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We show that pulse solutions of the wave equation
can be expressed as time Fourier superpositions of
scalar monochromatic beam wave functions (solutions
of the Helmholtz equation). This formulation is shown
to be equivalent to Bateman’s integral expression for
solutions of the wave equation, for axially symmetric
solutions. A closed-form one-parameter solution
of the wave equation, containing no backward-
propagating parts, is constructed from a beam
which is the tight-focus limit of two families of
beams. Application is made to transverse electric and
transverse magnetic pulses, with evaluation of the
energy, momentum and angular momentum for a
pulse based on the general localized and causal form.
Such pulses can be represented as superpositions of
photons. Explicit total energy and total momentum
values are given for the one-parameter closed-form
pulse.

1. Introduction
Recent work has shown that, for any sound pulse
in a homogeneous fluid which is based on the
general localized and causal form of solutions of the
wave equation, the energy, momentum and angular
momentum can be evaluated in terms of an integral over
the weight function which defines the solution [1]. This
reduction is useful because the integrals over the weight
function are simpler to evaluate and more physically
meaningful than the corresponding integration of energy,
momentum and angular momentum densities over all of
space. It also gives a representation of the sound pulse as
a superposition of phonons.

A similar reduction is possible for electromagnetic
pulses of specific type. In this paper we shall show
that for transverse electric (TE) and transverse magnetic

2018 The Author(s) Published by the Royal Society. All rights reserved.
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(TM) pulses the total energy, momentum and angular momentum are given by
⎡
⎢⎣

U
cPz

cJz

⎤
⎥⎦ = π

2

∫∞

0
dk

∫ k

0
dκ|f (k, κ)|2κq

⎡
⎢⎣

k
q
m

⎤
⎥⎦ , q =

√
k2 − κ2, (1.1)

where U, Pz and Jz are, respectively, the total energy, the z component of the momentum and the z
component of the angular momentum. For pulses propagating in the z-direction, and converging
towards or diverging from the propagation axis (as all localized pulses must), the transverse
components of momentum are zero, and Jz is the only component of angular momentum invariant
to choice of origin. In (1.1), q and κ are the longitudinal and transverse components of the
wavevector, respectively, and c is the speed of light. The function f (k, κ) is the wavenumber weight
function which defines the solution of the wave equation on which the electromagnetic pulse is
based, as discussed in §2:

ψm(ρ,φ, z, t) = eimφ
∫∞

0
dk e−ikct

∫ k

0
dκf (k, κ)eiqzJm(κρ). (1.2)

We are using cylindrical polar coordinates (ρ, φ, z), with ρ = (x2 + y2)1/2 the distance from the
z-axis, and φ the azimuthal angle. The azimuthal winding number m is an integer, by continuity
of ψm; Jm is the regular Bessel function. The wavenumber weight function f (k, κ) is in general
complex; the constraints on it are that (1.2) should exist, and that physical quantities derived
from it (such as the pulse energy and momentum) should be finite.

Although the results given in (1.1) are based entirely on classical electrodynamics, they show
that an electromagnetic pulse may be viewed as a superposition of photons with energies h̄ck, z
component of momentum h̄q = h̄kz, and z component of angular momentum h̄m, where m is the
azimuthal quantum number.

The remainder of this section summarizes how electromagnetic pulses may be obtained
from solutions of the wave equation. In §2 we give a brief summary of the known closed-form
solutions of the wave equation. It is a peculiar fact that most of the known closed-form
localized solutions of the wave equation contain both forward- and backward-propagating parts.
For example, we shall show localized solutions in §2 propagating in the z-direction, with both
z − ct and z + ct in their waveforms. Such pulses are not causal: they cannot originate from a single
radiation source or a localized array of sources. However, a general causal wave function, whose
construction guarantees the absence of z + ct terms, is readily written down, and some closed-
form examples are known. These pulses may be regarded as superpositions of generalized Bessel
beams. In §3, a closed-form solution of the wave equation, localized and causal, is found. It is
constructed from a superposition of monochromatic beams of a simple type. Electromagnetic TE
and TM pulses are discussed in §4, and their energies, momenta and angular momenta evaluated
as integrals over their wavenumber weight function in §§5 and 6. Section 7 gives the energy and
momentum densities for the two electromagnetic pulses derived from the real and imaginary
parts of the wave function found in §3. The energy and momentum densities are different, but the
total energy and total momentum are the same. The Discussion in §8 relates the pulse results to
those known for electromagnetic beams.

As is well known, electric and magnetic fields can be expressed in terms of the vector potential
A(r, t) and scalar potential V(r, t) via

E = −∇V − ∂ctA, B = ∇ × A. (1.3)

With these substitutions, the source-free Maxwell equations ∇.B = 0, ∇ × E + ∂ctB = 0 are
satisfied automatically. If further A and V satisfy the Lorenz condition ∇ · A + ∂ctV = 0,
substitution of (1.3) into Maxwell’s free-space equations (of which the curl equations couple
E and B) decouples the vector and the scalar potentials, which satisfy the wave equation:

∇2A − ∂2
ctA = 0 and ∇2V − ∂2

ctV = 0 . (1.4)

 on January 17, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170655

...................................................

Let ψi(r, t) be solutions of the wave equation

∇2ψ − ∂2
ctψ = 0. (1.5)

Form the four-potential [A, V] = [ψ1,ψ2,ψ3, ψ4], and the electric and magnetic fields derived from
it. Then, provided ∂xψ1 + ∂yψ2 + ∂zψ3 + ∂ctψ4 = 0, the electric and magnetic fields derived from
the four-potential will satisfy the Maxwell equations. (We shall use square brackets for Cartesian
coordinates in 3 or 3 + 1 dimensions, round brackets for polar coordinates.) In fact two solutions
of the wave equation are sufficient to represent an arbitrary electromagnetic field in empty space.
This theorem is due to Whittaker [2]; see also [3], §16.2.

