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The wave function of  a Bose or Fermi liquid in a potential v (e.g., the van 
der Waals potential of  a metallic boundary wall, or the polarization poten- 
tial of  an ion in the liquid) is taken to be IIs(i)qb, where ap is the wave function 
in the absence of  v. The function s is determined by a many-body variational 
calculation. For a weak potential, s and the density are explicitly determined 
up to a quadrature. 

1. I N T R O D U C T I O N  

Knowledge of the wave function of a quantum fluid in an external field 
is necessary for the understanding of several phenomena in which liquid 
helium adheres to or is bounded by solids. We have in mind the properties 
of helium films, 1 and heat transfer between solids and liquid he l ium)  In 
both cases, the attractive van der Waals forces 3 between the solid and the 
helium liquid play the dominant  role. A related problem is the distortion of 
the wave function of helium by the polarization force between an ion in the 
liquid and each helium atom. Such distortion may have important  effects 
on the mobility of ions in helium. 4 

In this paper  we shall derive equations determining the wave function 
a n d  the density of a quantum fluid subject to such forces. The techniques 
used are those developed in the study of the surface structure of helium, 5 
and of vortex lines in helium. 6 The discussion will correspondingly be 
abbreviated. We begin by considering the effect of a potential v(z) on a fluid 
bounded by a plane solid surface at z = 0. 
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2. WAVE F U N C T I O N  AND ENERGY 

Consider a system of N atoms of mass m, held in a box of side L at abso- 
lute zero. The Hamil tonian of the system is taken to be 

Ho = - ( h 2 / 2 m ) Z V ~  + ~,Zu(r , j )  + ~ w(r,) + ~ m g z ,  (1) 
i i < j  i i 

The third term is the short-range potential of the (impenetrable) walls. It 
may, for example, be an infinite step function, which can equivalently be 
replaced by the boundary condition that the wave function be zero at 
the walls. The last term is the gravitational potential, which has negligible 
effect apart  from imposing a preferred direction on the system. We assume 
that the system is in the liquid phase, and has a free surface at z -~ D < L. 
The ground state ~(rl  • .. rN) of H o, with eigenvalue Eo, is assumed known. 
For  most of the space occupied by the liquid, q~ is very well approximated 
by the wave function of bulk liquid at some number density n0. 

We now let some external field v(z) be switched on at the z = 0 wall. 
The potential v is assumed to be of substantially longer range than w--i.e., 
extending over at least several atomic diameters. The Hamiltonian becomes 

H = H o + ~v(zi)  (2) 
i 

and we shall variationally optimize the wave function 

= Sqb S = 1-Is(zi) (3) 

by minimizing the expectation value of H. We have 

Ho~P = Eo~F _ (hZ/Zm)~#-1 ~ V~. (~2ViS) (4) 
i 

so that 

far ...ar,,V,v/far ...ar,¢V -Eo 

=Nf arl...a,:N{(h2/2m) s'(zl)/s(zl)12+v(zl)}v2/f arl...dr,,V 2 (S) 

(H0 and H are real linear operators, so that q) and • can be taken real). 
We define a number  density n(r) by 

n ( r O = N f d r 2 . . . d r u ~ P 2 / f d r l . . . d r N ~ P  2 (6) 
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For the problem defined above, n is a function of z only, and the expectation 
value <H - E0> can be written as 

f dr n(z){(hZ/Zm)[s'(z)/s(z)] 2 + V(Z)} 

= L 2 f dz n(z){(hZ/2m)[s'(z)/s(z)] z + v(z)} (7) 

We have assumed that L is large relative to the atomic diameter, so that edge 
effects can be neglected. 

3. VARIATIONAL CALCULATION 

To determine the best wave function of the form (3), we take variations 
6s in s ; the best s is to satisfy the equation 

6<H - Eo> = 0 (8) 

From (7) we have 

y dr{6n[(s'/s) + + 2n(s'/s)[(~s'/s) - (s'~s/s2)]} = 0 (9) (2my~h2)] 

The variation 6n in the number density is given by 5 

f drz[~s(zg/s(z2)] [n2(rl, rz) - n(zl)n(z2)] (10) ~n(zl) 2[~S(Zl)/S(Z l)]n(z l) + 2 

where the pair density function n2 is defined by 

n2(rl,r2) = N(N - 1 )  f dr3...drp?W / f drl ...drNq '2 (11) 

Substituting (10) into (9), and using the symmetry 

n2(r2, r l )  = nz(rl, i"2) (12) 

we find the following equation for s: 

[S(Z1)/n(Z1)] [YI(Z1)S'(Z1)/S2(Z1)] ' :  [2mv(zO/h 2] + [1/LZn(zO] 

