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Figure 1: Radiance maps within the same cluster share similar illumination properties (a, b, c, and d). The features are visualized in the two
scatterplots, which we call the ‘illumination space’, on the right.

Abstract
Radiance maps (RM) are used for capturing the lighting properties of real-world environments. Databases of RMs are useful for
various rendering applications such as Look Development, live action composition, mixed reality, and machine learning. Such
databases are not useful if they cannot be organized in a meaningful way. To address this, we introduce the illumination space,
a feature space that arranges RM databases based on illumination properties. We avoid manual labeling by automatically
extracting features from an RM that provides a concise and semantically meaningful representation of its typical lighting
effects. This is made possible with the following contributions: a method to automatically extract a small set of dominant and
ambient lighting properties from RMs, and a low-dimensional (5D) light feature vector summarizing these properties to form
the illumination space. Our method is motivated by how the RM illuminates the scene as opposed to describing the textural
content of the RM.

1. Introduction

Radiance maps (RMs) are high dynamic range (HDR) 360◦ images
that are suitable for storing real-world lighting. Databases of RMs
are now readily available in post-production studios and online ser-

vices, providing a large amount of high fidelity illumination data.
Current machine learning methods use RM databases for unsuper-
vised learning tasks [GSY∗17, HGSH∗17]. However, an unlabeled
database of RMs is not useful in many other lighting applications
that require searching or browsing the database (e.g., Look De-
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velopment, live action composition, mixed reality rendering, and
supervised learning). Furthermore, the labels should be concise to
avoid sparsity introduced by high-dimensional data (i.e. the curse of
dimensionality). An intuitive, low-dimensional representation that
describes lighting, not texture, is required for many of these ap-
plications. Describing an RM in concise form is challenging since
each RM contains a variety of complex lighting properties includ-
ing shading, tone, shadows, and glossy highlights.

Current models either do not provide enough semantically mean-
ingful parameters (e.g., Hosek-Wilkie [HW12] does not cover over-
cast skies or indoor lighting), or provide too many unintuitive pa-
rameters (e.g., spherical harmonics [RH01]). To overcome these
limitations, we formulate our problem to utilize spherical Gaus-
sians (SG) [TS06, XSD∗13] and diffuse shading, which previously
has not been used to categorize RM databases in a low-dimensional
and semantically meaningful way. We aim to capture properties that
are observable in the rendered scene rather than the textural content
of the RM image itself. To obtain a low-dimensional representation,
we introduce a dominant light model (DLM) which uses SGs to de-
scribe the most visually salient lighting effects as observed in the
rendered scene. Diffuse shading is then used to capture semanti-
cally meaningful, low-dimensional tonal properties.

To develop a low-dimensional representation, we follow an em-
pirical approach of making careful design decisions and observ-
ing their effects in large RM databases. Numerous iterations of
this design process lead us to five intuitive lighting properties of
RMs, split into two categories, dominant and ambient lighting: the
(1) size, (2) elevation angle, and (3) azimuth angle of the RM’s
most dominant area light sources, as well as the diffuse (4) hue and
(5) saturation of the RM. The dominant lighting property set (1,
2, 3) can occur multiple times for a given RM (one set for each
bright light in the RM). To create a low-dimensional feature space,
these properties are converted into a strictly 5D feature vector. This
defines the ‘illumination space’ - a semantically meaningful, low-
dimensional feature space (see Figure 1) that can enable browsing
and searching RM databases. Our contributions are summarized as
follows:

• We define and extract a small set of dominant and ambient light-
ing properties from RMs using the DLM.
• From the extracted lighting properties, we introduce a 5D light

feature vector that encodes RMs in a low-dimensional, semanti-
cally meaningful feature space - the ‘illumination space’.

