

Chair in Public Finance

Victoria Business School

Welfare-Improving Income Tax Reforms in NZ

John Creedy, Norman Gemmell, Nicolas Hérault, Penny Mok

What constitutes a 'good' tax system?

- From 'maxims' to welfare economics (from Smith to Edgeworth): Implications of adopting value judgements
- Social Welfare Function concept of optimal tax structure
- Structural approach: explicit preferences, govt budget constraint etc.
- Reduced form: use of first-order condition (marginal cost = marginal benefit)
- Valuable lessons not least recognition of limits to redistribution
- Practical policy advice: need for microsimulation
- But cannot solve for optimal system, and cannot make such large policy change in practice
- Question: What marginal reforms would move towards an optimal system?

Part 1

THE METHOD

The method follows ...

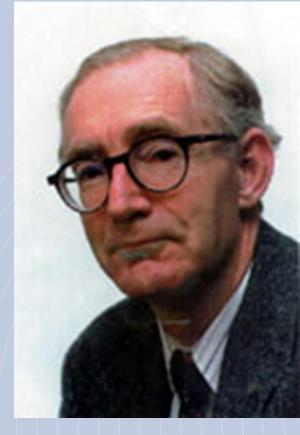
- Creedy, J. and Hérault, N. (2012) Welfare-improving income tax reforms: a microsimulation analysis. *Oxford Economic Papers*, 64, pp. 128-150.
- Creedy, J., Hérault, N. and Kalb, G. (2011) Measuring welfare changes in behavioural microsimulation modelling: accounting for the random utility component. *Journal of Applied Economics*, 14, pp. 5-34 (2011).
- Creedy, J., Kalb, G. and Scutella, R. (2006) Income distribution in discrete hours behavioural microsimulation models: an illustration. *Journal of Economic Inequality*, 4, pp. 57-76.

Central Concepts

- Full Income
- The net income which could be obtained if all the individual's endowment of time were devoted to work at the fixed wage rate
- Equivalent Variation (EV)
- The maximum an individual would be prepared to pay, after a 'price' change, to go back to the old prices (this is positive for welfare loss)
- Money Metric Utility
- The full income that, at a set of 'reference prices' gives the same utility as the actual prices

Useful Results

- If pre-reform prices are treated as reference prices ...
- Pre-reform money metric utility is pre-reform full income
- Post-reform money metric utility is
- Pre-reform full income minus EV


Overall Evaluation of Policy Changes

- Explicit value judgements are required
- Use Social Welfare Function defined in terms of money metric utility per adult equivalent person
- Using SWF associated with Atkinson inequality measure, the abbreviated form is:
- W = mean*(1 Inequality)
- With discrete hours approach, each individual has conditional distribution of hours, given actual pre-reform hours. The full post-reform conditional hours distribution for each individual can be used instead of expected values, using 'pseudo distribution' approach.

Atkinson's Inequality Measure

$$I = \frac{y - y_{\varepsilon}}{\overline{y}} = 1 - \frac{y_{\varepsilon}}{\overline{y}}$$

$$W = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 - \varepsilon} y_i^{1 - \varepsilon} \quad \text{for } \varepsilon \neq 1, \ \varepsilon > 0$$

$$y_{\varepsilon} = \left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1-\varepsilon}y_{i}^{1-\varepsilon}\right)^{1/(1-\varepsilon)}$$

