2026

Postgraduate courses

Mathematics, Statistics & Data Science

School of Mathematics and Statistics

Te Kura Mātai Tatauranga

Location: Room CO358, Cotton Building, Kelburn Campus

Phone: 04-463 5341

Email: sms-office@vuw.ac.nz

www.wgtn.ac.nz/sms

CONTENTS

CONTENTS	2
ENROLLING FOR POSTGRADUATE STUDY	3
HONOURS AND MSC PART 1	4
POSTGRADUATE CERTIFICATE IN SCIENCE	5
POSTGRADUATE DIPLOMA IN SCIENCE	5
MASTER'S DEGREES	6
MSC OR MA IN MATHEMATICS MSC IN STATISTICS MSC IN DATA SCIENCE MASTER OF APPLIED STATISTICS MASTER OF DATA SCIENCE	7 7 8
PHD	9
RESEARCH AREAS IN MATHEMATICS	10
RESEARCH AREAS IN STATISTICS AND DATA SCIENCE	11
COURSE INFORMATION INDEX	12
PLANNING A PROGRAMME IN MATHEMATICS	12
400-LEVEL COURSES	12
PLANNING A PROGRAMME IN STATISTICS	16
400-LEVEL COURSES	17
PLANNING A PROGRAMME IN DATA SCIENCE	22
400-LEVEL COURSES	24
CONTACT INFORMATION	30
STUDENT SUPPORT	32
TĪTOKO—CENTRE FOR STUDENT SUCCESSĀWHINA MĀORI STUDENT SUPPORT	32

ENROLLING FOR POSTGRADUATE STUDY

The School of Mathematics and Statistics offers postgraduate programmes in Mathematics, Statistics, and Data Science, with a variety of degree options available.

- PhD applicants must apply through the Faculty of Graduate Research. There are three application rounds per year, with deadlines on 1 March, 1 July, and 1 November. For full details and to apply, please visit the Faculty of Graduate Research website: www.wgtn.ac.nz/fgr
- Masters by thesis and Honours students should apply online at any time via <u>www.wgtn.ac.nz/study/apply-enrol/steps</u> Once accepted, start dates can be organised for the 1st of any month.

Before applying, PhD and Masters students should ensure they meet the prerequisites for their intended programme. Students must discuss their intended programme with the relevant Postgraduate Coordinator.

POSTGRADUATE CO	OORDINATORS	ROOM	PHONE	EMAIL
MATHEMATICS				
Dr Dan Turetsky	(Convener, Thesis)	436	04-463 5660	dan.turetsky@vuw.ac.nz
Dr Hung Le Pham	(Course Work)	440	04-463 6732	hung.pham@vuw.ac.nz
STATISTICS				
Prof Peter Smith	(Convener, Thesis)	539	04-463 6738	peter.smith@vuw.ac.nz
Prof Ivy Liu	(Course Work)	424	04-463 5648	lvy.liu@vuw.ac.nz
DATA SCIENCE				
Prof Peter Smith	(Convener, Thesis)	539	04-463 6738	peter.smith@vuw.ac.nz
Dr Ryan Admiraal	(Course Work)	536	04-463 5275	ryan.admiraal@vuw.ac.nz
POSTGRADUATE ADMINISTRATOR		ROOM	PHONE	EMAIL

358

04-887 4108

aloisa.cranston@vuw.ac.nz

For Postgraduate enquiries please email: pg-ecs-sms@vuw.ac.nz

Aloisa Cranston

QUALIFICATIONS AVAILABLE

HONOURS AND MSC PART 1

The programme for the Bachelor of Arts with Honours (BA(Hons)), Bachelor of Science with Honours (BSc(Hons)), or Master of Science (MSc) Part 1, consists of 120 points, typically made up of eight 15-point courses or the equivalent in an approved combination, to be chosen from the courses described below and subject to availability. All Honours students must enrol in 30 points of project-based work.

The Honours degree is intended to be a single offering based on a coherent programme of study. When courses are substituted from other subjects, they must be relevant and complementary to the rest of the programme. At most 60 points may be substituted, that is at least 60 points must be from those listed for the major subject. With permission of the Honours and Postgraduate Coordinator, a part-time student may extend their Honours/Master's Part 1 over more than one year. The maximum time for BSc(Hons) is two years, for BA(Hons) four years.

Those who do MSc Part 1 can do MSc Part 2 the following year and obtain the MSc degree with a class of Honours. However, the School prefers that students do the same two years' work by obtaining a BSc(Hons) degree in the first year, and then enrolling in MSc Part 2 to complete an MSc degree.

There is no MA Part 1. The MA has the same status as MSc Part 2 and, like the BA(Hons), can be taken in Mathematics but not in Data Science or Statistics.

PREREQUISITE FOR HONOURS IN MATHEMATICS

The prerequisite for BA(Hons) or BSc(Hons) in MATH is an undergraduate major in Mathematics, including at least 60 points in 300-level Mathematics courses. An average grade of at least B+ in the relevant 300-level courses is normally required, and students should have completed any specific prerequisites for their proposed courses of study. An equivalent background will be required for a student whose undergraduate study has been undertaken elsewhere.

PREREQUISITES FOR HONOURS IN STATISTICS

You will need a BA or BSc with at least 45 points from DATA 303, MATH 377, STAT 300-399 (with an average grade of B+ or better). Other entry combinations are also possible.

Students with interests in the theoretical aspects of Statistics:

Such students, particularly if they are considering the possibility of a research degree, may wish to strengthen their general mathematical background before specialising. The MATH courses in Differential Equations, Algebra, Analysis and Measure Theory all provide valuable background for different aspects of work in Statistics.

PREREQUISITES FOR HONOURS IN DATA SCIENCE

You will need a BSc in Data Science with at least 60 approved points from AIML 301-399, COMP 309, DATA 301-399 (with an average grade of B+ or better). Other entry combinations are also possible.

POSTGRADUATE CERTIFICATE IN SCIENCE

The Postgraduate Certificate in Science (PGCertSc) is offered in all subjects offered for the MSc. Entry requirements are the same as for the MSc, but the grade requirement may be relaxed slightly. The qualification consists of only 60 points of postgraduate courses in the relevant subject, so provides a shorter coursework postgraduate qualification. It may be suitable for a student in full-time work or managing other commitments and may also be used for those who wish to exit early from another postgraduate qualification. Conversely, a PGCertSc may later be abandoned in favour of a PGDipSc if the requirements for that qualification are subsequently met.

A candidate in PGCertSc should be enrolled for at least one trimester and should complete the requirements within two years.

- The **PGCertSc in Mathematics** requires 60 points in approved courses from MATH 401-489.
- The **PGCertSc in Statistics** requires 60 approved points from MATH 477, STAT 401-489.
- The PGCertSc in Data Science requires one of (AIML 425, 426, 427, 429), one of (STAT 432, 438); 30 further points from AIML 400-479, COMP 400-479, DATA 400-499, 501, MATH 400-483, STAT 400-483.

POSTGRADUATE DIPLOMA IN SCIENCE

The Postgraduate Diploma in Science (PGDipSc) is a postgraduate science qualification offered in all subjects offered for the MSc. Entry requirements are the same as for the MSc, but the grade requirement may be relaxed slightly. The PGDipSc requires 120 points of postgraduate study and can be completed in two trimesters (full time) or over four years (part time), and provides an alternative to the Honours and Master's degrees for students.

- The **PGDipSc in Mathematics** requires 120 points in approved courses from MATH 401-489.
- The **PGDipSc in Statistics** requires 120 points in an approved combination from MATH 401-489, STAT 401-489 or approved alternatives; at least 60 points shall be from MATH 477 or 400-level STAT courses.
- The PGDipSc in Data Science requires AIML 427, STAT 432, 438; one of (AIML 425, 426, 429); 60 further points from AIML 400-479, COMP 400-479, DATA 400-499, 501, MATH 400-483, STAT 400-483.

With permission some optional courses in a PGDipSc may be replaced by substitute courses from other subjects offered for postgraduate degrees.

MASTER'S DEGREES

The programmes available at Master's level are:

- Master of Science (MSc) or Master of Arts (MA) in Mathematics
- MSc in Statistics
- MSc in Data Science
- Master of Applied Statistics (MAppStat)
- Master of Data Science (MDataSc)

The Master of Science is a two-year programme. Part 1 consists of 120 points of courses. This is followed by Part 2 which consists either of a full year research project (120-point thesis), or (for some subjects only) a combination of a smaller research project (90-point thesis) together with 30 points of taught courses. Students have 12 months in which to complete their research thesis in Part 2. Students who have completed an Honours degree of class II(2) or better, or a postgraduate diploma in Science at equivalent standard, can proceed directly to Part 2.