X f dx 1 dy I f dr2{[S'(Z2)/S(Z2)] 2 + [2/~1)(z2)/]~21}[n2(r,, r 2 ) -  /1(zl)/~(z2) ] 
(13) 

As in Ref. 5 we define a generalized pair correlation function g and a kernel G : 

nz(rl, rz) = n(zl)n(zz)g(rl, r2) (14) 
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G ( z i ' z 2 ) =  L~lim L-2 f dxldy, f dx2dy2[g(r,,r2)- 1] (15) 

Then the function s is determined, in the limit of large L, by the nonlinear 
integrodifferential equation [cf. Eq. (20) of Ref. 5] 

[s(za)/n(zl)] [n(zl)s'(za)/sZ(zO] ' = [2mv(zl)/h z] 

+ f dz2n(z2)G(z 1, z2){[s'(z2)/s(z2)] 2 + [2mv(zz)/h2]} (16) 

The limit in Eq. (15) is shown in Ref. 5 to exist subject to a rather weak 
condition on g. Further, since g(r~, r2) is a function of Zl, z2 and of 

P 1 2  = [(X1 - -  X2)  2 -}- (Yl - y 2 ) 2 ]  1/2 (17) 

in all regions of the box except near the x and y boundary walls, we have 

G(zl,  z2) = dx  dy[g(z 1 , z 2, [x 2 + y2]1/2) - 1] 

f2 = 2n dp p[g(zl,  z2, p) - 1] 

= 2n dr r [g ( z l , z2 , r )  - 1] (18) 
I~1 -z2f 

where r 2 = p2 + (zl - z2) 2. 
Equations (16) and (18) give an exact formal solution to the problem 

of finding the best wave function of the type (3) for a Bose or Fermi fluid in 
the field v(z). Before going on to an approximate evaluation of the functions 
n and g, we will discuss the related problem of a quantum fluid in a central 
field v(r). 

4. CENTRAL FIELD 

We consider a large system with Hamiltonian 

H = Ho + ~ v(r3 
i 

where now 

(19) 

Ho = ( -  h2/2m) E V} + ~ ~ utrij) + ~. w(ri) (20) 
i i j i 

with w(r} representing the short-range part of the potential due to an impurity 
in the fluid, and v(r) representing the long-range part. For example, w 
could be an effective potential which keeps atoms out of a sphere of radius R 
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in the case of an electron bubble in liquid helium, and the corresponding 
v(r) would then be the attractive polarization potential between the electron 
and the helium atoms. We again assume that we know @, the ground-state 
wave function of H o with eigenvalue Eo. 

The appropriate trial wave function is 

W = S@ S = [ I s ( r i )  (21) 
i 

and the expectation value in the state W of H - Eo is 

f dr n(r){(h2/2m)[s'(r)/s(r)] 2 + v(r)} (22) 

Equations (9) and (!0) are modified simply by replacing z by r. The equation 
corresponding to (13) is, with df2 = sin 0 dO d~), 

[s(r l)/r2n(r i)l [rZl n(r a )s'(r i)/s2(r x)]' = [ 2¢v(r x)/h 2] + [ l /4rcn(r t)] 

x f df~ i f dr2{[s'(r2)/s(r2)] 2 + [2mv(r2)/h2~}[n2(ri,r2)- n(ri)n(r2) ] (23) 
.1  d 

and the corresponding generalized pair correlation function g and kernel G 
are defined by 

n z ( r l ,  r2 )  = n(ri)n(rz)g(r l, r2) (24) 

G(rl,r2) = (1/4~z)( dgt I f d~12[g(ri,r2)- 1] (25) 
d J 

The function s is thus determined by the integrodifferential equation 

[s(ri)/rZln(q)] [rZn(rl)s'(rl)/s2(rl)] ' = [2mv(q)/h2] 

;o + dr2rZn(r2)G(ri, r2){[s'(r2)/s(r2)] 2 + [2mv(r2)/h21} (26) 

Since g is a function of the three variables r l ,  r2, and rlz, where 

r22 = r 2 + r22 - 2rlr2 cos 012 (27) 

the expression for the kernel G simplifies to 

G ( r i ,  r 2 )  = 2n d#[g(rl, r2 ,  [r~ + rE - -  2rlr2~t~ 1/2) - -  1] 
- 1  

(28) 
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5. A P P R O X I M A T I O N S  F O R  n A N D  g 

It remains to evaluate the functions n and g which are both functionals 
ofs. As regards g, an argument was given in Ref. 6 to justify the approximation 

, r ~ go  r2 g ra, r2 rl, , r  (29) 

where go is the pair correlation function of the fluid with wave function ~. 
We shall make the same approximation here. At a distance of a few atomic 
diameters from the wall or the ion, go becomes go(r), the pair correlation 
function of the bulk fluid. Then G may be expressed in terms of the experi- 
mentally known liquid-structure factor 

