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Abstract
The focal region of a beam contains circles of zeros of the beam wavefunction, on which
surfaces of different phase meet. The existence of these zeros is topological in origin, and
appears to be universal. Two examples of generalised Bessel beams are examined. One of these
has zeros only in the focal plane. The other has focal plane zeros but also movement of the zeros
away from the focal plane at certain values of a parameter which determines the tightness of the
focus, as analysed by Berry in 1998. As tightness of focus increases these two families of beams
coalesce into a common most-focused beam. The polarisation properties of both families and of
their common limiting form are considered and correlated with the zeros (dislocations) of the
beam wavefunctions. We find regions of circular polarisation in beams which are nominally
linearly polarised, and rapid variation of the polarisation pattern as the tightness of focus passes
through critical values.

Supplementary material for this article is available online

Keywords: phase singularities, focal region, optical vortices

(Some figures may appear in colour only in the online journal)

1. Introduction

The focal regions of beams (optical or acoustic) are the most
interesting, experimentally and theoretically. A key property
of the focal region is that it is where the wavefronts converge
onto, and diverge from. In a monochromatic beam of angular
frequency ck,w = the beam wavefunction carries an overall
phase factor e ,tiw- and a local phase rP .( ) The isophase sur-
faces rP constant=( ) are the wavefronts (in an electro-
magnetic beam each component of E Band has, in general,
its own set of wavefronts). The phase of a complex wave-
function is not defined at a zero of the wavefunction, where
both the real and the imaginary parts are zero. This is where
different isophase surfaces can meet. As time advances the
surfaces on which rP t constantw- =( ) rotate about the
complex zeros of the beam wavefunction, and some authors
call the zeros optical vortices. Nye and Berry [1] refer to these
wavefunction zeros as wave dislocations. They are discussed
in Nye’s book [2], but the emphasis there is on natural
focusing, as in the earlier studies of polarisations singularities
by Berry and Dennis [3–5]. The emphasis in these papers is,

like Nye’s [2], mainly on properties ‘in the wild’ [4], random
or disordered fields. The focal region, in contrast, is highly
structured and symmetric.

Here we are interested in polarisation near the focus of a
light beam. Karman et al [6, 7] have shown experimentally
and theoretically that phase singularities in the focal region
can be created and annihilated, and can move off the focal
plane. An earlier numerical study by Carter [8] reported the
same behaviour. Berry [9] and Nye [10] have given thorough
discussions of this phenomenon; we shall follow Berry’s
classification here. Structured light itself is the subject of a
recent roadmap [11], of which part 2 is a review of ‘Vortices,
natural and deliberate’ by Berry and Dennis.

We shall discuss properties of exact (‘non-paraxial’)
solutions of the Helmholtz equation k 0,2 2 y + =( ) which
in cylindrical coordinates z, ,r f( ) reads

0. 1z
2 1 2 2 2r r y¶ + ¶ + ¶ + ¶ =r r f

- -( ) ( )

The Helmholtz equation is solved by J e em qz
0

i ikr f( ) provided
that the transverse and longitudinal wavenumber components
k and q are constrained by q k .2 2 2k + = Superpositions of
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such solutions with a weight function f k, k( ) give general-
ised Bessel beams [12],

z f k J q k, , e d , e , .

2

m
k

m
qzi

0

i 2 2 2òy r f k k kr k= + =f( ) ( ) ( )

( )

We shall be considering beams with no azimuthal depend-
ence, m 0.= The beam studied by Carter [8] and by Berry [9]
is of the generalised Bessel beam form,

z J, 1 e d e . 3C
b

k

kb k b
k

qz
2
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0
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i
0

2

òy r k k kr= -
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-
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⎤
⎦⎥( ) ( ) ( )

We have normalised the beam wavefunction to unity at the
origin, the centre of the focal region. The (positive) length b and
the wavenumber k cw= / together form the dimensionless
parameter kb which characterises the beam. The weight factor

e
b

k

2

2- k
is related to the Gaussian beam, an approximate (paraxial)

solution of (1): the integral in (3) extended to the range
0  k < ¥ reproduces, in the focal plane, the paraxial
Gaussian fundamental mode, z, eG

b

b z
kz k b z

i
i 2 i2y r = r

+
- +( ) ( )/

(see [13], appendix C). However, it is shown in [13] that an
exact solution of the Helmholtz equation which agrees with ,Gy
either in the focal plane or on the beam axis, does not exist.

