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Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic

beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidi-

rectional) propagation, in contrast to all currently known closed-form solutions of the wave equa-

tion. Application is made to the evaluation of the energy, momentum, and angular momentum of

acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established

between integration over space of the energy, momentum, and angular momentum densities, and

integration over the wavevector weight function. The inequality linking the total energy and the

total momentum is made explicit in terms of the weight function formulation. It is shown that a

general pulse can be viewed as a superposition of phonons, each with energy �hck, z component of

momentum �hq, and z component of angular momentum �hm. A closed-form solution of the wave

equation is found, which is localized and causal, and its energy and momentum are evaluated

explicitly. VC 2017 Acoustical Society of America. https://doi.org/10.1121/1.5014058

[PLM] Pages: 3428–3435

I. INTRODUCTION

This paper is about the basic properties of acoustic

pulses in fluids: their energy, momentum, and angular

momentum. We shall show that simple universal expressions

can be derived for these quantities, and that they relate

directly to the phonon picture of sound excitations. We give

an explicit pulse wavefunction, forward-propagating every-

where, characterized by a single length parameter a, and

thus by a time a=c (c stands for the speed of sound). The

complex wavefunction leads to two physical pulses, based

on the real and imaginary parts. These have the same energy,

momentum, and angular momentum, as we shall prove, but

different physical forms. It is hoped that such analytical sol-

utions may be of use in the analysis of problems such as the

trapping of spheres by acoustic pulses (Kang and Yeh, 2013)

or the generation and observation of acoustical helical wave-

fronts (Esfahlani et al., 2017). A recent approach to solutions

of the wave equation in the space-time domain (Klaseboer

et al., 2017) also uses the Helmholtz equation to build scat-

tering solutions of the wave equation.

In linearized hydrodynamics the velocity potential

Vðr; tÞ of sound pulses satisfies the wave equation, as is well

known (Landau and Lifshitz, 1959, Sec. 63)

r2Vðr; tÞ�@2
ctVðr; tÞ¼ 0; @2

ctVðr; tÞ¼ c�2@2
t Vðr; tÞ: (1)

Likewise it is well-known that monochromatic acoustic

beams of angular frequency x ¼ ck satisfy the Helmholtz

equation (which follows on assuming the time dependence

e�ikct in solutions of the wave equation)

r2W r; kð Þ þ k2W r; kð Þ ¼ 0; k ¼ x
c
: (2)

Let eðr; tÞ and pðr; tÞ be the energy and momentum densi-

ties, respectively, associated with a sound pulse. The total

energy, momentum, and angular momentum are then given by

E ¼
ð

d3reðr; tÞ; P ¼
ð

d3rpðr; tÞ;

J ¼
ð

d3r r � pðr; tÞ: (3)

In the absence of viscous dissipation and scattering these

quantities are all conserved (are independent of time) as may

be expected. Explicit demonstration of conservation of

energy and momentum and angular momentum are given in

Lekner (2006a) and Lekner (2006b), respectively. These

quantities are all of second order in the velocity potential

when (as is assumed here) the spatial integral of the first-

order deviation (due to the pulse) of the density from the

density q0 of the undisturbed fluid is zero. This condition, of

mass conservation to first order, is equivalent toÐ
d3r @ctV ¼ 0: The total energy and z components of the

momentum and angular momentum expressed in terms of

the velocity potential are then (Landau and Lifshitz, 1959,

Sec. 64; Lekner, 2006a)

E ¼ 1

2
q0

ð
d3r rVð Þ2 þ @ctVð Þ2
h i

; (4)

cPz ¼ �q0

ð
d3rð@zVÞð@ctVÞ; (5)

cJz ¼ �q0

ð
d3rð@/VÞð@ctVÞ: (6)

We shall be using both Cartesian coordinates ½x;y;z� and

cylindrical polar coordinates ðq;/;zÞ, with q¼ðx2þy2Þ1=2
the

distance from the z axis, and / the azimuthal angle. We have

taken the direction of P to coincide with that of positive z.a)Electronic mail: john.lekner@vuw.ac.nz
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The energy of a localized pulse is always greater than the

speed of sound times the net momentum, since (as noted in

Lekner, 2006a) the difference is proportional to an integral

over all space of ð@xVÞ2þð@yVÞ2þð@zV�@ctVÞ2.

As discussed in Lekner (2006b), the component of J
parallel to P is invariant to change of origin, and can thus be

regarded as the intrinsic angular momentum associated with

the pulse. From Eq. (6) we see that acoustic pulses that have

a velocity potential independent of the azimuthal angle have

zero intrinsic angular momentum, as may be expected.