The Master of Arts is a one-year programme and is equivalent to Part 2 of the Master of Science.

Candidates for Master's degrees must enrol each year for the individual courses, projects and theses they will be doing that year. For each student, the requirements for any such course(s) are worked out in consultation with the Postgraduate Coordinator.

Entry to all Master's programmes requires approval by the relevant Postgraduate Coordinator and depends on an initial agreement on a programme of study. Enrolment in a Master's thesis requires agreement on a supervisor and a provisional thesis topic. Potential areas of research are outlined in the section on the PhD programme.

With the permission of the Associate Dean (Students), study can be undertaken on a part time basis.

MSC OR MA IN MATHEMATICS

PROGRAMME STRUCTURE

MSc Part 1: 120 points of courses in an approved combination from MATH 401-489.

<u>MA or MSc Part 2:</u> The programme consists of preparation of a research thesis (MATH 591, 120 points) under the individual supervision of a staff member.

A Master's thesis is normally an exposition of a piece of mathematical work and may contain new results or may represent a study of known material from a fresh point of view, together with some review of the literature. The thesis must be submitted for examination within 12 months of enrolment for the Master's degree.

ENTRY REQUIREMENTS

MSc Part 1: 60 points in approved courses from MATH 300-399, or approved alternatives

MA or MSc Part 2: Students entering these programmes will normally have completed BA(Hons) or BSc(Hons) with a class of Honours of II(2) or better, or MSc Part 1.

MSC IN STATISTICS

PROGRAMME STRUCTURE

MSc Part 1: 60 points from MATH477, STAT 401-489; 60 further points from MATH 401-489, STAT 401-489 or approved alternatives.

<u>MA or MSc Part 2:</u> The programme consists of preparation of a research thesis (STAT 591, 120 points) under the individual supervision of a staff member. Alternatively, students may prepare a smaller research thesis (STAT 592, 90 points) and study 30 points from approved courses.

Areas of interest encouraged by the group are Bayesian inference, biostatistics, categorical data analysis, clustering, epidemiology, financial mathematics, health informatics, multivariate analysis, reliability theory, social network analysis, spatial statistics, statistical computing, statistics in geophysics, stochastic processes and their applications, time series analysis, signal and image processing, and wireless research.

ENTRY REQUIREMENTS

MSc Part 1: at least 45 points from DATA 303, MATH 377, STAT 300-399 (normally with an average grade of B+ or better), or approved alternatives

MSc Part 2: Students entering these programmes will normally have completed a BSc(Hons) with a class of Honours of II(2) or better, or MSc Part 1. Students may also enter the programme following completion of a Postgraduate Diploma in Science or the Master of Applied Statistics.

MSC IN DATA SCIENCE

PROGRAMME STRUCTURE

MSc Part 1: AIML 427, STAT 432, 438, one of (AIML 425, 426, 429), 60 further points from AIML 400-479, COMP 400-479, DATA 400-499, 501, MATH 400-483, STAT 400-483.

MSc Part 2: The programme consists of preparation of a research thesis (DATA 591, 120 points) under the individual supervision of a staff member.

Areas of interest are artificial intelligence, machine learning, clustering, reliability theory, simulation, network analysis. Students can work on projects in the theory and practice of Data Science and may work with researchers from other disciplines who are seeking insight from their data. Staff from both the Schools of Mathematics & Statistics and Engineering & Computer Science are available as supervisors.

ENTRY REQUIREMENTS

MSc Part 1: 60 points in approved courses from COMP 309, DATA 301-399, or equivalent.

MSc Part 2: Students entering this programme will normally have completed a BSc(Hons) with a class of Honours of II(2) or better, or MSc Part 1. Students may also enter the programme following completion of a Postgraduate Diploma in Science or the Master of Data Science.

MASTER OF APPLIED STATISTICS

The Master of Applied Statistics (MAppStat) is a one-year 180-point Master's degree in Applied Statistics. The programme consists of two components: course work and practical training that has a professional focus through the inclusion of practicum and statistical consultancy courses. These give the programme unique characteristics among applied statistics programmes internationally.

This taught Master's programme may be completed in one year full time (three trimesters: March-June, July-October and November-February) or up to three years part time. Students can start the programme either in March or July.

PROGRAMME STRUCTURE

The MAppStat requires:

<u>Part 1:</u> 120 approved 400- or 500-level points (usually chosen from STAT 400-499), including one of STAT 487 or STAT 489;

Part 2: STAT 480, 501, 581.

The Head of School of Mathematics and Statistics may approve substitution of up to 30 points in Part 1 by other relevant 400- or 500-level courses, e.g. courses chosen from other relevant subject areas.

A candidate who has completed Part 1 of the degree but not Part 2 may be awarded a Postgraduate Diploma in Science, in Statistics.

ENTRY REQUIREMENTS

Students who enter the MAppStat will have completed a Bachelor's degree in a tertiary institution in a relevant subject, and been accepted by the Head of School of Mathematics and Statistics as capable of proceeding with the proposed course of study (normally with an average grade of B+ or better).

MASTER OF DATA SCIENCE

The Master of Data Science (MDataSc) is a two year 240-point Master's degree for students who have suitable preparation in Statistics or Computer Science. Students with an undergraduate degree in Data Science, a double major in Statistics & Computer Science or a double major in Statistics & Artificial Intelligence are granted a 60-point exemption and can complete the degree in 12 months, requiring only 180 points. The programme combines taught courses, a research project and a workplace practicum.

The 240-point programme can be completed in two years full time or up to four years part time. The 180-point programme can be completed in 12 months full time or up to three years part time. Students can start the programme either in March or July, although it is recommended that they start in March, as course prerequisites complicate the sequencing of courses for students starting in July.

PROGRAMME STRUCTURE

The MDataSc requires:

Part 1: 60 points from AIML 420, 421, DATA 471-475 or approved alternatives.

Part 2: (i) AIML 427, one of (AIML 425, 426, 429), STAT 432, 438, DATA 480, 501, 581;

- (ii) DATA 487 or 489;
- (iii) 30 or 45 further points from AIML 400-479; COMP 400-479; DATA 400-469;
- DATA 490-499; MATH 400-483; STAT 400-483 or approved alternatives.

Students who have a Bachelor's degree in Data Science, or a double major in Statistics with either Computer Science or Artificial Intelligence are exempted from Part 1, and only need to complete Part 2. For other students the Head of School of Mathematics and Statistics can approve exemptions of up to 60 points from Part 1 according to the student's level of preparation. Some students may need to take courses in undergraduate Statistics or Computer Science concurrently in order to meet the admission requirements.

Students should contact the Postgraduate Coordinator for Data Science to determine their eligibility, and their possible course of study.

ENTRY REQUIREMENTS

Students who enter the MDataSc will have completed a Bachelor's degree in a tertiary institution in a relevant subject, and been accepted by the Head of School of Mathematics and Statistics as capable of proceeding with the proposed course of study (normally with an average grade of B+ or better). Where appropriate, recognition will be given to relevant work experience when determining each student's course of study.

PHD

The PhD degree is the usual entry to a research or academic career and is awarded for a research thesis. Its essential feature is an original contribution to new developments in the field, by way of new theory or new methodology. A candidate for the degree pursues a course of advanced study and research at the University under the immediate direction of a supervisor, or supervisors.

Study is usually full time and is for a period of at least three calendar years (the maximum time if studying full time is 48 months (4 years) and if part time it is 72 months (6 years)) from the date of registration. Local students will usually have completed a Master's degree before entering the PhD programme, but entry direct from an Honours degree is possible.

Full information about the PhD degree, including how to apply, qualifications required, fees and scholarships etc. can be obtained from the website of the Faculty of Graduate Research at www.wgtn.ac.nz/fgr

Any student wishing to enroll for a PhD must discuss possible fields of study with staff members.

RESEARCH AREAS IN MATHEMATICS

Discrete Mathematics, Algebra, and Number Theory

Discrete mathematics deals with countable structures like graphs, integers, and finite sets, forming a foundation for computer science and combinatorics. Algebra studies mathematical structures and operations, from equations to abstract systems like groups and fields. Number theory explores properties of integers, often with surprising applications in cryptography and digital communication.