Monochromatic scalar beams (and electromagnetic beams constructed from them) have time
dependence e−iωt, and hence satisfy the Helmholtz equation

∇2Ψ (r, k) + k2Ψ (r, k) = 0, k = ω

c
. (1.6)

We shall see in the next section that pulses may usefully be viewed as superpositions of beams.

2. Solutions of the wave equation in cylindrical coordinates
We briefly summarize the known closed-form solutions of the wave equation, which in cylindrical
coordinates reads (

∂2
ρ + 1

ρ
∂ρ + 1

ρ2 ∂
2
φ + ∂2

z − ∂2
ct

)
ψ(ρ,φ, z, t) = 0. (2.1)

The separable solutions of (2.1) are

Jm(κρ)eimφeiqze−ikct if κ2 + q2 = k2. (2.2)

Superposition of such solutions gives the general causal pulse

ψm(ρ,φ, z, t) = eimφ
∫∞

0
dk e−ikct

∫ k

0
dκf (k, κ)eiqzJm(κρ), q =

√
k2 − κ2. (2.3)

The function f (k, κ), in general complex, is subject only to the existence of (2.3) and associated
integrals, namely those which give the total energy, momentum and angular momentum of a
pulse constructed from ψm. The form of (2.3) guarantees the absence of z + ct terms: the integrand
contains the factor ei(qz−kct), with k ≥ q ≥ 0. In §3, we shall give a particular closed-form evaluation
of (2.3); earlier closed-form expressions were obtained by Sheppard & Saari [4] and by Zamboni-
Rached [5].

The Bessel-based pulses in (2.3) are related to generalized Bessel beams [6–8]. For integral m, we
define a scalar monochromatic beam of angular frequency ω= kc by

Ψm(ρ,φ, z, k) = eimφ
∫ k

0
dκf (k, κ)eiqzJm(κρ), q =

√
k2 − κ2. (2.4)

Such beam wave functions automatically satisfy the Helmholtz equation (∇2 + k2)Ψ (r) = 0. The
pulse (2.3) is seen to be a superposition of generalized Bessel beams:

ψm(ρ,φ, z, t) =
∫∞

0
dk e−ikctΨm(k, ρ, z). (2.5)

It is interesting that the intuitive idea of a beam being a superposition of pulses is thus reversed.
The physical meaning of (2.5) is remarkable, though typical of Fourier analysis: a continuum of
monochromatic beams with phase factor e−ikct, each longitudinally infinite, adds up to a localized
pulse.

Bateman [9] obtained a general solution of the wave equation in integral form. For solutions with
axial symmetry (independent of the azimuthal angle φ) the non-singular part of the Bateman
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solution is, with F(u, v) any twice-differentiable function,

ψ(ρ, z, t) = 1
2π

∫ π
−π

dθ F(z + iρ cos θ , ct + ρ sin θ ) . (2.6)

A proof (different from Bateman’s) that (2.6) satisfies the wave equation is given in [10], p. 491.
On the propagation axis ρ= 0, the pulse wave function (2.6) becomes

ψ(0, z, t) = F(z, t). (2.7)

For example, if the on-axis wave function takes the form eik(z−ct), Bateman’s integral becomes

1
2π

∫ 2π

0
dθ eik(z−ct+iρeiθ ) = eik(z−ct)

2π i

∮
du

e−kρu

u
= eik(z−ct) (2.8)

(u = eiθ and the second integral is around the unit circle, with a simple pole at u = 0). Thus the
plane-wave form on the axis determines the whole pulse to be a plane wave, unidirectional but
not localized.

To obtain a pulse localized in space–time, we need to start with a beam which is transversely
localized. A closed-form example of a transversely localized beam is provided by a simple wave
function, though with problems [11]

Ψ (r, k) = e−ka′
R−1 sin kR, R2 = ρ2 + (z − ib′)2. (2.9)

Equation (2.5) then gives us

ψ(r, t) = 1
2iR

∫∞

0
dke−ka′

e−ikct(eikR − e−ikR) = 1

R2 + (a′ + ict)2 . (2.10)

We recognize this wave function as a variant of the solution (r2 − c2t2)−1 of the wave equation.
This solution is singular on the light-cone r2 = c2t2, but complex displacements in space and time
make it non-singular, an idea credited by Trautman [12] to Synge [13]. We set

a′ = a + b
2

, b′ = − a − b
2

. (2.11)

Then (2.10) reduces to [14,15]

ψ(r, t) = 1
ρ2 + [a − i(z + ct)][b + i(z − ct)]

= 1

r2 − (ct)2 + ab + i[(a − b)z − (a + b)ct]
. (2.12)

Ziolkowski [14] discusses cylindrically symmetric solutions of the wave equation of the form

ψZ(ρ, z, t) = [b + i(z − ct)]−1
∫∞

0
dk F(k)eik(z+ct)−kρ2/[b+i(z−ct)]. (2.13)

The choice F(k) = e−ka reproduces the simple wave function (2.12). As noted in [15,16], the wave
function (2.12) is predominantly forward propagating for a � b.

Hillion [17] notes that the wave equation is solved by functions of the form

ψH(ρ, z, t) = f (s)
b + i(z − ct)

, s = ρ2

b + i(z − ct)
− i(z + ct). (2.14)

With f (s) = 1/(s + a) we regain the wave function (2.12). An oscillatory wave function results from
the choice f (s) = e−ks/(s + a) [18]:

ψ(ρ, z, t) = eik(z+ct)−(kρ2/b+i(z−ct))

ρ2 + [a − i(z + ct)][b + i(z − ct)]
. (2.15)
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The Hillion form of solutions given in (2.14) can be generalized to give pulses with azimuthal
dependence [19–21]. One can verify, for example, that the following are wave functions:

g
b + i(z − ct)

ψH (g = x, y, z, x ± iy),
h

[b + i(z − ct)]2ψH (h = xy, x2 − y2, (x ± iy)2). (2.16)