In Sec. II we shall show how pulses may be viewed as

superpositions of beams, and that, for velocity potential

independent of the azimuthal angle, this representation is

directly related to Bateman’s solution of the wave equation

in integral form.

II. LOCALIZED SOLUTIONS OF THE WAVE EQUATION

We can construct wavefunctions that have no backward

propagating part from the solutions of the wave equation in

cylindrical polar coordinates ðq; /; zÞ, in which it is

separable:

@2
q þ

1

q
@q þ

1

q2
@2

/ þ @2
z � @2

ct

� �
Jm jqð Þ

� eim/eiqze�ikct ¼ 0 if j2 þ q2 ¼ k2: (7)

JmðjqÞ is the regular Bessel function of order m.

Superposition of such solutions gives the general pulse

velocity potential

Vmðq;/; z; tÞ ¼ eim/
ð1

0

dkf ðkÞe�ikct

ðk

0

djgðk; jÞ

� eiqzJmðjqÞ; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � j2
p

: (8)

The functions f ðkÞ; gðk; jÞ are arbitrary complex functions,

subject only to the existence of the expression (8) and associ-

ated integrals, namely, those which give the total energy,

momentum, and angular momentum of a pulse. A more com-

pact form is obtained by conflating the functions

f ðkÞ; gðk; jÞ into their product f ðk; jÞ;

Vmðq;/; z; tÞ ¼ eim/
ð1

0

dke�ikct

ðk

0

djf ðk; jÞ

� eiqzJmðjqÞ; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � j2
p

: (9)

The form of the Bessel-based pulses in Eq. (8) or (9)

connects them to generalized Bessel beams (Lekner, 2006c,

2007). For integral m we define a scalar monochromatic

beam of angular frequency x ¼ kc by

Wmðq;/; z; kÞ ¼ eim/
ðk

0

djf ðk; jÞeiqzJmðjqÞ: (10)

Such beam wavefunctions automatically satisfy the

Helmholtz equation ðr2 þ k2ÞWðr; kÞ ¼ 0: The pulse

defined in Eq. (9) is seen to be a superposition of generalized

Bessel beams

Vmðq;/; z; tÞ ¼
ð1

0

dke�ikctWmðq; z; kÞ: (11)

Bateman (1904) obtained a general solution of the wave
equation in integral form. For solutions with axial symmetry

(independent of the azimuthal angle /) the nonsingular part

of the Bateman solution is, with Fðu; vÞ an arbitrary twice-

differentiable function,

V q; z; tð Þ ¼
1

2p

ð p

�p
dh F zþ iq cos h; ctþ q sin hð Þ : (12)

The general solution includes a term that is logarithmically

singular on the axis q ¼ 0, which we omit. A proof (different

from Bateman’s) that Eq. (12) satisfies the wave equation is

given in Lekner (2016a, p. 491).

On the propagation axis q ¼ 0 the pulse wavefunction

[Eq. (12)] becomes Vð0; z; tÞ ¼ Fðz; tÞ. For example, if the

on-axis wavefunction takes the form eikðz�ctÞ, Bateman’s

integral becomes

1

2p

ð2p

0

dh eik z�ctþiqeihð Þ ¼ eik z�ctð Þ

2pi

þ
du

e�kqu

u
¼ eik z�ctð Þ:

(13)

(u ¼ eih and the second integral is around the unit circle,

with a simple pole at u ¼ 0.) Thus, the plane-wave form on

the axis determines the whole pulse to be a plane wave.

Bateman’s integral solution [Eq. (12)] is directly related

to the m ¼ 0 form of Eq. (9). On the z axis we have

V0ð0; z; tÞ ¼
ð1

0

dke�ikct

ðk

0

djf ðk; jÞeiqz ¼ Fðz; tÞ: (14)

The full wavefunction is thus, on substitution into Eq. (12),

V0 q; z; tð Þ ¼
1

2p

ðp

�p
dh
ð1

0

dke�ik ctþq sin hð Þ

�
ðk

0

dj f k; jð Þeiq zþiq cos hð Þ: (15)

By Bessel’s integral (Watson, 1944, Sec. 2.21) the integra-

tion over h gives 2pJ0ðjqÞ, and we regain the m ¼ 0 form of

Eq. (9),

V0ðq; z; tÞ ¼
ð1

0

dke�ikct

ðk

0

djf ðk; jÞeiqzJ0ðjqÞ: (16)

We return to the representation of pulses as superposi-
tion of beams: if Wðr; kÞ satisfies the Helmholtz equation, a

set of pulse velocity potentials satisfying the wave equation

can be obtained by integration over wavenumber (with some

weight function of k incorporated into W),

Vðr; tÞ ¼
ð1

0

dke�ikctWðr; kÞ: (17)

As the simplest example, if the beam wavefunction is a plane

wave, Wðr; kÞ ¼ GðkÞeikz, we obtain the general plane-wave

pulse Vðz� ctÞ, extending to infinity in the x and y
directions.