Adult Equivalent Scales

Distinguish only children and adults

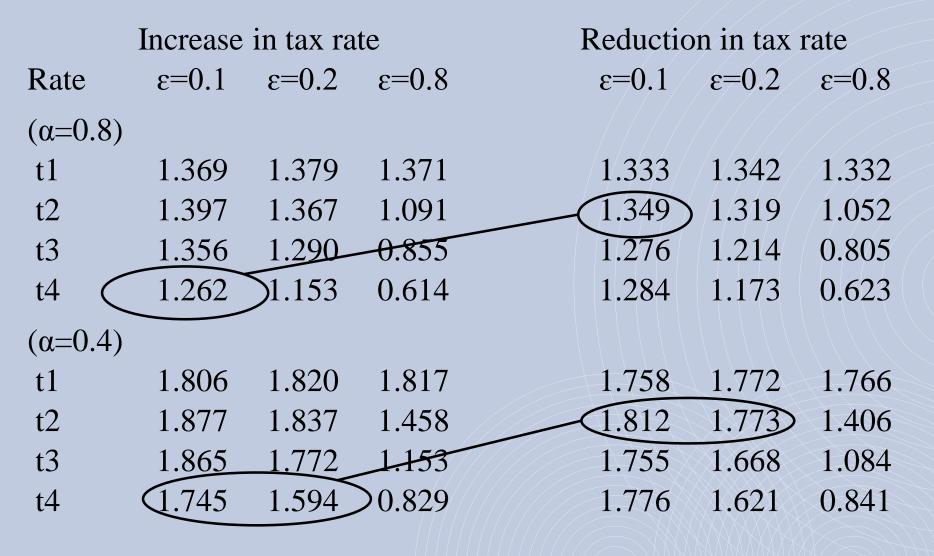
$$m_i = \left(n_{a,i} + \theta n_{c,i}\right)^{\alpha}$$

 α reflects scale economies

Part 2 THE APPLICATION TO NZ

The model

- TaxWell-B (Treasury's Behavioural Model)
- Discrete hours structural approach to labour supply modelling; quadratic utility; joint maximisation for couples.
- Based on 2011/12 tax structure and Household Economic Survey.
- Could apply to wide range of benefit levels and taper/abatement rates, but analysis restricted to income tax structure


The NZ Income Tax Structure

Bracket	Threshold	Tax Rate	
1	0	10.5	
2	14,000	17.5	
3	48,000	30	
4	70,000	33	

Thinking about Epsilon

- Transfer \$1 from person in top bracket with \$100k, to person in bottom bracket with \$10k
- What is maximum 'leak' that would be tolerated?
- For ε of 0.1, max leak = 20 cents
- For ε of 0.2, max leak = 37 cents
- For ε of 0.8, max leak = 84 cents
- For ε of 1.4, max leak = 96 cents

Changes in Marginal Tax Rates: Absolute change in welfare per dollar of revenue

W Change for Revenue-Neutral Rate Changes α =0.8 and ϵ =0.2

Lower tax rate

Raise tax

rate	t1	t2	t3	T4
t1		-18.302	-50.985	-63.643
t2	-11.420		-69.700	-88.314
t3	6.539	3.729		-14.599
t4	30.391	26.774	9.767	

Additional responses ...

- The revenue and welfare changes are associated *only* with labour supply responses
- Literature on Elasticity of Taxable Income suggests other larger responses, particularly in higher-income ranges
- Change in Revenue: Mechanical + Behavioural
- For top tax bracket, Behavioural equal to:
- -(Income s.t. top rate)(change in tax rate)(ETI)
- multiplied by t/(1-t).

Threshold Changes: Absolute change in welfare per dollar of revenue Reduction in threshold Increase in threshold Threshold $\epsilon=0.1$ $\epsilon=0.2$ $\epsilon = 0.2$ 8.0=38.0=3E=0.1 $(\alpha = 0.8)$ 1.357 1.349 1.353 1.287 1.344 1.287 a2 0.852 .390 1.230 1.334 0.931 a3 1.283 0.814 1.403 1.226 1.3600.9461.284 a4 $(\alpha = 0.4)$ 1.792 1.708 1.709 a21.784 1.773 1.782 a3 1.762 1.687 1.908 1.147 1.829 1.254 1.918 1.768 1.690 1.271 1.879 1.099 a4

Some Caveats ...

- Gives only the *direction* of *small* changes
- Use of welfare metric: MMU with heterogeneous preferences cannot guarantee concavity of Social Welfare Function