We note that all of the closed-form solutions shown above contain both z − ct and z + ct.
Bateman’s integral solution (2.6) is directly related to the m = 0 form of (2.4). On the z-axis, we

have

ψ0(0, z, t) =
∫∞

0
dke−ikct

∫ k

0
dκf (k, κ)eiqz = F(z, t), q =

√
k2 − κ2. (2.17)

The full wave function is thus, on substitution into (2.6),

ψ0(ρ, z, t) = 1
2π

∫π
−π

dθ
∫ v

0
dke−ik(ct+ρ sin θ)

∫ k

0
dκ f (k, κ)eiq(z+iρ cos θ). (2.18)

By Bessel’s integral (Watson [22], §2.21), the integration over θ gives 2π J0(κρ), and we regain the
m = 0 form of (2.3):

ψ0(ρ,φ, z, t) =
∫∞

0
dke−ikct

∫ k

0
dκf (k, κ)eiqzJ0(κρ), q =

√
k2 − κ2. (2.19)

The norm of ψm defined in (2.3) is evaluated in appendix A. It is

N =
∫

d3r |ψm|2 = (2π)2
∫∞

0
dk k−1

∫ k

0
dκ κ−1

√
k2 − κ2 | f (k, κ)|2. (2.20)

Note that the norm is independent of time. An interesting aspect of the result (2.20) is that the
normalization integral does not depend on the azimuthal index m, assuming that the weight
function f (k, κ) is independent of m. We see also that the function f (k, κ) cannot be chosen
arbitrarily. For example, logarithmic divergence would result from a non-zero value of f (k, 0),
making a finite norm impossible.

3. A particular causal pulse
We saw in §2 that, if Ψ (r, k) satisfies the Helmholtz equation, a set of pulses satisfying the wave
equation can be written in the form

ψ(r, t) =
∫∞

0
dk e−ikctΨ (r, k). (3.1)

As the simplest example, if Ψ (r, k) = f (k)eikz, we obtain the general plane-wave pulse ψ(z − ct).
This is not transversely localized; to obtain a pulse localized in space–time we need to start with
a beam which is transversely localized.

The simplest causal beam known to the author is the proto-beam [23]; it is the confluent tight-
focus limit of two families of beams, both transversely bounded exact solutions of the Helmholtz
equation. The first family was introduced by Carter [24] and its properties were explored by Berry
[25] and Nye [26]:

ΨC(ρ, z, k) =
∫ k

0
dq q e(bq2/2k)+iqz J0

(
ρ

√
k2 − q2

)
. (3.2)

The second was considered in [23,27],

Ψb(ρ, z, k) =
∫ k

0
dq q eqb+iqz J0

(
ρ

√
k2 − q2

)
. (3.3)

The lengths k−1 and b determine the extent of the focal region. When kb is large the longitudinal
extent is of order b, and the transverse extent is of order

√
b/k. As b → 0, the only length remaining
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is k−1, and both longitudinal and transverse extents of the focal region are of order k−1. This is the
case for the confluent limit of ΨC, Ψb as b tends to zero:

Ψ0(ρ, z, k) =
∫ k

0
dq q eiqz J0

(
ρ

√
k2 − q2

)
. (3.4)

Explicit expressions for Ψ 0 are given in [23], in terms of Lommel functions of two variables,
and alternatively in terms of a series expansion in spherical Bessel functions and Legendre
polynomials, as discussed in appendix B. We shall construct a solution of the wave equation from
a superposition of Ψ0(ρ, z, k) with the weight functions f (k, κ) or h(k, q) given by

f (k, κ) = a4

3
ke−kaκ , h(k, q) = qκ−1f (k, κ) = a4

3
ke−kaq. (3.5)

It is assumed that a> 0. The resulting solution of the wave equation is

ψ0(ρ, z, t) = a4

3

∫∞

0
dk k e−ka−ikct

∫ k

0
dq q eiqz J0

(
ρ

√
k2 − q2

)
. (3.6)

The prefactor in the weight functions (3.5) and hence in (3.6) has been chosen to make the wave
function unity at the space–time origin: ψ0(0, 0, 0) = 1. In the z = 0 plane, we use the integrals

∫ k

0
dκκ J0(κρ) = k

ρ
J1(kρ) and

∫∞

0
dk k2 e−kaJ1(kρ) = 3aρ

(a2 + ρ2)5/2 . (3.7)

Hence the wave function in the focal plane z = 0 of the pulse is

ψ0(ρ, 0, t) = a4ã

(ã2 + ρ2)5/2 , ã = a + ict. (3.8)

To evaluate (3.6) at a general space–time point, we first use Bessel’s integral ([22], §2.21) to write

J0

(
ρ

√
k2 − q2

)
= 1

2π

∫π
−π

dθ eρ(q cos θ+ik sin θ ) . (3.9)

The integrations in (3.6) over 0 ≤ q ≤ k and then over 0 ≤ k<∞ may be reversed to q ≤ k<∞
and then 0 ≤ q<∞, since a> 0. In the final integration over θ an ambiguity arises in the term
ln(−a − ρ + iz). We interpret this as ln(a + ρ − iz) − iπ to have agreement with the focal plane
value given in (3.8). The final result is

ψ0(ρ, z, t) = a4ã
3

3(ã2 + ρ2)2 − 6z2(ã2 + ρ2) − z4 + 8iz(ã2 + ρ2)3/2

(ã2 + ρ2)3/2(ã2 + ρ2 + z2)3 , ã = a + ict. (3.10)

Differentiation verifies that ψ0 satisfies the wave equation. At t = 0, the absolute square of ψ0 is
simple:

|ψ0(ρ, z, 0)|2 = a10(9a2 + 9ρ2 + z2)

9(a2 + ρ2)3(a2 + ρ2 + z2)3 . (3.11)

We note that the lateral decay of |ψ0(ρ, z, 0)| is faster than the longitudinal decay: asymptotically
these are, respectively, ρ−5 and z−2. On the propagation axis ρ = 0 the modulus squared is

|ψ0(0, z, t)|2 = a8[9a2 + (z − 3ct)2]

9(a2 + c2t2)2[a2 + (z − ct)2]
3 . (3.12)

Propagation is in the positive z-direction. There is no backward propagation part containing z + ct
as we had in (2.12–2.16). The term z − 3ct suggests superluminal propagation, but in fact the
maximum modulus is at z ≈ (12/13)ct in the focal region, and at z ≈ ct far from the focal region.
Figure 1 shows the time development of the modulus of ψ0.