J. Acoust. Soc. Am. 142 (6), December 2017 John Lekner 3429



To obtain a pulse localized in space-time we need to

start with a beam that is transversely localized. A closed-

form example of a transversely localized beam is provided

by a simple beam wavefunction (Lekner, 2001),

Wðr; kÞ ¼ e�ka0R�1 sin kR ða0 > 0Þ;
R2 ¼ q2 þ ðz� ib0Þ2: (18)

Equation (17) then gives us

V r; tð Þ ¼
1

2iR

ð1
0

dke�ka0e�ikct eikR � e�ikRð Þ

¼ 1

R2 þ a0 þ ictð Þ2
: (19)

We recognize this wavefunction as a variant of the solution

of the wave equation used in Lekner (2006a). To obtain an

exact correspondence, we set

a0 ¼ ðaþ bÞ=2; b0 ¼ �ða� bÞ=2: (20)

Then Eq. (19) reduces to

V r; tð Þ ¼
1

q2þ a� i zþ ctð Þ½ � bþ i z� ctð Þ½ �

¼ 1

r2� ctð Þ2þ abþ i a� bð Þz� aþ bð Þct
� � : (21)

There is a more direct way of obtaining this wavefunction:

The function ðx2 þ y2 þ z2 � c2t2Þ�1 ¼ ðr2 � c2t2Þ�1
solves

the wave equation, but is singular on the “sound-cone”

r2 ¼ c2t2. Complex displacements in space or time make it

nonsingular at real space-time points, an idea credited by

Trautman (1962) to Synge (1960). The complex displace-

ments z! zþ iða� bÞ=2; ct! ctþ iðaþ bÞ=2 result in the

wavefunction [Eq. (21)]. Ziolkowski (1985) discusses cylin-

drically symmetric solutions of the wave equation of the form

wZðq; z; tÞ ¼ bþ iðz� ctÞ½ ��1

�
ð1

0

dk FðkÞeikðzþctÞ�kq2= bþiðz�ctÞ½ �: (22)

The choice FðkÞ ¼ abe�ka reproduces the simple wavefunc-

tion [Eq. (21)].

Hillion (1993) notes that the wave equation is solved by

functions of the form

wH q; z; tð Þ ¼
f sð Þ

bþ i z� ctð Þ ; s ¼ q2

bþ i z� ctð Þ � i zþ ctð Þ:

(23)

With f ðsÞ ¼ ab=ðsþ aÞ we regain the wavefunction [Eq.

(21)]. An oscillatory wavefunction results from the choice

f ðsÞ ¼ abe�ks=ðsþ aÞ (Lekner, 2006d)

w q; z; tð Þ ¼
ab eik zþctð Þ�kq2=bþi z�ctð Þ

q2 þ a� i zþ ctð Þ½ � bþ i z� ctð Þ½ � : (24)

The Hillion form of solutions given in Eq. (24) can be gener-

alized to give pulses with azimuthal dependence (Lekner,

2006b). One can verify that the following are

wavefunctions:

g

bþ i z� ctð ÞwH g¼ x; y; z; x6iyð Þ;

h

bþ i z� ctð Þ½ �2
wH h¼ xy; x2� y2; x6iyð Þ2

� �
: (25)

Of particular interest are wavefunctions with azimuthal

dependence eim/. We note that xþ iy ¼ qei/, and can verify

that the following are wavefunctions for any twice-

differentiable f :

q
bþ i z� ctð Þ

	 
jmj
eim/ f sð Þ

bþ i z� ctð Þ ;

s ¼ q2

bþ i z� ctð Þ � iðzþ ctÞ: (26)

The values of m are restricted to integers by the condition

wðq;/þ 2p; zÞ ¼ wðq;/; zÞ.
It is notable that all of these closed-form solutions of the

wave equation contain both z� ct and zþ ct. (More exam-

ples may be found in Sec. 4 of the review by Kiselev, 2007.)