2. Related Work

2.1. Textural Features for Sky Images

Manual labels applied to images (or parts of images) can guide
browsing and searching in many applications [JGJJ∗06, LHE∗07,
LRT∗14]. Labels extracted from the metadata attached to images
at capture time can also be used. However, these sorts of labels
have limited expressibility and are not always available, so fea-
tures computed from image content—such as GIST [OT01], geo-
metric context [HEH05], and spatial pyramids [LSP06]—are of-
ten used instead. When they are applied to an RM, we refer to
these as “textural features” because they are computed from the
contrast patterns of the RM itself, instead of the lighting patterns

that the RM induces in a rendered scene. Tao et al. [TYS09]
use textural features and supervised learning techniques to de-
velop an interactive search system for finding sky photographs.
Ono et al. [ODY11] extract four textural features to character-
ize the images in a database, with ongoing improvements for sky
searching and generation [MF12, LRT∗14]. Similarly, Chalmers et
al. [CLH∗14] use textural features to enable artists to find back-
drops with various amounts and types of clouds. A substantial lim-
itation of textural features is that they often do not adequately en-
code an RM’s lighting effects. This is what we aim to address in
this paper.

2.2. Perceptual Embeddings

There is a long history of creating low-dimensional and percep-
tually meaningful embeddings of materials for digital design and
editing tasks. The 1976 CIELAB representation of color is an
early example. More recent examples include perceptual embed-
dings of reflectance [PFG00, WAKB09, SGM∗16] and translu-
cency [GXZ∗13,PRJ∗13]. We follow this same general strategy, al-
beit for studying illumination—and RMs in particular—instead of
materials. Previous encodings for RMs have considered dimension-
ality reduction without perceptual uniformity [KSH∗14], or have
relied on the manual attachment of tags [BBH∗08], such as sun po-
sition and color, which is difficult to extend to large databases and
the many possible attributes of appearance.

2.3. Sampling and Compression for RMs

Frequency space representations have been used to compress RMs
down to as few as nine [RH01,SKS02] or hundreds [NRH03] coef-
ficients with varying degrees of fidelity. Our 5D light feature vec-
tor instead describes both high and low frequency lighting in a se-
mantically meaningful way with fewer parameters. Sampling algo-
rithms sample areas of interest in the RM [Deb06, VD09, ARBJ03,
LPG13], however, these sampling methods aim to oversample the
area of interest rather than sample the light source once with a low-
dimensional descriptor.

3. Dominant Light Definition

Before introducing the 5D light feature vector, we first define how
we obtain dominant lighting properties, which we then use to en-
code into the dominant light features. A dominant light in an RM is
a local region of the lighting sphere Ω ⊂ S2 with the property that
the region has a substantial impact on high-frequency lighting ef-
fects in a scene, including highlights and cast shadows. An RM may
have multiple dominant lights, and we use Ω j to denote the angular
support of each one. We assume light Ω j is given through a light
detection scheme; we use statistical based thresholding defined by
Rhee et al. [RPAC17]. The remainder of this section introduces the
dominant light model (DLM) for summarizing the lighting effects
of each Ω j , and the procedure of fitting the DLM to each Ω j. Sec-
tion 4.1 shows how the fitted parameters of this model are used to
compute the dominant light features of the illumination space.
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Diffuse Filtering

Figure 2: Feature extraction process. Given an input RM, each
dominant light is fit with the DLM. The RM itself is also diffusely
filtered. Then the elevation θ and size σ properties from each DLM
are aggregated into three dominant lighting features Fθ, Fσ, and Fc.
The hue and saturation features Fh and Fs are computed from the
diffusely filtered RM.

3.1. Dominant Light Model (DLM)

To extract the elevation and size of a dominant light Ω j, the first
step is to fit a parametric model to each Ω j. While we are only in-
terested in a lower dimensional representation that Spherical Gaus-
sians (SG) [TS06] provide, we use Anisotropic Spherical Gaussians
(ASG) [XSD∗13] since they often provide a better fit. We then re-
duce the ASG back into a SG. The ASG is defined as a function
given a unit direction v and light intensity a:

G(v,a; [x,y,z], [σx,σy]) = a ·max(v · z,0) · e−σx(v·x)2−σy(v·y)2

(1)

The vectors x, y, z ∈ S2 are the lobe, tangent and bi-tangent axes
respectively, forming an orthogonal basis of R3, with z being the
‘direction’ of the dominant light relative to objects in a rendered
scene. The parameters σx and σy define the size of the Gaussian for
the x and y axes respectively (where σx,σy > 0), and a is the light
intensity. The ASG is reduced into a SG by averaging σx and σy.