We note in conclusion of this section that solutions with azimuthal dependence may be
obtained by differentiation of ψ0: the wave equation operator ∇2 − ∂2

ct commutes with ∂x and
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factor of three so that it would not swamp the neighbouring moduli at ct = ±3a. Propagation is from left to right. There is
symmetry about the space–time origin, which is the centre of the focal region of the pulse. The apparent discontinuity seen at
the front centre is due to overprinting of the moduli. (Online version in colour.)

∂y and thus also with ∂x + i∂y = eiφ(∂ρ + iρ−1∂φ). Hence, for example, a solution with m = 1 is
(since J′0 = −J1)

ψ1 = eiφ
∫ k

0
dq q eiqz κ J1(ρκ), κ =

√
k2 − q2. (3.13)

An equivalent form is obtained by operating on (3.10) with −eiφ∂ρ .

4. Electromagnetic transverse electric and transverse magnetic pulses
As we saw in §1, free-space electromagnetic fields can be expressed in terms of the vector potential
A(r, t) and scalar potential V(r, t) which satisfy the wave equation (1.4) and the Lorenz condition
∇ · A + ∂ctV = 0.

Electromagnetic pulses can thus be constructed from solutions of (1.4). As a simple example,
the choice V = const., A = ∇ × [0, 0, ψ] = [∂y, −∂x, 0]ψ satisfies the Lorenz condition, and gives
us the TE pulse with

E = −∂ctA = [−∂y∂ct, ∂x∂ct, 0]ψ and B = ∇ × A = [∂x∂z, ∂y∂z, −∂2
x − ∂2

y ]ψ . (4.1)

We shall explore in §5 the properties of this pulse when ψ =ψ0, the wave function found in the
previous section. But first we look at the general properties of TE pulses. Because of the nature of
our solutions, it is convenient to use cylindrical coordinates (ρ,φ, z). When ψ is dependent on the
azimuthal angle φ through the factor eimφ , as in the general causal solution (2.3), we have

∂x = cosφ∂ρ − ρ−1 sinφ∂φ → cosφ∂ρ − imρ−1 sinφ (4.2)

and
∂y = sinφ∂ρ + ρ−1 cosφ∂φ → sinφ∂ρ + imρ−1 cosφ. (4.3)

Using the fact that ψ satisfies the wave equation, the complex fields simplify to

E = −∂ctA = (−imρ−1∂ct, ∂ρ∂ct, 0)ψ and B = ∇ × A = (∂ρ∂z, imρ−1∂z, ∂2
z − ∂2

ct)ψ . (4.4)
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Write the complex wave function as ψ =ψr + iψi; both the real and the imaginary parts are
solutions of the wave equation. Real electric and magnetic fields are obtained by taking the real or
the imaginary parts of the complex fields. The real and imaginary parts of (4.4) are, respectively,

E = (mρ−1∂ctψi, ∂ρ∂ctψr, 0), B = (∂ρ∂zψr, −mρ−1∂zψi, ∂2
zψr − ∂2

ctψr) (4.5)

and

E = (−mρ−1∂ctψr, ∂ρ∂ctψi, 0), B = (∂ρ∂zψi, mρ−1∂zψr, ∂2
zψi − ∂2

ctψi). (4.6)

The energy, momentum and angular momentum densities are, for real fields,

u = 1
8π

(E2 + B2), cp = 1
4π

E × B, j = r × p. (4.7)

A TM pulse is obtained from the TE pulse by the duality transformation E → B, B → −E. The
duality transformation leaves the energy and momentum densities unchanged. Thus for both TE
and TM pulses, with the fields given in (4.5), we have

8πu = (∂ρ∂zψr)2 + (∂ρ∂ctψr)2 + [∂2
zψr − ∂2

ctψr]2 + m2ρ−2[(∂zψi)2 + (∂ctψi)2], (4.8)

4πcpρ = EφBz − EzBφ = EφBz = (∂ρ∂ctψr)(∂2
zψr − ∂2

ctψr), (4.9)

4πcpφ = EzBρ − EρBz = −EρBz = −mρ−1(∂ctψi)(∂2
zψr − ∂2

ctψr) (4.10)

and 4πcpz = EρBφ − EφBρ = −m2ρ−2(∂ctψi)(∂zψi) − (∂ρ∂ctψr)(∂ρ∂zψr). (4.11)

The z component of the angular momentum density is therefore proportional to the azimuthal
winding number m; for the pulse formed from the real part of the wave function it is

jz = xpy − ypx = ρpφ = − m
4πc

(∂ctψi)(∂2
zψr − ∂2

ctψr). (4.12)

The energy and momentum densities obtained by choosing the fields (4.6) have the same form,
with ψr and ψi interchanged, and a change of sign in pφ .

However, we shall see that the total energy, momentum and angular momentum are the same
whether the real or the imaginary part of ψ is used. The total energies and momenta are obtained
by integrating over all space at fixed time:

U =
∫

d3r u(r, t), P =
∫

d3r p(r, t), J =
∫

d3r r × p(r, t). (4.13)

We wish to evaluate these spatial integrals in terms of the weight function f (k, κ). The calculations
are simpler for the case where ψ is independent of the azimuthal angle φ, which we look at next.