They cannot originate from a single radiation source or a

localized array of sources. On the other hand, the form of

Eqs. (8) and (9) guarantees the absence of zþ ct terms: The

integrand contains the factor eiðqz�kctÞ, with k � q � 0. We

shall assume a wavefunction of the form of Eq. (9) and cal-

culate the resultant energy, momentum, and angular momen-

tum in terms of the weight function f ðk; jÞ in Sec. III. An

explicit solution of the wave equation will be given in Sec.

IV, and its properties will be discussed in detail.

III. CALCULATION OF THE ENERGY, MOMENTUM,
AND ANGULAR MOMENTUM

The most convenient form of the general solution of the

wave equation given in Eq. (9) is complex with real and

imaginary parts Vr;Vi of the velocity potential:

V ¼ Vr þ iVi. Suppose we use the real part Vr ¼ ð1=2ÞðV
þV�Þ, and wish to calculate the integral over all space of

ð@zVrÞð@ctVrÞ ¼ ð1=4Þð@zV þ @zV
�Þð@ctV þ @ctV

�Þ. As we

shall see below, the integration over z gives rise to delta

functions, which in the case of the products ð@zVÞð@ctVÞ and

ð@zV
�Þð@ctV

�Þ are both dðqþ q0Þ. Since both q and q0 are by

definition non-negative, these terms integrate to zero. (When

m 6¼ 0 this is to be multiplied by another zero, from the inte-

gration of e62im/ over /.) Only the terms ð@zV
�Þð@ctVÞ and

ð@zVÞð@ctV
�Þ remain. The same is true if we choose to use

the imaginary part Vi ¼ ð1=2iÞðV � V�Þ, and, in fact, the

total energy, momentum, and angular momentum are the

same whether the velocity potential is chosen as the real or

the imaginary part of the complex potential [Eq. (9)].

Therefore the energy, momentum, and angular momentum

expressed in terms of the complex velocity potential are

E ¼ 1

2
q0

ð
d3r jrVj2 þ j@ctVj2
� �

; (27)

cPz ¼ �
1

2
q0

ð
d3r Re @zV

�ð Þ @ctVð Þ
� �

; (28)
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cJz ¼ �
1

2
q0

ð
d3r Re @/V�


 �
@ctVð Þ

� �
: (29)

The fact that the real and imaginary parts Vr;Vi give the

same values of the total energy, momentum, and angular

momentum (although the respective densities are different) is

not too surprising, given the arbitrariness of the real/imaginary

division: If we multiply the complex velocity potential by a

complex number of unit modulus (eih, say), the norm N
¼
Ð

d3r jVj2 remains the same, while the real and imaginary

parts transform into linear combinations of their original values

Vr!Vr cos h�Vi sin h; Vi!Vi cos hþVr sin h: (30)

In the evaluation of the total energy, momentum, and

angular momentum we shall use the techniques introduced

in the calculation of the invariants of acoustic beams

(Lekner, 2006c, 2007). Let us evaluate the angular momen-
tum first, for which we need the spatial integralð

d3r ð@/V�Þð@ctVÞ¼
ð1

0

dqq
ð2p

0

d/
ð1
�1

dzð@/V�Þð@ctVÞ:

(31)

The differentiation of V� with respect to / brings down a fac-

tor of –im, differentiation of V with respect to ct gives a factor

of �ik0. The integration over / gives a factor of 2p. Thusð
d3r ð@/V�Þð@ctVÞ ¼ �2mp

ð1
0

dqq
ð1
�1

dz

ð1
0

dkkeikct

�
ð1

0

dk0k0e�ik0ct

�
ðk

0

djj�1f ðk; jÞ�e�iqzJmðjqÞ

�
ðk0

0

dj0f ðk0; j0Þeiq0zJmðj0qÞ: (32)

In carrying out the integration over q we shall use Hankel’s

inversion formula (Watson, 1944, Sec. 14.4), which in mod-

ern notation readsð1
0

dqqJmðjqÞJmðj0qÞ¼j�1dðj�j0Þ ðj;j0>0Þ: (33)

Thusð
d3r ð@/V�Þð@ctVÞ¼�2pm

ð1
�1

dz

ð1
0

dkkeikct

�
ð1

0

dk0 k0e�ik0ct

ðk

0

djj�1f ðk;jÞ�

� f ðk0;jÞeizð
ffiffiffiffiffiffiffiffiffiffi
k02�j2

p
�
ffiffiffiffiffiffiffiffiffi
k2�j2
p

Þ: (34)

Next we perform the z integration, and use the Fourier

inversion formulað1
�1

dz eiz q0�qð Þ ¼ 2p d q0 � qð Þ

¼ 2p d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 � j2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � j2
p� �

¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � j2
p

k
dðk0 � kÞ: (35)

The last equality follows from the relation [which assumes

GðkÞ to be monotonic in k, so Gðk0Þ ¼ GðkÞ when k0 ¼ k and

nowhere else]

d G k0ð Þ � G kð Þ

 �

¼
���� dk

dG

����d k0 � kð Þ: (36)

Thus, the spatial integrations have removed two of the wave-

number integrations and we are left with

cJz¼
1

2
q0m 2pð Þ2

ð1
0

dk

ðk

0

djjf k;jð Þj2j�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�j2
p

: (37)

An interesting aspect of this result is that the integrals do not

depend on the azimuthal index m, but only on the absolute

square of the weight function f ðk; jÞ. If we take f ðk; jÞ to be

independent of m, Jz is strictly proportional to m, and carries

the sign of m, since the integrand is non-negative.

In the momentum calculation, differentiation of V� with

respect to z brings down a factor of –iq, differentiation of V
with respect to ct gives a factor of �ik0. Proceeding as above,

the spatial integrations give

cPz¼
1

2
q0 2pð Þ2

ð1
0

dk

ðk

0

dj jf k;jð Þj2j�1 k2�j2ð Þ: (38)

Again, if we take f ðk; jÞ to be independent of m, the inte-

grals do not depend on the azimuthal index, and again the

integrand is non-negative. For the acoustic velocity potential

as defined in Eq. (9), the momentum component along the z
axis is positive.

We come finally to the energy integral. The time deriva-

tive part is straightforward. Differentiation of V� with

respect to ct brings down a factor of ik, and differentiation of

V with respect to ct gives a factor of �ik0. The spatial inte-

grations can be carried out as before with the result

ð
d3rð@ctV

�Þð@ctVÞ¼ð2pÞ2
ð1

0

dkk

�
ðk

0

djjf ðk;jÞj2j�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�j2
p

: (39)

Next, we must evaluate the spatial integrals over

ðrV�ÞðrVÞ ¼ ð@qV�Þð@qVÞ þ q�2ð@/V�Þð@/VÞ
þ ð@zV

�Þð@zVÞ: (40)

Differentiation of V� with respect to z brings down a factor

of �iq, differentiation of V with respect to z gives a factor of

iq0. Hence,ð
d3r ð@zV

�Þð@zVÞ¼ ð2pÞ2
ð1

0

dk

�
ðk

0

dj jf ðk;jÞj2j�1ðk2�j2Þ: (41)

The remaining terms, ð@qV�Þð@qVÞ þ q�2ð@/V�Þð@/VÞ, have

the Bessel function parts

@qJmðjqÞ @qJmðj0qÞ þ m2q�2JmðjqÞJmðj0qÞ: (42)
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We use the identities (Olver and Maximon, 2010, relations

10.6.1)

2J0m fð Þ¼Jm�1 fð Þ�Jmþ1 fð Þ;
2m

f
Jm fð Þ¼Jm�1 fð ÞþJmþ1 fð Þ: (43)

These relations reduce the expression (42) to a form amena-

ble to the Hankel inversion formula, namely, to

jj0

2
Jm�1 jqð ÞJm�1 j0qð Þ þ Jmþ1 jqð ÞJmþ1 j0qð Þ
� �

: (44)

The spatial integrations can now be performed as before,ð
d3r ð@qV�Þð@qVÞ þ q�2ð@/V�Þð@/VÞ
� �

¼ ð2pÞ2
ð1

0

dk k�1

ðk

0

dj jf ðk; jÞj2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � j2
p

: (45)

Thus the total energy is given by

E¼1

2
q0 2pð Þ2

ð1
0

dk

ðk

0

djjf k;jð Þj2kj�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�j2
p

: (46)

The pulse energy again does not depend on the azimuthal

winding number m [always assuming that the weight func-

tion f ðk; jÞ is independent of m]. The pulse energy is posi-

tive definite, and further, as we noted in the Introduction, the

pulse energy always exceeds the net momentum times the

speed of sound since

E� cPz ¼
1

4
q0 2pð Þ2

ð1
0

dk k�1

�
ðk

0

djjf k;jð Þj2j�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� j2
p

k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2� j2
p� �

:

(47)

To summarize the results so far obtained (with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � j2
p

),

E
cPz

cJz

2
4

3
5 ¼ p2q0

ð1
0

dk

ðk

0

djjf ðk; jÞj2j�1q
k
q
m

2
4

3
5 : (48)

For comparison, the norm of the velocity potential (calcu-

lated by the same methods) is

N �
ð

d3r jVj2 ¼ ð2pÞ2
ð1

0

dk k�1

ðk

0

dj jf ðk; jÞj2j�1q:

(49)

Again there is no dependence on the azimuthal index m
when f ðk; jÞ is independent of m. Incidentally, we have

proved that E; Pz; Jz; and N are all constant in time.

