̄ 2 − 1
, (73)

L−2 = S1 log
(ξ̄ + η̄)2

ξ̄ 2 − 1
− 4

1 − η̄2

(ξ̄ + η̄)3
, (74)

L−3 = S2 log
(ξ̄ + η̄)2

ξ̄ 2 − 1
− 2(7 + η̄2 + 8η̄ξ̄ )

1 − η̄2

(ξ̄ + η̄)5
, (75)

L−4 = S3 log
(ξ̄ + η̄)2

ξ̄ 2 − 1
− 4

3

1 − η̄2

(ξ̄ + η̄)7

× [37 − 2η̄2 + η̄4 + 9η̄(7 + η̄2)ξ̄ + 9(5η̄2 − 1)ξ̄ 2],
(76)

which are plotted in Fig. 3, clearly showing the multipoles of
infinite strength.

C. Logopoles for m < 0

There is a unique generalization of logopoles to m < 0,
which can be realized by applying the relationships for Leg-
endre functions of negative and positive order to the finite sum
(25):

L−m
n = (−)m (n − m)!

(n + m)!

[
S̃m

n −
n∑

k=m

(
n + m

k + m

)
S̃m′

k

]
. (77)

However, Lm<0
n are singular in an unbounded region on the z

axis.

VIII. NUMERICAL COMPUTATION OF LOGOPOLES

Numerical computation of logopoles is unstable for some
parameter ranges, which could hamper their applications to
physical problems. Here we investigate this numerical insta-
bility and present methods of stable computation.

A. Computation on the z axis for L0
n

We first investigate the nature of the numerical cancella-
tions and instability in the computation of logopoles, on the z
axis for z > R and m = 0. Starting from Eq. (45) for u, u′ = 1,
the functions Wn−1 reduce to the harmonic numbers Hn,

Ln(ρ = 0, z > R) = ẑn

(
log

ẑ

ẑ − 1
− Hn

)

+
n∑

k=0

(
n

k

)
(ẑ − 1)kHk, (78)

which can be rearranged using the binomial expansion and an
identity proved in Ref. [1] to give

Ln(ρ = 0, z > R) = ẑn

(
log

ẑ

ẑ − 1
−

n∑
k=1

ẑ−k

k

)
. (79)

As n increases, the log term and the sum in Eq. (79) become
increasingly similar in magnitude, especially for large ẑ, so
their difference becomes too small to accurately express with
floating point arithmetic. Finding a numerically stable closed
form of logopoles for large n reduces to finding a stable
expression for Eq. (79). We can write the log term as a series
to obtain

Ln(ρ = 0, z > R) =
∞∑

k=n+1

ẑn−k

k
, (80)

which is numerically stable and equivalent to the multipole
series, (24). These numerical considerations apply to ρ > 0
too, and one can always compute logopoles stably via Eq. (24)
(for r > R).

B. Stable explicit expression for Lm
−m

To compute Lm
−m stably, it is necessary to break up the

primed and unprimed components in Eq. (63) and extract from
their difference a factor that governs the behavior both near the
z axis for z < 0 or z > R, where Lm

−m → ρm, and also near the
singularity, where Lm

−m diverges as ρ−m. This dependence is
expressed naturally in spheroidal coordinates as a factor of
( 1−η̄2

ξ̄ 2−1 )
m/2

, which has exactly this behavior. In Appendix C
we rearrange Eq. (63) into a form where this is factored out
explicitly:

Lm
−m = 2m+1(2m − 1)!!

(ξ̄ 2 − η̄2)2m−1

(
1 − η̄2

ξ̄ 2 − 1

)m/2

eimφ

×
m−1∑
q=0

ξ̄ 2q+1

2q + 1

(
m − 1

q

)
(ξ̄ 4 − η̄2)m−2q−1

×
q∑

p=0

(−)p+q

(
q

p

)
(2m + 2p − 2q − 3)!!

(2p − 1)!!(2m − 2q − 3)!!