Logic and the Theory of Computation

Logic provides formal systems for reasoning, essential in mathematics and computer science. It underpins the theory of computation, which explores what problems can be solved algorithmically and how efficiently. Together, they form the foundation for programming, algorithms, and the limits of computational power.

Analysis, Topology, and Geometry

Analysis studies limits, continuity, and change, providing the foundation for calculus and differential equations. It also explores function spaces which are essential in understanding infinite-dimensional systems and solving differential equations. Topology investigates the qualitative structure of spaces and provides a unifying language across mathematics. Geometry explores the local and global properties of spaces, often blending tools from both analysis and topology to study curvature, symmetry, and structure.

Applied Mathematics, Fluid Mechanics, and Theoretical Physics

Applied mathematics develops models, methods and theories to solve real-world problems, often through differential equations, numerical analysis, and optimisation. These tools are vital in science, engineering, and technology. Fluid mechanics, a key area of both applied math and physics, studies the behaviour of liquids and gases. Theoretical physics uses advanced mathematics to describe the fundamental laws of nature and often relies on applied mathematical techniques to formulate and analyse models in fields like quantum mechanics and relativity.

RESEARCH AREAS IN STATISTICS AND DATA SCIENCE

Bayesian statistics - A statistical approach that treats parameters as random variables with probability distributions, allowing incorporation of prior knowledge and updating beliefs through Bayes' theorem as new data becomes available. Applications include ecology, psychology and social sciences.

Biostatistics – Development and application of statistical methods to biological and health-related data. Areas of research include bioinformatics, disease progression and simulation of health systems.

Categorical data analysis - focuses on statistical methods for analysing data that represents qualitative characteristics such as gender, political affiliation, disease status, or product preferences. These methods are crucial in fields like market research, epidemiology, and social sciences where much of the data is naturally categorical.

Artificial intelligence and machine learning - An interdisciplinary field combining computer science, statistics, and mathematics to create algorithms that automatically learn patterns from data and make predictions or decisions without explicit programming. Research areas include Al-augmented drug discovery and health monitoring.

Model-based clustering methods - Methods for grouping similar objects together based on their characteristics, revealing hidden structure in data without prior knowledge of group membership. Applications include group segmentation, gene expression analysis and image segmentation.

Network analysis - The study of complex systems represented as graphs of interconnected entities, examining structural properties and dynamics of relationships. Applications include disease spread, social influence, and internet topology analysis.

Probability theory and stochastic processes – provide the mathematical foundation for modelling and analysing random phenomena and uncertainty. Probability theory establishes the framework for assigning probabilities to events, defining random variables, and studying their distributions and relationships. Stochastic processes extend this to collections of random variables indexed by time or space, modelling systems that evolve randomly. Applications include financial markets, population dynamics, communication networks, and reliability engineering.

Signal processing - Methods focused on analysing signals to extract meaningful information or enhance signal quality. Applications include telecommunications, biomedical engineering, and image, radar and sonar processing.

Statistical and mathematical ecology - The application of statistical and mathematical methods to ecological questions, addressing the unique challenges of environmental data such as spatial and temporal correlation, complex hierarchical structures and population monitoring. The methods are crucial for conservation biology, environmental impact assessment, fisheries management, and understanding ecosystem responses to climate change.

Time series and forecasting – focus on methods for analysis of data points collected over time to identify patterns, trends, and seasonal effects, then using these insights to predict future values. There are many applications in economics, finance, meteorology, and epidemiology.

COURSE INFORMATION INDEX

	Course reference			
Course code	number	Title	Points	Trimester
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
MATH 432	CRN 7673	DISCRETE MATHEMATICS	15 PTS	T2

Prerequisites: Courses you must have passed before taking this course.

Restrictions: You can't enrol in this course if you have passed any of the restricted courses.

PLANNING A PROGRAMME IN MATHEMATICS

The Mathematics Honours (BSc(Hons) or BA(Hons)) programme requires 120 points:

- 30 points from MATH 487-489
- 90 points from MATH 401-483

400-LEVEL COURSES

MATH 432	CRN 7673	DISCRETE MATHEMATICS	15 PTS	T2
Prerequisites:	(One of MATH	311, 324 or 361) and 15 further 300-level MATH points		

Discrete mathematics deals with mathematical structures that can be counted. These structures can describe, for example, the pairwise relationships between a set of objects (forming graphs) or discrete symmetries of crystals (forming groups). Another example is a matroid, which describes a notion of dependence of a set of objects. This course combines ideas from graph theory, linear algebra, coding theory, and problems in combinatorial optimisation. It investigates properties of these various mathematical structures, and the underlying notions of duality.

NOT OFFERED IN 2026

MATH 433	CRN 7674	MODEL THEORY	15 PTS	T2
Prerequisites:	MATH 309 and	15 further 300-level MATH points		

Model theory describes mathematical structures by investigating logical statements that are true of those structures. This course introduces the fundamental ideas and techniques of model theory, such as structures and formulas, the ultraproduct construction, the compactness theorem, and quantifier elimination. The course gives examples of applications to entities in algebra and discrete mathematics, such as fields, groups, and graphs.

NOT OFFERED IN 2026

MATH 434	CRN 7675	SET THEORY	15 PTS	T1
Prerequisites:	MATH 309 and	15 further 300-level MATH points		

Set theory lies at the foundations of mathematics - all objects of mathematical interest can be construed as sets. Contemporary set theory explores some of the rich structure of the class of all sets, and the limitations of the theory. The course constructs the universe of set theory from the axioms of Zermelo-Fraenkel set theory with the Axiom of Choice. Other topics include ordinals, cardinals and transfinite constructions.

MATH 435	CRN 7676	COMPUTABILITY AND COMPLEXITY	15 PTS	T2
Prerequisites:	MATH 309 and	15 further 300-level MATH points		

The questions of the minimal computational effort required to find answers to certain problems, and whether there are limits to what can be computed, are at the heart of this course. Topics covered include the basics of computability theory, partial computable functions, a universal machine, the recursion theorem, relativised Turing computability, the arithmetical hierarchy, priority arguments and the computably enumerable degrees. Further topics following students' interests, such as computable structures, Ramsey theory, and algorithmic randomness.

MATH 436	CRN 7677	GALOIS THEORY AND NUMBER THEORY	15 PTS	T1
Prerequisites:	MATH 311 and	15 further 300-level MATH points		

Galois theory brings together several branches of mathematics and is a natural bridge between algebra and number theory. The course starts with the historical question of whether polynomial equations can be solved by radicals and rediscovers Galois' method. It explores the connection between different areas of algebra such as finding roots of polynomials, field extensions, algebraic and transcendental numbers, and Galois groups. The second half of the course covers algebraic number theory.

MATH 441	CRN 7680	MEASURE THEORY	15 PTS	T1
Prerequisites:	MATH 212 and	15 further 300-level MATH points		

Measure theory generalises mathematical notions such as length and volume, and has important applications in probability, physics, and mathematical analysis. Topics that are covered in this introductory course include measurable spaces and measures, integration theory on measure spaces, convergence theorems, and decomposition theorems.

MATH 443	CRN TBC	OPERATOR ALGEBRA	15 PTS	T2
Prerequisites:	MATH 318 or b	oth (MATH 212 and MATH 311)		

Operator algebras have a rich algebraic and analytic structure modelled on the properties of bounded linear operators on a Hilbert space. This course introduces the basic theory of Banach and C*-algebras with an emphasis on how it is used.

MATH 452	CRN 591	TOPOLOGY	15 PTS	T2
Prerequisites:	30 300-level M	ATH points		

Topology is a fundamental subject that interacts with most other areas of mathematics. This course covers basic point set topology, providing a foundation used throughout mathematics. Abstractions of analytic notions such as continuity, compactness, and connectedness are introduced.

MATH 462	CRN 7685	DYNAMICAL SYSTEMS AND CONTROL THEORY	15 PTS	T2
Prerequisites:	MATH244 and	15 300-level MATH points		

Dynamical systems, which are time-varying, underlie much of mathematical physics. This course covers the fundamental concepts of qualitative theory of dynamical systems, including limit sets and periodic orbits, stable manifolds and crises, and bifurcations. The addition of inputs and outputs to a system provides the possibility for methods for analysis and control of it, known as Control Theory. This course introduces control-theoretic notions, including reachability, controllability, observability analysis and feedback stabilization techniques.