F(k) = 1 + no f dr exp (ik- r)[go(r) - II (30) 

From Ref. 5 we have 

f) Go(z a , z2) = (1/n~o) dk[F(k) - 1] cos k(zl - z2) (31) 

The corresponding expression for spherical symmetry may be obtained from 
Eq. (28), the Fourier inverse of Eq. (30), and the expansion 7 

(sin krlz/kr12) = ~ (2 /+  1)P1 (cos 012)jl(krOjt(kr2) (32) 
/ = 0  

We get [cf. Eq. (40) of Ref. 6] 

f/ Go(r1, r2) = (2/zero) dk k2[F(k) - lJjo(krl)jo(kr2) (33) 

To obtain a relation between n and s, we also proceed in a similar way 
to Refs. 5 and 6. Equation (10) suggests the functional form 

n(z) = no(z)s2(z) exp z(z) (34) 

where no(z ) is the single-particle density corresponding to q~ (and is thus 
independent of s). Taking variations in s and using (10) and (14) gives 

6Z(Zl) = 2 f dr2[6s(z2)/s(z2)]n(z2)[g(rl, r 2 )  - 1] (35) 

which has the approximate solution 

f dr 2 n(z2)[g(rl, r2) - 1] (36) ~'(Zl) 

plus a function independent of s. 
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When v is switched off, n(z) = no(z ). Thus we can write 

z(z 0 = f dr2[n(z2) - no(z2)] [g(r 1,1"2) - -  1] 

;0 o = d z 2 [ n ( z 2 )  - n o ( z 2 ) ] G ( z l ,  z2] (37) 

The corresponding relation for spherical symmetry is 

z(rx) = f dr2[n(r2) - no(r2)] [g(rl, r2) 1] 

f0 o = dr2rZ[n(r2) - no(r2)]a(rl,  r2) (38) 

The Percus-Yevick and the convolut ion-hypernet ted chain equations of 
classical statistical mechanics have similar form, 8'6 and all three are equiva- 
lent in the lowest order in the density. 

6.  W E A K  F I E L D S  

Finally, we shall given an approximate  solution to the general equations 
valid in regions where v can be taken to be "weak."  We expect these regions 
to be those where v is small compared to a typical internal or zero-point 
energy, for example, mc ~, where c is the speed of sound. This energy is 
2.36 meV for liquid 4He. The polarization potential between an ion of charge 
e and atoms of polarizability e is - ~e2/2r ~. This is approximately - 0.3 meV 
at the surface of an electron bubble in helium, and we may thus expect the 
expressions for s and n derived below to be good approximations for all r 
where no(r) is constant. The range in which the potential can be considered 
to be weak is more precisely determined in each case by the criterion 

Is - 1[ << 1 (39) 

We write s = exp a in the general equations (16) and (26), and expand 
in powers of a. At the same time we approximate no by no, g by go(r12), and 
make the lowest order approximations for z : 

z(z0 ~- 2no dz2a(z2)Go(za, z2) 

;) z(rl) ~ 2no drzrZ~a(r2)Go(rl, rz) (4o) 
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Keeping only linear terms, we obtain the equations 

[ f: a"(zl)  = (2m/h 2) V(Zl) + no dzzv(zz)Go(zl ,  z2 

[ ;; ] [rla(rl)]" = (2m/h2)rl v(rl) + no drzr~v(rz)Go(rl, r2) (41) 

so that 

s [ 1 a(z) = (2m/h 2) dza(zl - z) v(zO + no dz2v(zz)Go(zl ,  z2) 
z 

f; [ f; ] ra(r) = (2m/h 2) dr1(rl - r)rt v(rO + rio drzr2v(r2)Go(r 1, r2) (42) 

In this approximation,  the densities are given by 

[n(z) - no]/no = 2a(z) + z(z) 

= 2 ~r(z) + fl o d z w ( z O a o ( z  1, z) (43) 

and 

[n(r) - no]/no = 2 a(r) + no drlr2a(rOGo(rl ,  r) (44) 

Thus the wave function and the density of a quantum fluid in a weak field 
are explicitly determined in terms of the pair correlation function of the bulk 
fluid. It is, however, clear that the approximations made cannot be accurate 
very close to the boundaries z = 0 or r = R. 

There the wave function is determined mainly by the short-range 
potential w. In principle it may be calculated by the methods of this paper, 
using Eq. (16) or (26) with v replaced by w and with the appropriate  correla- 
tion functions. But the potential w (which excludes the fluid from some region) 
cannot be regarded as weak, and the equations cannot be linearized. 
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