× (η̄(ξ̄ 2 − 1))2p(ξ̄ 2 − η̄2)2q−2p. (81)
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Equation (81) appears complicated but is nevertheless stable
in almost all space, particularly near the z axis for |z| > R.
The worst relative error occurs near the singularity for |z| < R
and increases only mildly with m, reaching ≈10−5 at m = 40,
which should be fine for practical applications. Alternatively,
the recurrence, (67), can be used in this region |z| < R, where
it is stable for increasing m.

C. Stable implementation of recurrence relations

Here we propose a stable method of computing the lo-
gopoles for a large range of indices n, m in all regions of
space. For this, we calculate Lm

n via a combination of forward
and backward recurrence on n, Eq. (33), depending on the
region of space. Equation (33) is numerically stable in the
forward direction for r < R and unstable otherwise. For ex-
ample, at the point ρ = 2R, z = 0, numerical errors become
of order 1 at n ≈ 40. We can look at this stability analytically
by considering the characteristic polynomial; the recurrence
is stable if the roots of the characteristic polynomial are all
less than 1 in magnitude. Although the characteristic poly-
nomial is inhomogeneous, in the large-n limit, it becomes
equivalent to that for the homogeneous recurrence because the
homogeneous terms in Eq. (33) increase as O(n) relative to
the inhomogeneous term. The characteristic equation for the
homogeneous part is

(n − m + 1)λ2 − (2n + 1)ẑλ + (n + m)r̂2 = 0. (82)

In the limit n → ∞, the roots are λ = r̂e±iθ so the recurrence
is stable for r < R and unstable for r � R. This explanation
strictly applies only to the large-n limit, but for finite n the
same conclusion is drawn from numerical tests.

Conversely, in the backward direction, Eq. (33) is stable for
r > R and unstable for r � R. Numerical tests confirm these
regions of stability unless r′ → 0 or m is large. Hence we
propose to calculate Lm

n via Eq. (33) forward for r < R and
backward for r > R.

In terms of implementing the forward recursion over n, two
initial values are needed: first, Lm

−m, calculated via Eq. (81) for
z < 0, z > R and Eq. (63) for 0 < z < R per Sec VII A, and
Lm

−m+1, obtained from

Lm
−m+1 = ẑLm

−m + (2m − 3)!!ρ̂m[r̂1−2m − r̂′1−2m], (83)

which can be derived from Eq. 2.263.3 in Ref. [9].
A singular point occurs in the forward recurrence at n =

m − 1, for calculating Lm
m from Lm

m−1 and Lm
m−2, due to the

division of n − m + 1. Instead, to calculate Lm
m we must use

a single triangular recursion step which requires a logopole of
degree m − 1 (from Eq. 2.263.2 in Ref. [9]),

Lm
m = −(2m − 3)!!

ρ̂m

r̂′2m−1
+ ẑLm

m−1 + ρ̂Lm−1
m−1, (84)

and from there the forward recurrence, Eq. (33), can be con-
tinued starting with calculation of Lm

m+1.
For backward recursion, we use initial values LN , LN+1 for

large N , which may be taken as approximate from the limit
N → ∞:

Lm
n→∞ → Sm′

m

n + m + 1
. (85)

Even though this is approximate, the recursion corrects itself
quickly as n decreases. If the logopoles are required to be
calculated for n � N ′, then N should be taken large enough
so that the recurrence corrects itself to within floating point
precision by the stage where it reaches n = N ′. The logopoles
will satisfy the correct recursion but be scaled incorrectly. The
correct scaling can be determined from the known expression
for the lowest-degree Lm

−m, given by L0 = atanh(ξ̄ ) for m = 0
or by Eq. (81) for m > 0. This recursive scheme can compute
logopoles accurately in all space for a reasonable range of
parameters. For a given m, the error becomes significant for
all values higher than some n. For m = 0, 1, 2, the method
seems stable for arbitrarily large n, at least 400. For m = 7,
error becomes order 1 at n ≈ 100, for m = 10, at n ≈ 25, and
for m = 20, at n ≈ 20, with errors first appearing near r = R.