MATH 468	CRN 37125	MECHANICS AND FLUID DYNAMICS	15 PTS	T1
Prerequisites:	MATH244 and	15 300-level MATH points		

The analysis of physical systems has motivated much of the study of differential equations. This course investigates the differential equations that arise from Hamiltonian and Lagrangian mechanics. Noether's theorem is motivated via a basic introduction to differential geometry. The course also introduces the theory of fluid mechanics, deriving various equations describing fluid motion from first principles. The treatment justifies fluid equations as deterministic mathematical models and highlights their connections with Hamiltonian mechanics.

MATH 469	CRN 37347	SOBOLEV SPACES AND APPLICATIONS	15 PTS	T1
Prerequisites:	MATH 212 and	d 15 300-level MATH points		

This course develops the foundations of the modern theory of differential equations and numerical analysis. The theory of Sobolev spaces is developed and used to study well-posedness of some ordinary and partial differential equations. A benefit of these theoretical developments is that they enable the analysis of numerical methods for solving partial differential equations; the course focuses on finite element methods.

NOT OFFERED IN 2026

MATH 477	CRN 29142	PROBABILITY		15 PTS	T1
Prerequisites:	MATH 377		Restrictions:	STAT 43	37

The course starts with weak and almost sure convergence, then covers limit theorems and semi-groups of distributions, infinitely divisible and stable distributions and Lévy processes, with emphasis on compound Poisson processes, random walks and Brownian motion. The material is illustrated by real-life examples from finance, insurance and other fields.

NOT OFFERED IN 2026

MATH 440 MATH 440 MATH 440 MATH 460	CRN 15207 CRN 33083 CRN 33084 CRN 15208	DIRECTED INDIVIDUAL STUDY	15 PTS	T1 T2 T3 T2
Prerequisites:	Permission of 0	Course Coordinator		

A DIS label can sometimes be used to enable study in a field taught in a 300-level MATH course not previously passed. As well as attending the 300-level course at its regular time and fulfilling its requirements, the student will be required to prepare additional material for assessment, demonstrating an understanding of a suitable topic at a level appropriate to an Honours degree; it will typically count for 20% of the course grade. At most one 15-point course of this nature may be included in an Honours degree, and only at the discretion of the coordinator of the associated 300-level course. It may not count towards the minimum of 60 MATH points required for Honours in Mathematics. It also requires a specific justification, such as the need to provide prerequisite material for some other course in the student's individual Honours programme.

MATH 480 CRN 6891	SPECIAL TOPIC	30 PTS T1 + T2
MATH 481 CRN 6892		30 PTS T1 + T2
MATH 482 CRN 9758		15 PTS T1
MATH 483 CRN 6894		15 PTS T1

The special topic label can be used to create 30-point, or 15-point courses tailored to particular interests, or to introduce new topics that may be offered in a particular year. One Special Topic label may be used for different subject matter for different students. There are four labels that can be used, two for 30-point full-year courses, and two for 15-point one-trimester courses that are each available in both 1/3 and 2/3.

NOT OFFERED IN 2026

MATH 487	CRN 33112 CRN 33113 CRN 33114	RESEARCH PROJECT 1		15 PTS 15 PTS 15 PTS		T1 T2 T3
MATH 488	CRN 27014 CRN 7693	RESEARCH PROJECT 2		15 PTS 15 PTS		T1 T2
MATH 489	CRN 7694	RESEARCH PROJECT		30 PTS		T1 + T2
Prerequisites:	Permission of t	he Honours Coordinator	Restr	ictions:	M	ATH 489

These courses offer the experience of exploring the literature on a certain topic and writing a report that gives a coherent survey of findings and demonstrates mastery of the material. Supervision takes the form of regular meetings between the student and supervisor. It is expected that MATH Honours students take 30 points of project-based courses. A list of possible project topics and supervisors is available on the project homepage. The Coordinator will allocate a supervisor and topic to each student, taking into account the overall preferences of students and staff.

SUBSTITUTION FROM OTHER SUBJECTS

Up to half of a Mathematics Honours degree can consist of courses from other subjects. The overall selection of courses must still form a coherent programme and requires approval from the Mathematics Postgraduate Coordinator.

PLANNING A PROGRAMME IN STATISTICS

TAUGHT COURSES AND PROJECTS: HONOURS, PGDIPSC, MAPPST AND MSC

The Statistics Honours programme requires 120 points:

- 30 points from STAT 480, 487-489
- 90 points from MATH 477, STAT 401-479, 481-483.

The PGDipSc and the MSc Part 1 in Statistics also require 120 points:

- At least 60 points from MATH 477 or STAT 401-489
- Further approved courses to total 120 points from MATH 401-489, STAT 401-489.

The MAppStat requires:

- 120 approved 400- or 500-level points including one of (STAT 487 or 489) for Part 1
- STAT 480, STAT 501 and STAT 581 are required in Part 2.

COURSE	TITLE	PREREQUISITES
TRIMESTER	1	
STAT 433	Stochastic Processes	One of (MATH 377, STAT 332)
STAT 440	Directed Individual Study	
STAT 452	Bayesian Inference	One of (STAT 332, 393, 394) or (one of (STAT 391, DATA 491) and one of (DATA 303, 473))
STAT 455	Statistical Study Design and Inference	30 points of 300 level STAT or DATA
STAT 489	Research Project (30 points)	
TRIMESTER	2	
STAT 432	Computational Statistics	One of (STAT 332, 393, 394) or (one of (STAT 391, DATA 491) and one of (DATA 303, 473))
STAT 438	Generalised Linear Models	One of (STAT 332, 393, 394) or (one of (STAT 391, DATA 491) and one of (DATA 303, 473))
STAT 441	Directed Individual Study	
STAT 451	Official Statistics	STAT 193 (or equivalent);
		30 approved 200/300 level points
STAT 488	Research Project 2 (15 points)	
STAT 489	Research Project (30 points)	
STAT 501	Statistical Consulting	Enrolment in the MAppStat; 30 approved STAT points at 400-level or above
TRIMESTER	3	
STAT 480	Research Preparation	
STAT 487	Research Project 1 (15 points)	
STAT 588	Applied Statistics Project (45 points)	
STAT 581	Statistical Practicum (30 points)	Enrolment in the MAppStat; 60 approved STAT points at 400-level or above

400-LEVEL COURSES

MATH 477	CRN 29142	PROBABILITY		15 PTS	T1
Prerequisites:	MATH 377		Restrictions:	STAT 43	37

The course starts with weak and almost sure convergence, then covers limit theorems and semi-groups of distributions, infinitely divisible and stable distributions and Lévy processes, with emphasis on compound Poisson processes, random walks and Brownian motion. The material is illustrated by real-life examples from finance, insurance and other fields.

NOT OFFERED IN 2026

STAT 431	CRN 23080	BIOSTATISTICS	15 PTS	T1
	One course from	m (STAT 332, 393, 394) or (one of (STAT 391, DATA 491) TA 303, 473)))	

A course about modelling survival time and multilevel data. Topics selected from maximum likelihood estimator review; large sample tests (Likelihood Ratio, Wald and Score tests); information criteria; Life tables; Kaplan-Meier estimator and log-rank test; Cox-proportional hazard model; multilevel linear regression and logistic regression; likelihood and Bayesian inference; multilevel models in R and WinBUGS.

NOT OFFERED IN 2026

STAT 432	CRN 23079	COMPUTATIONAL STATISTICS	15 PTS	T2
•	One course from	m (STAT 332, 393, 394) or (one of (STAT 391, DATA 491 TA 303, 473)))	

Introduction to computationally intensive methods for statistical modelling and inference. Topics selected from jackknife and bootstrap bias correction and variance estimation; permutation tests; maximum likelihood estimation using EM algorithm; random numbers; probability distribution simulation; Bayesian Inference; Markov Chain Monte Carlo; Metropolis-Hastings algorithm; Gibbs sampling. Desirable that students have some programming experience in R.

STAT 433	CRN 23078	STOCHASTIC PROCESSES	15 PTS	T1
Restrictions:	STAT 441			

The first half of the course covers the concepts of probability spaces, filtration and adapted processes; in particular, Brownian motion, Geometric Brownian motion and diffusion processes. It also studies Ito integrals, martingales, stochastic differential equations, stopping times, and the strong Markov property. The second half covers the Feynman-Kac formula and its connection to boundary value problems, Girsanov change-of-measure, Esscher transform of measure, first-passage problems of (Geometric) Brownian motion and diffusion processes, plus the Laplace transform of their first-passage times. Applications of the concepts in mathematical finance and actuarial science are discussed towards the end of the course.