5. Energy and momentum for them= 0 pulse
Let us look at the first term in the energy density of a TE or TM pulse when the real part of the
complex fields is used, (∂ρ∂zψr)2, in which we write ψr = 1/2(ψ + ψ∗),

(∂ρ∂zψr)2 = 1
4

[(∂ρ∂zψ)2 + 2(∂ρ∂zψ)(∂ρ∂zψ
∗) + (∂ρ∂zψ

∗)2]. (5.1)

In the integration over all space, the first term gives
∫

d3r (∂ρ∂zψ)2 = 2π
∫∞

0
dρ ρ

∫∞

−∞
dz

∫∞

0
dk e−ikct

∫ k

0
dκ f (k, κ)iqeiqzκJ1(κρ)

∫∞

0
dk′e−ik′ct

∫ k′

0
dκ ′ f (k′, κ ′)iq′eiq′zκ ′J1(κ ′ρ). (5.2)

We refer to appendix A, where more detail is provided in the evaluation of the norm of the pulse.
From (A 4), the integration over z gives rise to delta functions, which in the case of the squares
(∂ρ∂zψ)2 and (∂ρ∂zψ

∗)2 are both δ(q + q′). As q and q′ are non-negative, these terms integrate to
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zero. Only the term (1/2)(∂ρ∂zψ)(∂ρ∂zψ
∗) remains. The integration over φ gives the factor 2π .

Hence we have∫
d3r (∂ρ∂zψr)2 = 1

2

∫
d3r(∂ρ∂zψ

∗)(∂ρ∂zψ) = π

∫∞

0
dρ ρ

∫∞

−∞
dz(∂ρ∂zψ

∗)(∂ρ∂zψ)

= π

∫∞

0
dρ ρ

∫∞

−∞
dz

∫∞

0
dkeikct

∫ k

0
dκ f (k, κ)∗qe−iqzκJ1(κρ)

×
∫∞

0
dk′e−ik′ct

∫ k′

0
dκ ′ f (k′, κ ′)q′eiq′zκ ′J1(κ ′ρ). (5.3)

Performing the integration over ρ gives us, with the use of (A 2),

π

∫∞

−∞
dz

∫∞

0
dk eikct

∫ k

0
dκ f (k, κ)∗qe−iqzκ

∫∞

0
dk′e−ik′ct f (k′, κ)q′eiq′z. (5.4)

Finally, the integration over z with the use of (A 4) gives

∫
d3r (∂ρ∂zψr)2 = 2π2

∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2k−1κq3. (5.5)

The same expression results if we choose to use the imaginary part ψi = (1/2i)(ψ − ψ∗).
Next we shall evaluate∫

d3r (∂ρ∂ctψr)2 =
∫

d3r (∂ρ∂ctψi)2 = 1
2

∫
d3r(∂ρ∂ctψ

∗)(∂ρ∂ctψ). (5.6)

The differentiations with respect to ρ bring down the factors κ , κ ′, and the differentiations with
respect to ct the factors ik, −ik′. The integration over ρ gives κ−1δ(κ − κ ′) from (A2), integration
over z gives 2πqk−1δ(k − k′) from (A 4). Hence

∫
d3r (∂ρ∂ctψr)2 = 2π2

∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2kκq. (5.7)

Likewise, ∫
d3r[∂2

zψr − ∂2
ctψr]2 = 1

2

∫
d3r(∂2

zψ
∗ − ∂2

ctψ
∗)(∂2

zψ − ∂2
ctψ). (5.8)

The differentiations give the factors k2 − q2 = κ2 and κ ′2, so

∫
d3r[∂2

zψr − ∂2
ctψr]2 = 2π2

∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2k−1κ3q. (5.9)

The total energy for the m = 0 TE and TM pulses based on ψr or on ψi is thus

U = π

2

∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2 kκq (m = 0). (5.10)

In the total momentum calculation, we need to integrate over −(∂ρ∂ctψr)(∂ρ∂zψr). By the
arguments presented above,

∫
d3r (∂ρ∂ctψr)(∂ρ∂zψr) = 1

2

∫
d3r(∂ρ∂ctψ

∗)(∂ρ∂zψ). (5.11)

The differentiations give the factors κ , κ ′, ik, iq′, so

cPz = π

2

∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2κq2 (m = 0). (5.12)

The angular momentum of the m = 0 pulse is zero, since the x and y components of j = r × p
contain cosφ or sinφ factors and integration over φ gives zero, and the z component is jz = ρpφ ,
which is zero.
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6. Energy, momentum and angular momentum form �= 0 pulses
We now consider TE or TM pulses when the azimuthal dependence ofψ is eimφ . In the integration
over φ the terms (∂ρ∂zψ)2 and (∂ρ∂zψ

∗)2 will give zero, because of the e±2imφ factors they carry. In
the energy density given in (4.8), we shall consider together the terms (∂ρ∂zψr)2 + m2ρ−2(∂zψi)2

and (∂ρ∂ctψr)2 + m2ρ−2(∂ctψi)2. The terms surviving the spatial integrals are indicated by arrows:

(∂ρ∂zψr)2 + m2ρ−2(∂zψi)2 → 1
2

(∂ρ∂zψ
∗)(∂ρ∂zψ) + m2

2ρ2 (∂zψ
∗)(∂zψ) (6.1)

and

(∂ρ∂ctψr)2 + m2ρ−2(∂ctψi)2 → 1
2

(∂ρ∂ctψ
∗)(∂ρ∂ctψ) + m2

2ρ2 (∂ctψ
∗)(∂ctψ). (6.2)

The differentiations with respect to z in (6.1) give the factor (−iq)(iq′) = qq′, and the expression in
the integrand is proportional to

∂ρ Jm(κρ) ∂ρ Jm(κ ′ρ) + m2ρ−2Jm(κρ)Jm(κ ′ρ). (6.3)

We use the recurrence formulae ([22], §2.13)

2J′m(ζ ) = Jm−1(ζ ) − Jm+1(ζ )

and
2m
ζ

Jm(ζ ) = Jm−1(ζ ) + Jm+1(ζ ).