An equivalent representation is in terms of integration

over the wavenumber q, instead of over j. We have

k2 ¼ j2 þ q2; jdjþ qdq ¼ 0, and with hðk; qÞ ¼ qj�1

f ðk; jÞ the normalization integral is

N ¼ ð2pÞ2
ð1

0

dk k�1

ðk

0

dq jhðk; qÞj2: (50)

The pulse energy, momentum, and angular momentum are

also somewhat simpler, and the expression for the z

component of momentum has a more physical appeal, being

proportional to the integral over q (the longitudinal wave-

number) times jhðk; qÞj2,

E
cPz

cJz

2
4

3
5 ¼ p2q0

ð1
0

dk

ðk

0

dqjhðk; qÞj2
k
q
m

2
4

3
5: (51)

We note that the pulse energy is always greater than the net

pulse momentum, as expected, since k � q.

IV. AN ACOUSTIC PULSE BASED ON THE
PROTO-BEAM

The proto-beam is the confluent tight-focus limit of two

families of beams, transversely bounded exact solutions of

the Helmholtz equation. The first family was introduced by

Carter (1973) and its properties were explored by Berry

(1998) and Nye (1998),

WCðq; zÞ ¼
ðk

0

dq qebq2=2kþiqzJ0ðq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q2

p
Þ: (52)

The second was considered in Lekner (2016b),

Wbðq; zÞ ¼
ðk

0

dq qeqbþiqzJ0ðq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q2

p
Þ: (53)

The lengths k�1 and b determine the extent of the focal

region. When kb is large the longitudinal extent is of order b
and the transverse extent is of order

ffiffiffiffiffiffiffiffi
b=k

p
. As b! 0 the

only length remaining is k�1, and both longitudinal and trans-

verse extents of the focal region are of order k�1. This is the

case for the confluent limit of WC; Wb as b tends to zero

W0ðq; z; kÞ ¼
ðk

0

dqq eiqz J0ðq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q2

p
Þ: (54)

Explicit expressions for W0 are given in Lekner (2016b) in

terms of Lommel functions of two variables, and alternatively

in terms of a series expansion in spherical Bessel functions

and Legendre polynomials. We shall construct a solution of

the wave equation from a superposition of W0ðq; z; kÞ with

the weight functions f ðk; jÞ or hðk; qÞ given by

f k;jð Þ ¼ a4

3
ke�kaj; h k;qð Þ ¼ qj�1f k;jð Þ ¼ a4

3
ke�kaq:

(55)

The resulting solution of the wave equation is

V0 q;z; tð Þ¼
a4

3

ð1
0

dkke�ka�ikct

ðk

0

dqqeiqzJ0 q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�q2

p� �
:

(56)

The prefactor in Eqs. (55) and (56) has been chosen to make

the velocity potential unity at the space-time origin:

V0ð0; 0; 0Þ ¼ 1. To evaluate Eq. (56) we first use Bessel’s

integral (Watson, 1944, Sec. 2.21) to write

J0 q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q2

p� �
¼ 1

2p

ðp

�p
dh eq q cos hþik sin hð Þ: (57)
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The order of integrations over q and then over k may be

inverted, since it is assumed that a > 0. In the final integration

over h an ambiguity arises in the term lnð�a� qþ izÞ, which

we interpret as �ipþ lnðaþ q� izÞ. The result is

V0 q; z; tð Þ ¼
a4 ~a

3

3 ~a2 þ q2

 �2 � 6z2 ~a2 þ q2


 �
� z4 þ 8iz ~a2 þ q2


 �3=2

~a2 þ q2

 �3=2

~a2 þ q2 þ z2

 �3

; ~a ¼ aþ ict: (58)

Differentiation verifies that V0 satisfies the wave equation.

At t ¼ 0 the absolute square of V0 is simple

jV0 q; z; 0ð Þj2 ¼ a10 9a2 þ 9q2 þ z2

 �

9 a2 þ q2ð Þ3 a2 þ q2 þ z2ð Þ3
: (59)

We note that the lateral decay of jV0ðq; z; 0Þj is faster than

the longitudinal decay: Asymptotically these are q�5 and

z�2, respectively. On the propagation axis ðq ¼ 0Þ the modu-

lus squared is

jV0 0; z; tð Þj2 ¼
a8 9a2 þ z� 3ctð Þ2
h i

9 a2 þ c2t2ð Þ2 a2 þ z� ctð Þ2
h i3

: (60)

Propagation is in the positive z direction. There is no back-

ward propagation part containing zþ ct as we had in the sol-

utions (21)–(25). Figure 1 shows the time development of

the modulus of V0.