STAT 434	CRN 8109	STATISTICAL INFERENCE	15 PTS	T2
Prerequisites:	STAT 332; MA	TH 377 recommended		

In-depth cover of classical statistical inference procedures in estimation and hypothesis testing. Topics include: limit theorems; theory of parametric estimation; sufficiency and efficiency; uniformly most powerful tests and likelihood ratio tests. As time permits, a selection of notions from Bayesian, nonparametric and robust statistics, will be discussed. This course is co-taught with STAT 332.

NOT OFFERED IN 2026

STAT 438	CRN 8113	GENERALISED LINEAR MODELS 15 PTS		T2
1		One course from (STAT 332, 393, 394) or (one of (STAT 391, DATA 491) and one of (DATA 303, 473))		

Brief outline of generalised linear model theory, contingency tables, binary response models, log-linear models (for contingency tables), repeated measures, GEE analysis, logit models for multinomial responses, and ordinal response models.

STAT 439	CRN 10019	SAMPLE SURVEYS		15 PTS	T1
Prerequisites:	STAT 193 (or e 200/300-level c	7 11 1	Restrictions:	STAT 39	2

An introduction to practical and technical aspects of survey sampling, including writing a survey proposal, costing, non-sampling errors, sampling theory, sample designs, questionnaire design, fieldwork, basic analytic techniques, and report writing. This course is co-taught with STAT 392.

NOT OFFERED IN 2026

STAT 440	CRN 28352 CRN 33539 CRN 28376 CRN 32257 CRN 28353	DIRECTED INDIVIDUAL STUDY (DIS)	15 PTS	T1 T2 T3 T1 T2
Prerequisites:	Approval of Postgraduate Coordinator			

The Directed Individual Study label can be used to provide a reading course when there is no suitable Honours course available. The student follows an individual course of study under supervision. One DIS label may be used for different subject matter for different students.

A DIS label can sometimes be used to enable study in a field taught in a 300-level STAT course not previously passed. As well as attending the 300-level course at its regular time and fulfilling its requirements, the student will be required to prepare additional material for assessment, as specified by the course coordinator. At most **one** 15-point course of this nature may be included in an Honours degree, and only at the discretion of the coordinator of the associated 300-level course. It may not count towards the minimum of 60 STAT points required for Honours in Statistics. It also requires a specific justification, such as the need to provide prerequisite material for some other course in the student's individual Honours programme.

STAT 451	CRN 28349	OFFICIAL STATISTICS	15 PTS	T2
•	,	STAT 193 (or equivalent), 30 points at 200-level or above (including STAT 292 or STAT 392 or STAT 439)		

An overview of key areas of Official Statistics. Topics covered include data sources (sample surveys and administrative data); legal and ethical framework of official statistics; introductory demography; collection and analysis of health, social and economic data; data visualisation including presentation of spatial data; data matching and integration; the system of National Accounts.

STAT 452	CRN 28350	BAYESIAN INFERENCE	15 PTS	T1
•	One of (STAT 3 and one of (DA	332, 393, 394) or (one of (STAT 391, DATA 491) TA 303, 473))		

The Bayesian approach is an alternative and increasingly popular way of analysing data in many applied fields of study, including biostatistics, ecology, psychology and economics. We will cover the basics of Bayesian theory and introduce computing methods necessary for practical implementation of this theory. Topics covered include Bayes' theorem and the concepts of prior and posterior distributions, Bayesian model comparison and numerical tools for Bayesian estimation such as Markov Chain and Hamiltonian Monte Carlo. Practical implementation of the Bayesian approach will be illustrated in linear regression models, generalised linear models and mixed effects models.

STAT 455	CRN TBC	STATISTICAL STUDY DESIGN AND	NFERENCE	15 PTS	T1
Prerequisites:	30 points of 300 level STAT or DATA		Restrictions:	STAT 39	5

An introduction to the ideas, methods and mathematical techniques required to prepare for and design a statistical study. This includes an introduction to statistical inference. Common study designs will be evaluated and sampling methods discussed. Students will learn the principles, techniques and practice of sample survey design and inference. Finally, the communication of statistical concepts and data visualization will be covered. The statistical software R will be used. This course is co-taught with STAT 395.

STAT 480 CRN 27124 RESEARCH PREPARATION 15 PTS	T;	3
--	----	---

This course provides students with an opportunity to develop their research skills in Statistics, including use of library resources, constructing literature reviews, developing research questions, writing research proposals and developing skills in oral presentation.

STAT 487	CRN 28354	RESEARCH PROJECT 1	15 PTS	T1
	CRN 28438		15 PTS	T2
	CRN 28377		15 PTS	T3
STAT 488	CRN 28355	RESEARCH PROJECT 2	15 PTS	T2
STAT 489	CRN 28367	RESEARCH PROJECT	30 PTS	T1
	CRN 28378			T2
	CRN 28379			T3
	CRN 28380			T1 + T2
	CRN 28381			T2 + T3
	CRN 28382			T3 + T1
STAT588	CRN 32214	APPLIED STATISTICS PROJECT	45 PTS	Т3

Students should meet with the Postgraduate Coordinator to identify their areas of interest, for assistance in identifying a suitable supervisor and then contact potential supervisors directly. Fifteen-point projects are usually completed in one trimester. Thirty-point projects can be completed within either a single trimester, or two successive trimesters, and should take 300 hours of study, supervision meetings and writing. The 45-point project STAT 588 is available to students in the Master of Applied Statistics who, with permission, are replacing the combination of the work placement STAT 581 and project STAT 487 with a larger research project.

STAT 501	CRN 27125	RN 27125 STATISTICAL CONSULTING 15 PT		T2
Prerequisites:	Enrolment in th	Enrolment in the MAppStat		
Corequisites:	30 points from	30 points from 400-level STAT courses or approval of Postgraduate Coordinator		

This course provides training in statistical consulting for practical research in other disciplines. Following formal development of skills to determine appropriate analysis methods for clients, students will complete projects based on supervised consultancy with students or staff members.

This course will be taught with a combination of lectures and practical training.

- Lectures: the skills required for statistical consulting, such as client engagement; statistical packages; paper reviews for various types of analysis in Biology, Psychology, etc.
- Practical training: face-to-face meetings with clients (students or staff members in other disciplines);
 discussion with academic mentors about the methodology used for the clients' projects; report preparation.

STAT 581	CRN 28423 CRN 28424 CRN 27154	STATISTICAL PRACTICUM		T1 T2 T3
Prerequisites:	Enrolment in th	nrolment in the MAppStat; 60 approved STAT points at 400-level or above		

This course enables students to gain professional work experience in the application of statistics. Each student is supervised by a host organisation involved in statistical consulting or statistical applications in the public or private sectors. The placement allows students to develop teamwork and communication skills in the real world.

This course consists of:

- Practicum briefing: understanding professional expectations and responsibilities; dealing with problems arising in the workplace.
- Placement: working on specific projects with significant statistical content assigned by a host employer; developing teamwork and communication skills; and writing a portfolio.
- Seminar: presenting the findings from the projects and sharing the placement experience with the class.

SUBSTITUTION FROM OTHER SUBJECTS

Up to half of a Statistics Honours degree can consist of courses from other subjects as listed below. Information about these courses is contained elsewhere in this prospectus, or in the relevant Postgraduate Prospectus or websites of the School responsible for it. The overall selection of courses must still form a coherent programme and requires approval from the Statistics Postgraduate Coordinator (Taught Course). Examples of such courses are listed below.