⎫⎪⎬
⎪⎭ (6.4)

These reduce (6.3) to a form amenable to the use of the Hankel inversion formula (A 2), namely

κκ ′

2

{
Jm−1(κρ)Jm−1(κ ′ρ) + Jm+1(κρ)Jm+1(κ ′ρ)

}
. (6.5)

Integration of (6.5) over ρ by means of (A 2) thus gives the factor κ . Hence
∫

d3r
{

(∂ρ∂zψr)2 + m2ρ−2(∂zψi)2
}

= 2π2
∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2k−1κq3. (6.6)

Note that this is the same value as was obtained in the m = 0 case. Likewise,
∫

d3r
{

(∂ρ∂ctψr)2 + m2ρ−2(∂ctψi)2
}

= 2π2
∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2kκq. (6.7)

Again this is the same value as was obtained in the m = 0 case. Hence the total energy is given
by the expression obtained in the previous section, in equation (5.10). In the calculation on the
net total momentum by integration over the momentum density pz given in (4.11), the same
mathematical reduction gives us expression (5.12) for Pz, again unchanged.

It remains to calculate the total angular momentum. The component of interest is Jz, since it is
intrinsic to the pulse, unchanged by a Lorentz boost along the propagation direction [28].

From (4.10) and (4.12), we see that the angular momentum density is given by

jz = ρpφ = − m
4πc

(∂ctψi)(∂2
zψr − ∂2

ctψr). (6.8)

We replace ψr, ψi by (1/2)(ψ + ψ∗), (1/2i)(ψ − ψ∗) as we have done before. The azimuthal
dependence of ψ is eimφ , and the integration over φ of the terms carrying e±2imφ factors gives
zero. Hence

jz = ρpφ = m
8πc

Im
{

(∂ctψ
∗)(∂2

zψ − ∂2
ctψ)

}
+ terms integrating to zero. (6.9)

The differentiations give the factor ik(k′2 − q′2) = ikκ ′2. The integration over all space then results
in

cJz = mπ
2

∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2κq. (6.10)

The angular momentum is the same whether the real or the imaginary part of the complex wave
function is used, since both result in the integrand (6.9). Let us summarize the results obtained
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1
r/a

z/a

real part, t = 0

0 1–1

Figure 2. Energy and momentum densities at t= 0 corresponding to the real partψr of the wave function (3.10). The energy
density is shown by shading and contours, the momentum density by arrows. The momentum density is zero on the axis. The
three-dimensional picture is obtained by rotating the figure about the direction of propagation (horizontal axis). (Online version
in colour.)

for the TE or TM pulses:

⎡
⎢⎣

U
cPz

cJz

⎤
⎥⎦ = π

2

∫∞

0
dk

∫ k

0
dκ|f (k, κ)|2κq

⎡
⎢⎣

k
q
m

⎤
⎥⎦ . (6.11)

For comparison, the norm of the wave function (calculated in appendix A) is

N ≡
∫

d3r |ψ |2 = (2π)2
∫∞

0
dk

∫ k

0
dκ |f (k, κ)|2k−1κ−1q. (6.12)

Again there is no dependence on the azimuthal index m when f (k, κ) is independent of m.
Incidentally, we have proved that U, Pz, Jz and N are all constant in time, and verified that
U> cPz.

7. TE pulses derived fromψ 0(ρ , z, t)
This section gives the energy and momentum for the TE pulses derived from the wave function
ψ0 given in (3.10). There are two pulses, one based on the real and one on the imaginary part of
ψ0. The energy and momentum densities for the real part of a general ψ were given in equations
(4.8)–(4.11). Those for the imaginary part are the same expressions with ψr replaced by ψ i (when
m = 0, which is the case being considered). The total energies and momenta are the same, but the
densities are different. The angular momentum is zero.

The weight function f (k, κ) is defined in (3.5), and normalizes the wave function ψ0 to unity
at the space–time origin. For this weight function, N = π2a3/9 is an effective volume of the pulse.
Here we are dealing with physical electromagnetic pulses derived from ψ0. In the pulse based
on the real part of ψ0, we shall normalize according to the fields at the space–time origin. All
components given in (4.5) are zero except Bz, which takes the value B0 = 10/a2. The corresponding
energy density at the space–time origin is u0 = B2

0/8π , and the quantity u0N = 25π/18a provides
an energy scale. Keeping the weight function as defined in (3.5), namely f (k, κ) = (a4/3)ke−kaκ , we
find (by direct spatial integration or from (6.11))

U = 7π
12a

, cPz = 35π
96a

,
cPz

U
= 5

8
. (7.1)
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2

1

0 1

real part, ct = 2a

z/a
2 3

r/
a

Figure 3. Energy and momentum densities at ct = 2a corresponding to the real partψr of the wave function (3.10). Notation
as in figure 2. The location of the pair of density maxima of the annular pulse is discussed in the text. The pulse converges onto
or diverges from the axis of propagation, asymptotically on a cone of half-angle equal to 45°. (Online version in colour.)

–1 0 1

1
imaginary part, t = 0

r/a

z/a

Figure 4. Energy and momentum densities at t= 0 corresponding to the imaginary partψi of the wave function (3.8). As in
figure 2, the energy density is shown by shading and contours, the momentum density by arrows. Both are zero at the origin.
(Online version in colour.)