The norm may now be calculated directly,

N ¼
ð

d3rjV0 q; z; 0ð Þj2

¼ 2p
ð1

0

dqq
ð1
�1

dz jV0 q; z; 0ð Þj2 ¼ p2

9
a3: (61)

Equivalently we may use the expression (50),

N ¼ 2pð Þ2
ð1

0

dk k�1

ðk

0

dqjh k; qð Þj2

¼ 4p2

9
a8

ð1
0

dkk e�2ka

ðk

0

dqq2 ¼ p2

9
a3: (62)

For given length parameter a the effective volume of the

pulse may be represented as a sphere of radius

ðp=12Þ1=3a � 0:64a.

We turn now to the calculation of the total energy and

total momentum of the pulse. (The angular momentum is

zero, since there is no azimuthal dependence in the velocity

potential.) The energy and momentum densities are (see

Landau and Lifshitz, 1959, Sec. 64; Lekner, 2006a, Sec. 3)

e r; tð Þ ¼
1

2
q0 rVð Þ2 þ @ctVð Þ2
h i

;

p r; tð Þ ¼ �c�1q0 @ctVð ÞrV: (63)

In cylindrical coordinates the two nonzero components of

the momentum density are given by

cpq ¼ �q0ð@ctVÞ@qV; cpz ¼ �q0ð@ctVÞ@zV: (64)

Although the total energy and momentum of a pulse are the

same for the real and for the imaginary parts of a complex

velocity potential V ¼ Vr þ iVi, the energy and momentum

densities are different. We shall look at those derived from

the real part of Eq. (58) first. We see from Fig. 2 that the

energy and momentum densities derived from Vr are zero at

the space-time origin, with symmetrically spaced peaks on

either side, the energy density being maximum at z
� 60:3565a (this number is the real root of a quintic in z,

which comes from the differentiation of the on-axis energy

density). As time increases the two maxima merge and

asymptotically form a single peak traveling at speed c in the

z direction, while spreading sideways (Fig. 3).

Next we look at those derived from the imaginary part
of Eq. (58). Figures 4 and 5 show that the energy and

momentum densities derived from Vi are maximal at the

space-time origin. As time increases the pulse splits into two

parts, and asymptotically forms a pair of energy density

peaks traveling at speed c along the axis. Far from the origin

(which is the center of the focal region) the minimum

between the peaks is at z ¼ ct, and the energy density peaks

are located at z ¼ ct6a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2=

ffiffiffi
5
pq
� ct60:3249a. Their

separation is thus asymptotically about 0:65a.

FIG. 1. (Color online) Plots of the modulus jV0ðq; z; tÞj at times

t ¼ 0; ct ¼ 63a. The central t ¼ 0 peak has been scaled down by a factor of

two so that it does not swamp the neighboring moduli at ct ¼ 63a.

Propagation is from left to right. There is symmetry about the space-time

origin, which is the center of the focal region of the pulse.
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The total energy and total momentum of the acoustic

pulse based on V0ðq; z; tÞ may be found from Eqs. (48) or

(51), with the functions f ; h being given by the expressions

in Eq. (55) multiplied by �V , the magnitude of the complex

velocity potential at the space-time origin (up until now we

have normalized the velocity potential at the space-time ori-

gin to unity, but of course it depends on the amplitude of the

pulse). The results are

E ¼ 5

6
p2q0a �V

2
; cPz ¼

5

16
p2q0a �V

2
: (65)

The same results follow for both the real and the imaginary

parts from evaluation of the space integrals in Eqs. (4)–(6),

and from the integration in Eq. (27) using complex V. The

pulses based on the real and imaginary parts converge

toward the focal region and then diverge from it, as we saw

analytically and graphically. Because the convergence and

divergence are strong, the ratio of speed of sound times net

momentum to the energy is substantially less than unity,

namely, 3=8.

V. DISCUSSION

We have seen that the energy, momentum, and angular

momentum of an acoustic pulse may be expressed as

integrals over a wavenumber weight function. We showed in

Sec. III that the real and imaginary parts of the complex

velocity potential, although giving distinct pulses, have the

same energy, momentum, and angular momentum, all inde-

pendent of time in the absence of dissipation and scattering.