COURSE	TITLE	
TRIMESTER 1		
AIML 420	Artificial Intelligence	
AIML 427	Big Data	
AIML 428	Text Mining and Natural Language Processing	
AIML 429	Probabilistic Machine Learning	
BIOL 420	Conservation Ecology (30 points)	
DATA 474	Simulation and Stochastic Models	(Not offered in 2026)
DATA 475	Machine Learning Methods	
ECON 408	Econometrics: Cross-sectional data	
FINA 402	Current Topics in Corporate Finance	
FINA 403	Derivative Securities	
PSYC 434	Conducting Research across Cultures	
TOMECTED		
TRIMESTER 2 AIML 420	Artificial Intelligence	
AIML 420 AIML 425	Artificial Intelligence	
AIML 425	Text Mining and Natural Language Processing Evolutionary Computation and Learning	
AIML 420	Applications and Implications of Artificial Intelligence	
DATA 472	Data Management and Programming	
DATA 472 DATA 492		
ECON 409	Data Science Algorithms Econometrics: Panel Data and Time Series	
FINA 401	Current Topics in Asset Pricing	
GEOG 415	Introduction to Geographic Information Science and its	Applications
PHYG 414	Climate Change: Lessons from the Past	(ppiioditorio
🔾	James James Loudono nom the rate	

PLANNING A PROGRAMME IN DATA SCIENCE

TAUGHT COURSES AND PROJECTS: HONOURS, PGDIPSC, MAPPST AND MSC

The Data Science Honours, PGDipSc and MSc Part 1 programmes require AIML 427, STAT 432, 438 and a further 75 points in an approved combination from AIML 420-429, DATA 400-499, STAT 400-499 or approved alternatives (up to 60 points).

The MDataSc requires AIML 427, DATA 480, 487, 501, 581 STAT 432, 438 and one of AIML 425, 426, 429. The 180-point programme (available to Data Science graduates) requires 45 further approved points from 400 level AIML, DATA, MATH and STAT, or approved alternatives. The full 240-point MDataSc requires a further 60 points from AIML 421, DATA 471-474 or approved alternatives.

COURSE	TITLE	PREREQUISITES
TD114E0TEE		
TRIMESTER	R 1	
AIML 420	Artificial Intelligence	60 300-level COMP, DATA, SWEN or NWEN points
AIML 427	Big Data	One of (AIML 420, 421, COMP 307, 309, STAT
		393, 394); one of (ENGR 123, STAT 193, MATH
		177, QUAN 102)
AIML 428	Text Mining and Natural Language	60 300-level COMP, DATA, NWEN, STAT or
	Processing	SWEN points
AIML 429	Probabilistic Machine Learning	AIML 420 or COMP 307; one of (MATH 177, STAT
		292, 293) or approved background in Mathematics
DATA 470		or Statistics
DATA 473	Statistical Modelling for Data Science	30 300-level points from (COMP, DATA, NWEN,
		SWEN); STAT 292 or comparable background in Statistics
DATA 474	Simulation and Stochastic Models	30 300-level points from (COMP, DATA, STAT,
DATA 474	(Not offered in 2026)	NWEN, SWEN); STAT 292 or comparable
	(Not offered in 2020)	background in Statistics
DATA 475	Machine Learning Methods	30 300-level points from (COMP, DATA,
		NWEN, SWEN); X DATA 302, 305
DATA 481	Special Topic 1 (Not offered in 2026)	, ,,
DATA 482	Special Topic 2 (Not offered in 2026)	
DATA 487	Research Project (15 points)	
DATA 489	Research Project (30 points)	
DATA 491	Mathematics for Data Science	30 300-level points from (COMP, DATA, NWEN,
		SWEN); STAT 292 or comparable background in
		Statistics

COURSE	TITLE	PREREQUISITES
TRIMESTER	R 2	
AIML 420	Artificial Intelligence	60 300-level COMP, DATA, NWEN, STAT or SWEN points
AIML 425	Neural Nets and Deep Learning	AIML 420 or COMP 307
AIML 426	Evolutionary Computation and Learning	AIML 420 or COMP 307
DATA 471	Practical Data Science	DATA 201, 202
AIML 430	Applications and Implications of Artificial Intelligence	60 300-level points
DATA 472	Data Management and Programming	60 300-level points from (COMP, DATA, STAT, NWEN, SWEN)
DATA 483	Special Topic 3 (Not offered in 2026)	
DATA 487	Research Project (15 points)	
DATA 489	Research Project (30 points)	
DATA 501	Advanced Techniques for Data Science	30 approved 400-level points from (AIML, COMP, DATA, STAT)
STAT 432	Computational Statistics	DATA 303 or DATA 473; STAT 391 or DATA 491
STAT 438	Generalised Linear Models	DATA 303 or DATA 473; STAT 391 or DATA 491
TRIMESTER	₹ 3	
DATA 480	Research Methods	Enrolment in the MDataSc
DATA 487	Research Project (15 points)	
DATA 588	Research Project (45 points)	
DATA 581	Data Science Practicum (30 points)	Enrolment in the MDataSc

400-LEVEL COURSES

AIML 420	CRN 33065 CRN 37126	ARTIFICIAL INTELLIGENCE	15 PTS	T1 T2		
Prerequisites:	60 300-level Co	0 300-level CGRA, COMP, CYBR, DATA, SWEN or NWEN points				
Restrictions:	COMP 307, CC	COMP 307, COMP 420				

This course addresses concepts and techniques of artificial intelligence (AI). It provides a brief overview of AI history and search techniques, as well as covering important machine learning topics and algorithms with their applications, including neural networks and evolutionary algorithms. Other topics include probability and Bayesian networks, planning and scheduling. The course will also give a brief overview of a selection of other current topics in AI.

AIML 421	CRN 33066	MACHINE LEARNING TOOLS AND TECHNIQUES	15 PTS	T2			
Prerequisites:	60 300-level C0	60 300-level CGRA, COMP, CYBR, DATA, NWEN, STAT or SWEN points					
Restrictions:	COMP 309						

This course addresses the use of machine learning tools and techniques for analysing data and automatically generating applications. The course will explore a range of tools and techniques for classification, regression, image analysis, clustering, text mining, and preprocessing data. It examines the applicability and limitations of the techniques and methods for analysing and evaluating the outcome of using machine learning tools. Students will gain practical experience in applying a range of tools to a range of different problems from different domains.

NOT OFFERED IN 2026

AIML 425	CRN 33067	NEURAL NETWORKS AND DEEP LEARNING			15 PTS	T2
Prerequisites:	AIML 420 or COMP 307		Restrictions:	The pair (COI	MP 421, 4	22)

Uncover the fundamentals of neural network-based deep learning. In this course you will learn the state-of-the-art methods for classification, regression, and generative modelling, giving you the building blocks for designing your own chatbots as well as image and video generation.

AIML 426	CRN 33068	EVOLUTIONARY COMPUTATION AND LEARNING		T2		
Prerequisites:	AIML 420 or CO	ML 420 or COMP 307				

This course addresses evolutionary approaches in machine learning and optimization. The course will cover both evolutionary algorithms and swarm intelligence as well as some other population-based techniques for problem solving. It will include a range of real-world application domains such as classification, regression, clustering, and optimisation.

AIML 427	CRN 33069	BIG DATA	15 PTS	T1		
Prerequisites:	,	One of (AIML 420, 421, COMP 307, 309, STAT 393, 394); one of (ENGR 123, STAT 193, MATH 177, QUAN 102) or comparable background in Statistics				
Restrictions:	COMP 424, CC	OMP 473 (2016-2018)				

Big Data refers to the large and often complex datasets generated in the modern world: data sources such as commercial customer records, internet transactions, environmental monitoring. This course provides an introduction to the theory and practice of working with Big Data. Students enrolling in this course should be familiar with the basics of machine learning, data mining, statistical modelling and with programming.

AIML 428	CRN 33070	TEXT	MINING AND	NATURAL LANGUAGE P	ROCESSING	15 PTS	T1
Prerequisites:	60 300-level p	oints	Co-requisite:	AIML 420 or COMP 307	Restrictions:	COMP 4	23

This course focuses on text mining and natural language processing. It covers a variety of topics including text representation, document classification and clustering, opinion mining, information retrieval, recommender systems, query expansion, and information extraction.

AIML 429	CRN 33071	PROBABILISTIC MACHINE LEARNING		15 PTS	T1
· ·		AIML 420 or COMP 307; one of (MATH 177, STAT 292, 293) For approved background in Mathematics or Statistics			P 421

This course teaches the ideas, algorithms and techniques of probabilistic machine learning. Topics include Bayesian inference, discriminative and generative classifiers, the EM algorithm, Gaussian processes, Markov Chain Monte Carlo, hidden Markov models, belief nets and other graphical models, and causal modelling.

AIML 430	CRN 33072	APPLICATIONS AND IMPLICATIONS OF ARTIFICIAL INTELLIGENCE	15 PTS	T2		
Prerequisites:	60 300-level p	300-level points				

AIML 430 explores Al's diverse applications in today's world and what the future might hold. We go beyond just understanding Al solutions, diving into how Al techniques can have real-world consequences and ramifications. Develop your ability to critically analyse Al literature and communicate your own opinions. Learn how varied perspectives shape Al views, emphasising the vital role of ethics. We welcome students from all backgrounds, fostering a deep and balanced understanding of Al's potential and challenges.