3.2. DLM Fitting

The process of fitting G(v,a;p) (where p are the parameters of an
DLM) to a dominant light source f (v) provides an automatic pa-
rameterization of real-world lighting. From the fitted G(v,a;p), we
extract the light features that describe the real-world illumination
properties. To fit G(v,a;p) to f (v), we first initialize, then opti-
mize. The input parameters v and a are given from the direction
of the local maxima and the intensity of the pixel in the RM from
that direction. The remaining parameters p from equation (1) are
given an initial approximation (as well as upper and lower bounds)
and are optimized. σx and σy are initialized to be radially sym-
metric with a solid angle of 0.5334◦(the solid angle of the sun as
observed from Earth), and a lower and upper limit of 0.5334◦and
90◦respectively. The rotation of the DLM is initialized to 0 with a
lower and upper limit of 0◦and 360◦respectively. Given the initial-
ization parameters and boundary conditions, the parameters p are

optimized using the dog-leg trust-region algorithm [VL04] with the
objective function

f (l,g) =
1
N ∑

i
wi(li−gi) (2)

where l is the RM and the g is the DLM approximation of each light
in the RM. N are the number of pixels in the RM, i is each pixel,
and w is the pixel’s corresponding solid angle weight to account for
the distortion at the poles of an equirectangular image.

4. Light Feature Vector

We denote the elevation, azimuth, and size of a given dominant
light as as θ, φ, and σ respectively. From equation 1, θ and φ are the
angular components of z, while σ is the average of σx and σy. An
RM may contain multiple dominant lights, thus an RM may contain
multiple sets of these properties. To obtain a low-dimensional em-
bedding, we describe a way of aggregating these dominant lighting
properties into strictly three dominant light features: Fσ, Fθ, and
Fc. The first two features describe the size and elevation, whereas
the third takes into account the impact of multiple dominant lights,
which describe as "complexity" or "angular spread". In addition to
these dominant light features, we define the features Fs and Fh that
describe the hue and saturation of the RM’s diffuse shading. An
overview of this process is shown in Figure 2.

4.1. Dominant Light Features

After each dominant light Ω j in an RM is fit by an instance of the
DLM, the features of the RM are computed from the fitted DLMs.
In the case that an RM contains more than one dominant light, there
will be multiple DLMs producing N× 2 light properties (σ,θ) for
each of the N dominant lights. We identify the dominant light with
the highest maximum intensity value as the primary light. The re-
maining N−1 dominant lights are secondary lights. The elevation
and size features (Fθ, Fσ) are taken directly from the primary light’s
DLM θ and σ values. The primary light is chosen as it gives the
user an intuitive handle on the most visually striking effect the RM
has on the rendered scene. We then aggregate the secondary light
DLMs into a single feature Fc by considering the azimuthal rela-
tionship between the primary and secondary lights. To do this, we
first define a weighted azimuthal distance as follows:

h(φp,φ j) =
|φp−φ j|

π
· log11

(
a j

σ j
· 1

I
+1

)
, (3)

which takes the normalized azimuth distance between the primary
light’s φp and the secondary light’s φ j and applies a logarithmic
scaling factor. The scaling factor is a way of measuring how visibly
apparent the light is by taking the light’s mass a j

σ j
and dividing it

by the total intensity of the RM I. Since this is a function of light
intensity, we apply logarithmic scaling to be consistent with human
perception. The overall effect of the scaling factor is to filter out
secondary lights that are not as visually striking in their azimuthal
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(a) Ground truth (b) Ours (c) [Karsch14] (a) Ground truth (b) Ours (c) [Karsch14]

Figure 3: Querying the database with the input (ground truth), we compare our result with [Karsch14]. Our method maintains similarities
with the ground truth in both light (RM, left) and illumination properties (rendered scene, right).