The results of Sec. III are summarized in the three formulas

E
cPz

cJz

2
4

3
5 ¼ p2q0

ð1
0

dk

ðk

0

dqjhðk; qÞj2
k
q
m

2
4

3
5: (66)

These equations have a simple interpretation in terms of pho-

nons: The pulse can be viewed as a superposition of pho-

nons, each with energy �hck, z component of momentum �hq,

and z component of angular momentum �hm.

It is interesting to compare Eq. (66) with the expressions

for the energy, momentum, and angular momentum per unit
length of acoustic beams derived from the general beam

wavefunction [EQ. (10)], namely,

Wmðq;/; z; kÞ ¼ eim/
ðk

0

djf ðk; jÞeiqzJmðjqÞ;

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � j2
p

: (67)

FIG. 2. (Color online) Energy and momentum densities at t ¼ 0 correspond-

ing to the real part Vr of the velocity potential [Eq. (58)]. The energy density

is shown by shading and contours and the momentum density is shown by

arrows. Both are zero at the origin.

FIG. 3. (Color online) Energy and momentum densities at ct ¼ 2a corre-

sponding to the real part Vr of the velocity potential [Eq. (58)]. Notation as

in Fig. 2. The three-dimensional picture is obtained by rotation about the

direction of propagation (the horizontal axis).

FIG. 4. (Color online) Energy and momentum densities at t ¼ 0 correspond-

ing to the imaginary part Vi of the velocity potential [Eq. (58)]. As in Fig. 2

the energy density is shown by shading and contours and the momentum

density is shown by arrows. Both are maximal at the origin.

FIG. 5. (Color online) Energy and momentum densities at ct ¼ 2a corre-

sponding to the imaginary part Vi of the velocity potential [Eq. (58)].

Away from the focal region the two-peak structure persists, asymptotically

with a fixed separation between the energy density maxima, as discussed

in the text.
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We denote by E0 the energy per unit length, and likewise for

P0z; J0z. The results found in Lekner (2006c, 2007) are

E0

cP0z
cJ0z

2
4

3
5 ¼ pq0k

ðk

0

dj j�1jf ðk; jÞj2
k
q
m

2
4

3
5: (68)

Again, the acoustic beam can be viewed as a superposition

of phonons, each with energy �hck, z component of momen-

tum �hq, and z component of angular momentum �hm. The

(idealized) beam is a spatially static entity, while the pulse is

inherently dynamic and changes position and shape as time

evolves. In both cases there are conserved quantities: The

pulse energy, momentum, and angular momentum are inde-

pendent of time, and the beam energy, momentum, and

angular momentum per unit length are independent of posi-

tion along the beam. (The last statement is for generalized

Bessel beams; for discussion of the set of acoustic beam

invariants, see Lekner, 2006c, 2007.)

We note that he concept of axial angular momentum

carried by acoustic beams having an eim/ azimuthal depen-

dence was originally discussed by Hefner and Marston

(1999) in a paper describing the experimental synthesis of

such beams, although the analysis of angular momentum

was limited to paraxial beams. The paraxial limitations in

Hefner and Marston (1999) were subsequently removed by

the analysis in Zhang and Marston (2011), and experiments

confirmed the predicted scaling of acoustic radiation torque

in proportion to m. The result [Eq. (68)] for monochromatic

beams gives ckJ0z ¼ mE0, or xJ0z ¼ mE0. The same ratio

follows by integration of the flux density ratio, Eq. (5) of

Zhang and Marston (2011). In experiments such as those of

D�emor�e et al. (2012), the flux ratio in Eq. (5) of Zhang and

Marston (2011) becomes directly relevant because experi-

ments are often limited by the power available as opposed

to the total beam energy per unit length E0 calculated in

Lekner (2006c, 2007). We note also that analysis of wave

fields with non-zero m has been shown to be useful for

understanding situations where small symmetric objects are

placed on the axis (Zhang and Marston, 2014). In such sit-

uations the inner wave-field region is more important than

the outer region when modeling the response of the small

inserted object.

To date, all of the known localized closed-form solu-

tions of the wave equation have had some backward propa-

gation in them, as seen in Sec. II. In Sec. IV we gave a

derivation of a strictly causal complex pulse, with only for-

ward propagation. The pulse is characterized by one length,

a. The energy and momentum of this pulse were evaluated

(the angular momentum is zero). Graphs and analytics of the

pair of pulses derived from the real and the imaginary parts

of the velocity potential show strong convergence/diver-

gence, with a tight focal region of size a.
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