DATA 471	CRN 33154	PRACTICAL DATA SCIENCE		15 PTS	T2
	AIML 231 or DA in 2017-2018)	ATA 201; one of (DATA 202, SCIE 201	Restrictions:	DATA 30)1

A course in practical data science. The course will introduce interactive displays, infographics and dashboards, focussing on communication, reporting and visualisation. It will bring together techniques in statistical and mathematical modelling with programming as well as social and ethical perspectives on data science. This course is co-taught with DATA 301.

DATA 472	CRN 33155	DATA MANAGEMENT AND PROGRAMMING	15 PTS	T1		
Prerequisites:	60 300-level po	60 300-level points from (COMP, DATA, STAT, NWEN, SWEN)				
Restrictions:	DATA 202					

A course in the practical aspects of data management for those who work with data sources. Students will apply programming and data management techniques using a high-level language and SQL. Web scraping, data transformation, data cleaning, summary and visualisation. Students will create a web-based application to investigate, analyse and display a data set. This course is co-taught with DATA 202.

DATA 473	CRN 33156	STATISTICAL MODELLING FOR DATA SCIENCE		15 PTS	T1
	'	oints from (COMP, DATA, NWEN, SWEN); omparable background in Statistics	Restrictions:	DATA 30)3

In this course we uncover the role that Statistics plays in Data Science. With a focus on understanding relevant statistical methods and their practical applications, this course will help you consolidate key data science skills. Topics covered include generalised linear models, polynomial regression, generalised

additive models, shrinkage methods and supervised learning methods. The topics are covered in the context of inference and prediction for continuous, count and binary outcomes. Co-taught with DATA 303.

DATA 474	CRN 33157	SIMULATION AND STOCHASTIC MODELS	15 PTS	T1	
Prerequisites:	30 300-level points from (COMP, DATA, STAT, NWEN, SWEN); STAT 292 or comparable background in Statistics				
Restrictions:	COMP 312, DATA 304				

Simulation and modelling of stochastic systems, covering examples from Operations Research and Computer Science, including queues, networks and computer systems. Design, analysis and validation of simulation experiments. This course is co-taught with DATA 304.

NOT OFFERED IN 2026

DATA 475	CRN tbc	MACHINE LEARNING TECHNIQUES	15 PTS	T1	
Prerequisites:	30 300-level points from (COMP, DATA, NWEN, SWEN)				
Restrictions:	DATA 302, DATA 305				

Data Science uses machine learning methods to fit data and make predictions. In this course you will learn how to explore data in order to identify the appropriate ethical and cultural considerations and select the appropriate tools to analyse the data, develop the theory that underlines those tools, and see a variety of modern machine learning algorithms (such as Large Language Models) that make modern machine learning such a fascinating topic.

DATA 480	CRN 33158	RESEARCH PREPARATION FOR DATA SCIENCE	15 PTS	Т3			
Prerequisites:	Enrolment in th	Enrolment in the MDataSc					

This course provides students with an opportunity to develop their research skills in Data Science, including use of library resources, constructing literature reviews, developing research questions, writing research proposals, and developing skills in oral presentation.

DATA 487	CRN 33162 CRN 33163 CRN 33164	RESEARCH PROJECT	15 PTS	T1 T2 T3
DATA 489	CRN 33165 CRN 33166 CRN 33167 CRN 37067	RESEARCH PROJECT	30 PTS	T1 T2 T3 T1 + T2
DATA 588	CRN 33174	RESEARCH PROJECT	45 PTS	Т3

Students should meet with the Postgraduate Coordinator to identify their areas of interest, for assistance in identifying a suitable supervisor and then contact potential supervisors directly. Fifteen-point projects are usually completed in one trimester. Thirty-point projects can be completed within either a single trimester, or two successive trimesters, and should take 300 hours of study, supervision meetings and writing. The 45-point project DATA 588 is available to students in the Master of Data Science who, with permission, are replacing the combination of the work placement DATA 581 and project DATA 487 with a larger research project.

DATA 491	CRN 33168	MATHEMATICS FOR DATA SCIENCE	15 PTS	T1		
Prerequisites:	30 300-level points from (COMP, DATA, NWEN, SWEN); STAT 292 or comparable background in Statistics					
Restrictions:	MATH 277, STAT 391					

How should we model data to ensure we have a good understanding of the world? Drawing correct conclusions from well-chosen statistical models needs a range of mathematical techniques. This course shows you the key methods used in the construction and maximisation of likelihoods, the analysis of experimental data and linear models, and an exploration of probability plus several probability distributions. Specific mathematical topics include matrices and their properties, differentiation and optimisation of functions, plus integral calculus. The mathematical methods will be implemented and illustrated using the statistical software R, including the use of simulation, numerical methods and graphics.

DATA 501	CRN 33170	ADVANCED TECHNIQUES FOR DATA SCIENCE	15 PTS	T2
Prerequisites:	30 approved 40	00-level points from (AIML, COMP, DATA, STAT)		

A course in the application of Data Science techniques to a problem. Each student will develop a distributable software package to process, investigate, analyse, manipulate, summarise and visualise data from a data source. The package will be developed in a standard programming environment and will be fully documented and peer tested. Students will write an accompanying critique of relevant data limitations and any legal or ethical considerations.

DATA 581	CRN 33171-3	DATA SCIENCE PRACTICUM	30 PTS	T1, T2, T3	
Prerequisites:	Enrolment in th	Enrolment in the MDataSc, 60 approved points from the MDataSc			

This course enables students to gain professional work experience in the application of Data Science. Each student is supervised by a host organisation involved in the practice of Data Science in the public or private sectors. The placement allows students to develop teamwork and communication skills in the real world.

This course consists of:

- Practicum briefing: understanding professional expectations and responsibilities; dealing with problems arising in the workplace.
- Placement: working on specific projects with significant Data Science content assigned by a host employer; developing teamwork and communication skills; and writing a portfolio.
- Seminar: presenting the findings from the projects and the placement experience.

STAT 432	CRN 23079	COMPUTATIONAL STATISTICS	15 PTS	T2
•	One course from	m (STAT 332, 393, 394) or (one of (STAT 391, DATA 491 TA 303, 473)))	

Introduction to computationally intensive methods for statistical modelling and inference. Topics selected from jackknife and bootstrap bias correction and variance estimation; permutation tests; maximum likelihood estimation using EM algorithm; random numbers; probability distribution simulation; Bayesian Inference; Markov Chain Monte Carlo; Metropolis-Hastings algorithm; Gibbs sampling. Desirable that students have some programming experience in R.

STAT 438	CRN 8113	GENERALISED LINEAR MODELS		T2
•	One course from	m (STAT 332, 393, 394) or (one of (STAT 391, DATA 491 TA 303, 473)))	

Brief outline of generalised linear model theory, contingency tables, binary response models, log-linear models (for contingency tables), repeated measures, GEE analysis, logit models for multinomial responses, and ordinal response models.

SUBSTITUTION FROM OTHER SUBJECTS

Honours, Postgraduate Diploma and Master's degrees can include approved courses from other subjects as listed below. Information about these courses is contained elsewhere in this prospectus, or in the relevant Postgraduate Prospectus or websites of the School responsible for it. The overall selection of courses must still form a coherent programme and requires approval from the Postgraduate Coordinator for Data Science. Examples of such courses are listed below.

COURSE TITLE

TRIMESTER 1

ECON 408	Econometrics: Cross-sectional Data
FINA 402	Current Topics in Corporate Finance
STAT 431	Biostatistics (NOT OFFERED)
STAT 452	Bayesian Statistics

TRIMESTER 2

AIML 430	Applications and Implications of Artificial Intelligence
AIML 431	Current Topics in Artificial Intelligence
ECON 409	Econometrics: Panel Data and Time Series (NOT OFFERED)
FINA 401	Current Topics in Asset Pricing (NOT OFFERED)
FINA 403	Derivative Securities
GEOG 415	Introduction to Geographic Information Science and its Applications
STAT 451	Official Statistics

EXAMPLE COURSES OF STUDY IN THE MDATASC

Each student's course of study must be approved by the postgraduate coordinator. Some examples of courses of study are shown in the table below.