Figure 4: Examples of compositing into a photograph, where the RM was selected by a user using the illumination space. Inserted objects
are: (left) Stanford Dragon and Bunny, (center) Stanford Asian Dragon, and (right) cylinder.

spread of light/shadow. Finally, the feature is computed by taking
the maximum value across all secondary dominant lights:

Fc = max(h(φp,φ j) : j = 1, ...,N). (4)

A multiplicative sum across using all secondary lights could be
considered in order to ensure all dominant lights contributed to the
feature. However, its physical meaning becomes less obvious. By
using the max function, we can observe that a pair of dominant
lights in an RM that were azimuthal opposite, with equal intensity,
would become the highest possible azimuthal spread Fc. By intro-
ducing the RM’s intensity I, the feature scales for each RM, giving
those RM’s with relatively brighter secondary lights a higher com-
plexity value.

4.2. Ambient Light Features

The ambient illumination properties from an RM plays an impor-
tant role in determining the mood and tone of a rendered image.
We describe this effect with two features: the diffuse hue and satu-
ration (Fh and Fs respectively). There are a number of possibilities

for representing the overall color of an RM. It is intuitive if there is
a 1-to-1 correspondence between the features and an exact match-
ing color in the illuminated scene. For this reason, the features are
set to the color of the diffusely filtered RM in the up direction. This
corresponds to the color of a diffuse plane parallel with the floor.

5. Results

Using the light features, we are able to construct the illumination
space, a 5D feature space for RMs which is compact and intu-
itive. Querying the database runs at interactive rates using opti-
mized KNN algorithms [ML14]. Search-based tasks uses an input
to query the RM database in order to find similar illumination. We
can simply project a new RM into the database using the same fea-
ture extraction methods. As such, an example RM provided from
artists (e.g., captured on set) can be used to find other similar illu-
mination (Figure 3 shows examples of using an RM to query the
database to find another similar RM). To demonstrate the utility of
the illumination space for rendering tasks, Figure 4 shows exam-
ples of compositing synthetic objects into photographs. Figure 5,
6, and 7 show the examples of gradually changing the parameters
along light size (shadow softness), elevation (shadow length), and
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the azimuthal spread features (Fσ, Fθ, and Fc respectively). We ob-
serve that the RMs often appear in one of two color distributions
(the peaks of hue in Figure 1). We visualize the cool to warm tran-
sition in one dimension in Figure 8.

6. Conclusion

This paper presents a set of light features that describe the illu-
mination properties of an RM. The features themselves are con-
cise and intuitive, presented as a 5D feature vector, describing both
high and low frequency details. The features have a direct corre-
spondence between the light source and its impact on the rendered
scene. By introducing a dominant light model, fitting algorithm,
and lights features, it is possible to automatically parameterize a
large database of RMs into low dimensional features. From these
features, we are able to construct a lighting-based feature space -
the illumination space - that arranges RM databases. Future work
can consider methods of overcoming sparsity in RM databases
(e.g., interpolation), which can make it difficult to navigate the
space if few samples exist.
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Figure 5: Feature Fσ, we show the transition from small to large area lighting (sharp to soft shadows).
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Figure 6: Feature Fθ, we show the transition from low to high elevation lighting (long to short shadows).
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Figure 7: Feature Fc, we show the transition from low to high azimuthal spread (complexity).
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Figure 8: Feature Fh and Fs are the color features. It is common to find RMs with either red (indoor, sunset), blue (clear sunny sky) or
desaturated colors (indoor, overcast). This corresponds to a cool/warm color distribution. We show transition from high saturation blue,
desaturated, and high saturation red in one dimension.
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