In terms of the energy unit u0N,

U = 21
50

u0N, cPz = 21
80

u0N. (7.2)

These values hold for TE pulses formed from either the real or the imaginary parts of ψ0.
We shall look at the energy and momentum densities separately, starting with the pulse based

on the real part. Its energy density is maximal at the space–time origin (figure 2). The pulse splits
into two annular energy and momentum density maxima travelling together as time progresses,
as shown in figure 3. Far from the origin (which is the centre of the focal region) the minimum
between the peaks is at r = ct, and the energy density peaks are located at r = ct ± a

√
7 − 4

√
3 ≈

ct ± 0.268a. Their separation is thus asymptotically about 0.536a.
Next we look at the TE pulse derived from the imaginary part of (3.10). Figure 4 shows that

the energy and momentum densities derived from ψ i are zero at the space–time origin. At t = 0,
the pulse is centred on the origin, with two energy density maxima on the axis at z = ±a/

√
7 ≈

±0.378a, and a ring of maximal energy density at ρ ≈ 0.353a. As time increases (figure 5 shows
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imaginary part, ct = 2a

2

1

0 1 2 3

r/
a

z/a

Figure 5. Energy and momentum densities at ct = 2a corresponding to the imaginary partψi of the wave function (3.10).
Away from the focal region a single-peak annular structure is established, with maximum energy density at r = ct, diverging
at 45° to the axis of propagation. (Online version in colour.)

the densities at ct = 2a) the pulse becomes predominantly annular, with a single energy and
momentum density peak at r = ct. The annular pulse diverges from the axis of propagation,
asymptotically on a cone of half-angle equal to 45°.

The real part and the imaginary part of ψ both give a TE pulse which is hollow in momentum:
the momentum density is zero on the axis of propagation. Both pulses have a focal region of
extent a, more compact in the case of the real part. Both converge onto or diverge from the axis
of propagation at 45° for r � a. The dual TM pulses are the same in their energy and momentum
densities, and thus also in their total energy and momentum.

8. Discussion
The results of §7 for TE and TM pulses were summarized in equations (6.11), which we repeat
here: ⎡

⎢⎣
U

cPz

cJz

⎤
⎥⎦ = π

2

∫∞

0
dk

∫ k

0
dκ|f (k, κ)|2κq

⎡
⎢⎣

k
q
m

⎤
⎥⎦ . (8.1)

These equations have a simple interpretation in terms of the light quantum: the TE or TM pulses
can be viewed as a superposition of photons, each with energy h̄ck, z component of momentum
h̄q and z component of angular momentum h̄m.

It is interesting to compare (8.1) with the expressions for the energy, momentum and angular
momentum per unit length of electromagnetic beams derived from the general beam wave function
(2.3), namely

Ψm(ρ,φ, z, k) = eimφ
∫ k

0
dκf (k, κ)eiqzJm(κρ), q =

√
k2 − κ2. (8.2)

We denote by U′ the energy per unit length, and likewise for P′
z, J′z. The results found in [8] for TE

or TM beams are ⎡
⎢⎣

U′
cP′

z
cJ′z

⎤
⎥⎦ = 1

4k

∫ k

0
dκ|f (k, κ)|2

⎡
⎢⎣

k
q
m

⎤
⎥⎦ . (8.3)

Again, electromagnetic TE and TM beams can be viewed as superpositions of photons, each with
energy h̄ck, z component of momentum h̄q and z component of angular momentum h̄m. However,
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this very direct correspondence of classical electromagnetic pulses and beams with superpositions
of photons holds only in the TE and TM cases. More complicated relations hold for other beams
and pulses, as can be seen from the examples given in table 1 of [8].

The (idealized) beam is a spatially static entity, while the pulse is inherently dynamic and
changes position and shape as time evolves. In both cases, there are conserved quantities: the
pulse energy, momentum and angular momentum are independent of time, and the beam energy,
momentum and angular momentum per unit length are independent of position along the beam.
(The last statement is for generalized Bessel beams; for discussion of the set of electromagnetic
beam invariants, see [8,29].) That, for electromagnetic pulses, U2 − c2P2 is a Lorentz invariant
and [cP, U] is a four-vector was proved by von Laue in 1911 [30]. See also Griffiths [31], and, for
full detail, Møller [32], §63. The scalar product of the four-vector [cP, U] with itself is a scalar, an
invariant. Just as

√
U2 − c2P2 = Mc2 is the invariant rest energy for particles, so

√
U2 − c2P2 = U0

is an invariant energy for any given electromagnetic pulse. A Lorentz boost at speed c2Pz/U along
the z-axis will take us to the zero-momentum frame of the pulse (not the ‘rest’ frame, waves are
never at rest) as described in [33].

In §3, we gave a closed-form, strictly causal complex wave function, with only forward
propagation. The wave function is characterized by one length, a. The energy and momentum
of electromagnetic TE and TM pulses based on real or imaginary parts of this wave function
were evaluated (the angular momentum is zero), both by direct integration of the energy and
momentum densities, and from the integrals over the modulus squared of the weight function
f (k, κ). Graphs and analytics of the pair of pulses derived from the real and the imaginary parts of
the velocity potential show strong convergence/divergence, with a tight focal region of size a.
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Appendix A. The norm of a wave function
We consider two equivalent expressions for the norm of ψm, as defined and evaluated in the
following:

N =
∫

d3r |ψm|2 =
∫∞

0
dρ ρ

∫ 2π

0
dφ

∫∞

−∞
dz |ψm|2

= 2π
∫∞

0
dρ ρ

∫∞

−∞
dz

∫∞

0
dk eikct

∫ k

0
dκ f (k, κ)∗e−iqzJm(κρ)

∫∞

0
dk′e−ik′ct

∫ k′

0
dκ ′ f (k′, κ ′)eiq′zJm(κ ′ρ).