IX. CONCLUSION

We have presented a natural generalization of logopoles to
m � 0, based on the application of the differential operator
∂x + i∂y and its effect on spherical harmonics. Using this
generalization, most properties of logopoles for m = 0 are
retained: sharing many similarities with spherical harmonics
of the second kind, in their recurrence relations and source
distributions, while having the advantage of a bounded sin-
gularity. This generalization involves the Legendre functions
Qm

n (cos θ ) for n < m, which are also found to relate to the
canonical spheroidal harmonics Qm

n (ξ )Pm
n (η), defined only for

n � m. The line source integral expressions have been gen-
eralized for logopoles, spheroidal harmonics, and spherical
harmonics of the second kind with radial factors rn and r−n−1.
For m = 0, we have also considered a possible generaliza-
tion of logopoles for n < 0, whose source distributions are
similar to those for spherical harmonics of the second kind
with r−n−1 radial dependence. Methods of stable computation
of logopoles have been investigated, including forward and
backward recursion and different sum and series expressions,
which are ideal in different regions of space.

This work completes the introduction of logopoles and
sets the foundation for further investigations and applications;
application of logopoles of order m = 1 to the problem of an
electrostatic dipole near a dielectric sphere will be presented
in a separate publication.

X. DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon request.
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APPENDIX A: LEGENDRE FUNCTIONS

1. Positive degree n

The associated Legendre functions of the first and second
kinds of any order m � 0 can be defined from the Legendre
functions of order m = 0 via

Pm
n (x) = |1 − x2|m/2 dmPn(x)

dxm
, (A1)

Qm
n (x) = |1 − x2|m/2 dmQn(x)

dxm
(A2)

for all x �= ±1. Some authors multiply by these by (−)m for
|x| < 1. For negative m,

P−m
n (x) = (−)m (n − m)!

(n + m)!
Pm

n (x), (A3)

Q−m
n (x) = (−)m (n − m)!

(n + m)!
Qm

n (x). (A4)

The Legendre functions of the second kind can be ex-
pressed as

Qm
n (x) = Pm

n (x)Q0(x) − W m
n−1(x), (A5)

where

W 0
n−1(x) =

n∑
k=1

Pk−1(x)Pn−k (x)

k
, (A6)

and W m
n−1 may be defined by the same recurrence relations

over n and m as are Pm
n and Qm

n (with n → n + 1). For exam-
ple, they can be created for m > 0 by

W m+1
n−1 = (n − m + 1)W m

n − (n + m + 1)xW m
n−1√

|1 − x2|
. (A7)

Unlike Pm
n (x), Qm

n (x) is nonzero for n < m, with Qm
n =

−W m
n−1.

As for m = 0, the Qm
n functions for |x| > 1, i.e., the

spheroidal harmonics, should be computed via a backward
recurrence scheme if one needs n � 7.

2. Negative degree

For negative-degree n with −m < n < 0, Qm
n (x) is finite

but cannot be defined from differentiating the m = 0 functions
as in Eq. (A2) since Q0

n is not defined for n < 0. Instead,
Qm

n (x) may be calculated from the terminating hypergeometric
series in Eq. 14.3.12 in Ref. [10], explicitly for 0 � n < m:

Qm
−n−1(x) = (m + n)!(m − n − 1)!(2n − 1)!!

(1 − x2)m/2

×
m+n

2∑
q=0

(−)q+nxm+n−2q

(m + n − 2q)!2q!!
∏q−1

k=0(2n − 2k − 1)
.

(A8)

For any pair of indices n, m (with interchange n → −n − 1
or m → −m), there are two independent solutions to Legen-
dre’s equation. So Qm

−n−1(x) are linearly related to Qm
n and

P−m
n (combining relations from Ref. [9]):

Qm
−n−1(x) − Qm

n (x) = (m + n)!(m − n − 1)!(−)nP−m
n (x),

− m � n < m. (A9)

Perhaps of practical interest, P−m
n (x) is only infinite at x = −1

(the negative z axis).
Explicit expressions for low degrees are (for |x| < 1)

Q0
0(x) = atanh(x) = 1

2
log

1 + x

1 − x
, (A10)

Q1
−1(x) = x√

1 − x2
, (A11)

Q1
0(x) = 1√

1 − x2
, (A12)

Q1
1(x) =

√
1 − x2atanh(x) + x√

1 − x2
, (A13)