Note that students with an undergraduate major in Data Science, or a double major in Statistics and Computer Science, can complete the MDataSc in 12 months and only complete 180 points. Other students will need to complete the full 240-point qualification.

Some courses (such as AIML 420 Artificial Intelligence and DATA 491 Mathematics for Data Science) may be required for students as preparation for courses later in the degree. Also note that some students may need to take additional prerequisite courses (such as COMP 132 Programming for the Natural and Social Sciences, or STAT 292 Applied Statistics 2A) concurrently with the MDataSc. Recognition can be given for work experience as well as prior study when assessing the need for these prerequisites.

EXAMPLE PROGRAMMES IN THE MDATASC

	(a) Data Science graduates, double majors in Statistics and Computer Science, or double majors in Statistics and Artificial Intelligence (180 points)	(b) Statistics graduates (240 points)	(c) Computer Science or Artificial Intelligence graduates (240 points)
Y1/T1	AIML 420 (AI) ⁺ AIML 427 (Big Data) DATA 491 (Mathematics) ⁺ STAT 452 (Bayesian Stats) ^o	AIML 420 (AI) DATA473 (Statistical Modelling for Data Science) * DATA 475 (Machine Learning) *	AIML 420 (AI) ° DATA 475 (Machine Learning) * AIML 427 (Big Data) [* optionally STAT 292]
Y1/T2	AIML 425 (Neural Nets) STAT 432 (Comp Stat) STAT 438 (Gen Lin Models) DATA 501 (Data Science)	AIML 472 (Data Management and Programming) * DATA 471 (Data Science) * STAT 438 (Gen Lin Models)	AIML 425 (Neural Nets) DATA 471 (Data Science) * DATA 472 (Data Management and Programming) *
Y1/T3	DATA 480 (Research Prep) DATA 487 (Project) DATA 581 (Practicum)	DATA 480 (Research Prep) DATA 487 (Project) DATA 581 (Practicum)	DATA 480 (Research Prep) DATA 487 (Project) DATA 581 (Practicum)
Y2/T1		AIML 427 (Big Data) ⁺ AIML 428 (Nat Lang) ^o STAT 452 (Bayes Stats) ^o	AIML 428 (Nat Lang) ° DATA 491 (Mathematics) * DATA 473 (Statistics) *
Y2/T2		AIML 425 (Neural Nets) DATA 501 (Data Sci) STAT 432 (Comp Stat)	DATA 501 (Data Sci) STAT 432 (Comp Stat) STAT 438 (Gen Lin Models)

^{* =} Part 1 course; o = Elective course; + = Required prerequisite course

CONTACT INFORMATION

SCHOOL OF MATHEMATICS AND STATISTICS

Te Kura Mātai Tatauranga

Location: CO358, Level 3, Cotton Building, Kelburn Campus

Phone: 04-463 5341

Email: sms-office@vuw.ac.nz
Website: www.wgtn.ac.nz/sms

For Postgraduate enquiries please email: pg-ecs-sms@vuw.ac.nz

STAFF (All room numbers refer to Cotton Building)		ROOM
Head of School	Prof Richard Arnold	538
Deputy Head of School	Prof Stephen Marsland	443
School Manager	Hariaty Abu Hassan	323
Office Administration		
Senior Administrator	Sonia Tenreiro	358
Administrator	Amy Blair	358
Postgraduate Coordinator	Aloisa Cranston	358

TEACHING STAFF ROLE / RESEARCH INTERESTS ROOM

Prof Alejandro Frery	Statistical Computing; Signal, Image, and Network Analysis; Data Analysis; Synthetic Aperture Radar (SAR) imagery	537
Prof Astrid an Huef	Functional analysis, operator algebras	439
Dr Becky Armstrong	Post Doctoral Fellow in Mathematics	364
Dr Binh Nguyen	Machine learning, deep learning, health data science and informatics, bioinformatics, drug discovery	535
Dr Brendan Harding	Fluid mechanics, differential equations, high performance computing, numerical analysis, fractal geometry	433
Dr Budhi Surya	Optimal stopping of Levy processes, probability applied to financial economics and actuarial science	544
Dr Byoung Du Kim	Number theory	434
Dr Dan Turetsky	Computability theory, algorithmic randomness, descriptive set theory	436
David Cox	Lecturer (teaching)	320
Dr David Huijser	Bayesian inference and Markov Chain Monte Carlo (MCMC) methods; statistical modeling in astronomy, volcanology, and neuroscience.	542

School of Mathematics and Statistics

A/Prof Dimitrios Mitsotakis	Numerical analysis, differential equations, fluid mechanics, nonlinear waves	441
Dr Emma Greenbank	Mathematical modelling, fluid dynamics, Surtseyan ejecta and Lithium-ion batteries	
Dr Hung Le Pham	Banach algebras, abstract harmonic analysis	440
Dr Ilija Tolich	Post Doctoral Fellow in Mathematics	430
Prof Ivy Liu	Categorical data analysis, model-based clustering, analysis of ordinal data	424
Dr John Haywood	Time series analysis, seasonal modelling, forecasting and statistical applications, particularly in ecology	
Prof Lisa Orloff Clark	Functional analysis, operator algebras, associative rings and algebras	324
Dr Louise McMillan	Model-based clustering, categorical data analysis, statistical ecology, statistics for population genetics	429
Prof Matt Visser	General relativity, black holes, quantum field theory, theoretical cosmology	321
Dr Nick Brettell	Matroid theory, Graph theory, Algorithms and computational complexity	427
Prof Noam Greenberg	Computability theory, reverse mathematics, algorithmic randomness, higher recursion theory, effective descriptive set theory	438
A/Prof Nokuthaba Sibanda	Statistical modelling in fisheries and healthcare, Bayesian inference, Spatial statistics	534
Prof Peter Smith	Probability and statistics applied to communications and signal processing, with a focus on mobile phone/cellular systems	539
Prof Richard Arnold	Bayesian statistics, reliability, directional statistics, model-based clustering	538
Dr Ryan Admiraal	Social network analysis, disease modelling	536
A/Prof Sasha Melnikov	Mathematical logic, computability theory, computable algebraic and metric structures, abelian groups.	442
Prof Stephen Marsland	Bioacoustics and mathematical ecology, evolutionary game theory, infinite-dimensional geometry.	443
Dr Steven Archer	Lecturer (teaching)	323
Dr Tanya Gvozdeva	Lecturer (teaching)	362
Dr Yuan Yao	High-dimensional data analysis	533

All room numbers refer to Cotton Building. Staff email: firstname.lastname@vuw.ac.nz

STUDENT SUPPORT

TĪTOKO—CENTRE FOR STUDENT SUCCESS

The Student Success team offers a range of services that cover all student-related matters from applications and enrolment to graduation. Our aim is to create a client-focused, friendly environment where all who visit our area not only feel welcome, but also receive support and advice of high quality.

Address CO144, Level 1, Cotton Building

Phone 0800 04 04 04

Email: info@vuw.ac.nz Website: www.wgtn.ac.nz/titoko

Email

We encourage you to use email for enquiries, including your full name and ID number in the subject line of your email.

In-person appointments

If you are coming to the office, you will need to make an appointment in advance.

ĀWHINA | MĀORI STUDENT SUPPORT

Āwhina is the on-campus whānau for Māori students to work together to share knowledge, achieve academic success, and build strong communities and leaders.

At Āwhina, our kaupapa (goal) is to help students successfully transition from secondary education or work into tertiary education, and to provide academic support for Māori students enrolled at the University. Our experienced staff offer one-to-one advising and mentoring sessions, tutorials, study wānanga, and a range of workshops to help you achieve your study goals. Our culturally inclusive environment includes whānau rooms with computer facilities, study areas, kitchen facilities, and space to meet with peers or tuākana (older students).

Email: awhina@vuw.ac.nz
www.wgtn.ac.nz/awhina

PASIFIKA STUDENT SUCCESS

The Pasifika Student Success team is the University 'āiga (family) who journey with all Pasifika students at the University. The team fosters learning and teaching communities in an environment that celebrates Pasifika cultures, is welcoming and safe, and is focused on academic excellence, personal growth, and wellbeing.

The Pasifika Student Success team can help you navigate your transition into tertiary study, with study spaces, support staff and mentoring programmes. The team engage with Pasifika students on campus and via various online platforms, such as Zoom, email, phone, and social media.

Email: pasifika@vuw.ac.nz Website: www.wgtn.ac.nz/pasifika