(A 1)

Hankel’s inversion formula ([22], §14.4, [8], appendix A) may be written as

∫∞

0
dρ ρ Jm(κρ) Jm(κ ′ρ) = κ−1δ(κ − κ ′) (κ , κ ′ > 0). (A 2)

Hence the integration over ρ selects κ ′ = κ , and we are left with

2π
∫∞

−∞
dz

∫∞

0
dk eikct

∫∞

0
dk′e−ik′ct

∫ k

0
dκ κ−1f (k, κ)∗f (k′, κ) e

iz
(√

k′2−κ2−√
k2−κ2

)
. (A 3)

Next we perform the z-integration, and use the Fourier inversion formula

∫∞

−∞
dz eiz(q′−q) = 2π δ(q′ − q) = 2π δ

(√
k′2 − κ2 −

√
k2 − κ2

)
= 2π

√
k2 − κ2

k
δ(k′ − k). (A 4)
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The last equality follows from the relation (which assumes G(k) to be monotonic in k, so G(k′) =
G(k) when k′ = k and nowhere else)

δ(G(k′) − G(k)) =
∣∣∣∣ dk
dG

∣∣∣∣ δ(k′ − k). (A 5)

Thus the final result is just a double integral over the absolute square of the function f (k, κ):

N =
∫

d3r |ψm|2 = (2π)2
∫∞

0
dk k−1

∫ k

0
dκ κ−1

√
k2 − κ2 |f (k, κ)|2. (A 6)

We now compare the norm calculated from (A6) with the result of direct integration of
the modulus squared of the m = 0 pulse ψ0(r, t) = ∫∞

0 dke−ikctΨ0(r, k). As discussed in appendix
B, the beam Ψ0(r, k) can be expanded in series of products of spherical Bessels and Legendre

polynomials, Ψ0(r, k) =
∞∑
0

An(k)jn(kr)Pn(cos θ ). In the evaluation of
∫

d3r |ψ(r, t)|2, we use the

results (η= cos θ )
∫ 1

−1
dη Pn(η)Pm(η) = 2δnm

2n + 1
and

∫∞

0
dr r2 jn(kr)jn(k′r) = π

2k2 δ(k − k′) . (A 7)

The latter formula follows from (A2), since jn(ζ ) = √
(π/2ζ )Jn+1/2(ζ ). Thus

N =
∫

d3r |ψ(r, t)|2 = 2π2
∞∑
0

1
2n + 1

∫∞

0
dk|An(k)|2 k−2. (A 8)

Equivalence of (A8) with (A6) is ensured if

∞∑
0

|An(k)|2
2n + 1

= 2k
∫ k

0
dκ κ−1

√
k2 − κ2 |f (k, κ)|2. (A 9)

It is convenient to define the function h(k, q) = qκ−1f (k, κ), and to set q = kη. The sum entering into
the norm can be found, when use is made of the Legendre series representation of the Dirac delta
function:

∞∑
0

(2n + 1)Pn(η)Pn(η′) = 2δ(η − η′), (A 10)

∞∑
0

|An(k)|2
2n + 1

= k2
∞∑
0

(2n + 1)
∫ 1

0
dη h(k, kη)∗Pn(η)

∫ 1

0
dη′ h(k, kη′)Pn(η′)

= 2k2
∫ 1

0
dη |h(k, kη)|2 = 2k

∫ k

0
dκ κ−1

√
k2 − κ2 |f (k, κ)|2. (A 11)

Hence (A 9) is verified, and the expressions for the norm in (A 8) and (A 6) have been proved to
be equivalent. For the wave function ψ0, normalized to unity at the space–time origin, we have

f (k, κ) = a4

3
ke−kaκ , h(k, q) = qκ−1f (k, κ) = a4

3
ke−kaq, (A 12)

N = (2π)2
∫∞

0
dk k−1

∫ k

0
dq |h(k, q)|2 = 4π2

9
a8

∫∞

0
dk k e−2ka

∫ k

0
dq q2 = π2

9
a3. (A 13)

The same result follows from direct integration of N = 2π
∫∞

0 dρ ρ
∫∞

−∞ dz |ψ0|2.

Appendix B. Cylindrical integrals related to spherical sums
If we restrict consideration to beam wave functions which do not depend on the azimuthal angle
φ, the cylindrically symmetric solutions of the Helmholtz equation may be expressed either as
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an integral over the cylindrical Bessel function J0, or as a sum over a product of spherical Bessel
functions jn and Legendre polynomials Pn:

Ψ (r, k) =
∫ k

0
dκ f (k, κ)eiz

√
k2−κ2

J0(κρ) =
∞∑
0

An(k)jn(kr)Pn(cos θ ). (B 1)

(An example of both expressions for the same beam function is provided by the ‘proto-beam’ in
[23], where the coefficients An are made explicit.) The corresponding pulse wave functions are
then

ψ(r, t) =
∞∑
0

Pn(cos θ )
∫∞

0
dk An(k)e−ikctjn(kr). (B 2)

We wish to relate the coefficients An(k) of the spherical coordinate expansion to the weight
function f (k, κ) in the cylindrical coordinate integral, from the equality (B 1). Let us take ρ = 0 in
(B 1), that is, equate the on-axis values. On the axis, we have r = |z|, Pn(cos θ ) = [sgn(z)]n, so

∫ k

0
dκ f (k, κ)eiz

√
k2−κ2 =

∞∑
0

An(k)jn(k|z|)[sgn(z)]n =
∞∑
0

An(k)jn(kz). (B 3)

We change to the variable q =
√

k2 − κ2, with κdκ + qdq = 0, and use the auxiliary function
h(k, q) = qκ−1f (k, κ). The left side of (B 3) becomes

∫k
0 dqh(k, q)eiqz. We now operate on (B3) with

k
∫∞

−∞ dz jm(kz), introduce the dimensionless variables η= q/k, ζ = kz, and use the known Fourier
transform of spherical Bessels ([34], eqn 10.59.1)

∫∞

−∞
dζ eiηζ jn(ζ ) =

⎧⎪⎪⎨
⎪⎪⎩
π inPn(η), −1<η < 1,
π

2
(±i)n, η= ±1,

0, ±η > 1.

(B 4)

On the right-hand side, we use the orthogonality condition
∫∞

−∞
dζ jm(ζ )jn(ζ ) = πδnm

2n + 1
. (B 5)

The transformed (B 3) evaluates the Bessel–Legendre series coefficients:

Am(k) = π (2m + 1)imk
∫ 1

0
dηPm(η)h(k, kη). (B 6)

For example, when h(k, q) is given by (A 12) formula (B 6) reproduces the proto-beam expansion
coefficients found in [23].
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