Q1
2(x) = 3x

√
1 − x2atanh(x) + 3x2 − 2√

1 − x2
, (A14)

Q2
−2(x) = 3x − x3

1 − x2
, (A15)

Q2
−1(x) = 1 + x2

1 − x2
, (A16)

Q2
0(x) = 2x

1 − x2
, (A17)

Q2
1(x) = 2

1 − x2
, (A18)

Q2
2(x) = 3(1 − x2)atanh(x) − 3x3 − 5x

1 − x2
. (A19)

APPENDIX B: SERIES COEFFICIENTS RELATING
LOGOPOLES AND PSSHs

In Sec. IV F it was deduced that for m > 0 logopoles are
expressed as an infinite series of PSSHs:

Lm
n =

∞∑
p=m

βm
npQm

p (ξ̄ )Pm
p (η̄). (B1)

For m = 1, from inspection for small p, the coefficients appear
to reduce to

β1
np =

⎧⎨
⎩

− 2(2p+1)
p(p+1)

(
1 − n!(n+1)!

(n+p+1)!(n−p)!

)
, p � n,

− 2(2p+1)
p(p+1) , p > n.

(B2)

For larger m the expressions get more complex. The sum over
k in Eq. (48) is numerically unstable, producing large errors
for p � 20.

For n = −m, from inspection of small p, it seems that

βm
−m,p = 2(1 + (−)p+m)(2p + 1)

(m − 1)!(p − m + 1)(p + m)
. (B3)

By comparing the source integrals for logopoles (trans-
formed to fit on the line segment O′′O′) and PSSHs, it is clear
that βm

np are also the coefficients of the expansion,

21−n (v + 1)n+m

(1 − v2)m/2
=

∞∑
p=m

βm
npPm

p (v), (B4)

and by the orthogonality of the associated Legendre functions,

βm
np = (p − m)!

(p + m)!

2p + 1

2n

∫ 1

−1

(1 + v)n+mPm
p (v)

(1 − v2)m/2
dv, (B5)

which may be somehow used to find a stable expression for
βm

np.
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APPENDIX C: DERIVING EQ. (81), THE STABLE FORM OF Lm
−m

Starting from Eq. (63) and substituting the coordinate transformations u′′ = ξη+1
ξ+η

, u′ = ξη−1
ξ−η

, we get

Lm
−m = 2m(2m − 1)!!eimφ

((1 − η2)(ξ 2 − 1))m/2

m−1∑
k=0

(−)k

2k + 1

(
m − 1

k

)
[η(ξ 2 − 1) + ξ (1 − η2)]2k+1 − [η(ξ 2 − 1) − ξ (1 − η2)]2k+1

(ξ 2 − η2)2k+1 .

The terms for each k can be expanded in powers of η(ξ 2 − 1) and ξ (1 − η2) as

[η(ξ 2 − 1) + ξ (1 − η2)]2k+1 − [η(ξ 2 − 1) − ξ (1 − η2)]2k+1 = 2
k∑

q=0

(
2k + 1

2q + 1

)
(η(ξ 2 − 1))2k−2q(ξ (1 − η2))2q+1. (C1)

Then rearranging the summation order gives

Lm
−m =2m+1(2m − 1)!!

(
1 − η2

ξ 2 − 1

)m/2

eimφ

m−1∑
q=0

(
1 − η2

)2q+1
ξ 2q+1

m−1∑
k=q

(−)k

2k + 1

(
m − 1

k

)(
2k + 1

2q + 1

)
(η(ξ 2 − 1))2k−2q

(ξ 2 − η2)2k+1 . (C2)

This is still unstable, but the sum over k may be recognized as a Gauss hypergeometric function, 2F1, and the connection formula
2F1(a, b; c; x) = (1 − x)c−b−a

2 F1(c − a, b, ; c; 1 − x), where x = [η(ξ 2 − 1)/(ξ 2 − η2)]2 and 1 − x = (1 − η2)(ξ 4 − η2)/(ξ 2 −
η2)2, can be used to rearrange the sum over q and extract m − 2q − 1 factors of (1 − η2), giving Eq. (81).
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