The wavefunction (3) shows the phenomena mentioned
above, of phase singularities in the focal region being created
and annihilated, and moving off the focal plane. In contrast,
the wavefunction [12]

z J, d e 4b
b
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k
q b z

e 1 1 0

i
0kb
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òy r k k kr=
- +

+( ) ( ) ( )
( )

( )

has all of its zeros in the focal plane. (Again, the prefactor
ensures that the wavefunction is normalised to unity at the
origin, 0, 0 1by =( ) .) As the dimensionless parameter kb

tends to zero, both (3) and (4) tend to the proto-beam of [12],
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The proto-beam is the most tightly focused confluent limit of
the two beam families (3) and (4). Only one length k 1-( )
enters into its definition, and indeed the extent of its focal
region, both longitudinally and transversely, is of order k 1-

([12], section 8). The proto-beam has all of its zeros in the
focal plane, where J k k, 0 2 .0 1y r r r=( ) ( )/

In this paper we shall compare and contrast the two beam
families (3) and (4), both characterised by the tightness of
focus parameter kb. We begin in sections 2 and 3 with the
isophase surfaces and loci of the wavefunction zeros as
functions of kb. Sections 4 and 5 discuss the polarisation of
the electric field in beams based on these two families and on
their confluent tight-focus form.

2. Properties of the beam wavefunction ψb ðρ; zÞ

On the beam axis 0r = the wavefunction (4) becomes

z q q0, d e

. 6
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z0,by ( ) behaves asymptotically as a constant times kz e .kz1 i-( )
There are no wavefunction zeros on the beam axis.

Figure 1 shows the isophase surfaces of .by All of the
zeros of by lie in the focal plane z 0,= and so the surfaces of
negative phase from the z 0< half-plane meet the surfaces of
positive phase from the z 0> half-plane on the focal plane,

Figure 1. z,by r( ) in the focal region, plotted for kb 2,= for k z k10, 10. r∣ ∣ Shading indicates modulus of the wavefunction
(logarithmic scale, lighter colour indicates larger modulus). The isophase surfaces are shown at intervals of 3.p/ The phase is chosen to be
zero at the origin. The isophase contours, other than those that are multiples of ,p meet on the zeros of z, ,by r( ) three of which are shown,
at k 4.77, 7.73 and 10.77.r »
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for all values of kb. The three-dimensional picture is obtained
by rotating the figure about the beam (horizontal) axis.

Figure 2 shows how the focal plane zeros of by vary with
the parameter kb b c.w= / (The length b determines the extent
of the focal region: for large kb it gives the longitudinal
extent, b k2 / gives the beam waist in the focal plane, and

kb2/ is the divergence angle of the beam far from focus as
shown in [13], appendix A.) We see from the figure that the
zeros move outward from the beam axis as kb increases.

3. Properties of the Carter beam wavefunction

The Carter wavefunction shows topologically different
behaviour, except at small kb.

On the beam axis 0r = the Carter wavefunction (3)
becomes

z qq0, e 1 d e . 7C
b
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kb k bq
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qz
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The integral may be evaluated in terms of error functions. It
behaves asymptotically as a constant times kz e .kz1 i-( ) There
are no wavefunction zeros on the beam axis.

Figure 3 shows the curves on which the real and ima-
ginary parts of the wavefunction z,Cy r( ) are zero, in the
kz k, r plane. Where they meet gives the location of the
complex zeros of ,Cy which lie on circles centred on the
beam axis.

In the six diagrams shown, we transition from all complex
zeros on the focal plane (up to kb 4.919 61= ), to on-plane

plus off-plane zeros (kb 5.152 79= to 5.254 77), beyond which
the innermost focal region shown has off-plane zeros only.

Berry [9] has identified three topological events in Cy as
the focal tightness parameter kb increases (kb 0 gives the
tightest focus, the confluence of by and Cy into the proto-
beam 0y ). These are events that involve the phase disloca-
tions, where 0,y = and phase saddles, where P 0. = The
phase saddles or stagnation points can be seen clearly on
figure 1: they occur between the zeros at circles where the
integer p phases (thicker isophase curves) intersect the focal
plane. The topological events in Cy are:

Event a, at kb 4.919 61.= Lower saddle passes through
upper zero.

Event b, at kb 5.152 79.= Lower saddle collides with
upper saddle.

Event c, at kb 5.254 77.= Lowest two zeros coalesce.
The zeros in the focal plane z 0= are zeros of the

function
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The saddle points in the focal plane are at zeros of the
function
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Event a corresponds to F k kb G k kb, 0 , .r r= =( ) ( ) The first
three numerical values of k kb, ,n nr a b=( ) ( ) at which this
happens are (to five digit accuracy)

7.4395 13.843 20.183
4.9196 10.634 16.549. 10

1 2 3

1 2 3

a a a
b b b

= = =
= = = ( )

Event b corresponds to G k kb G k kb, 0 , .r r= = ¶r( ) ( ) The
first three numerical values of k kb, ,n nr a b=( ) ( ) at which
this happens are

8.0277 14.401 20.721
5.1528 10.856 16.760. 11

1 2 3

1 2 3

a a a
b b b

= = =
= = = ( )

Event c corresponds to F k kb F k kb, 0 , .r r= = ¶r( ) ( ) The
first three numerical values of k kb, ,n nr a b=( ) ( ) at which
this happens are

7.0156 13.324 19.616
5.2548 11.206 17.287. 12

1 2 3

1 2 3

a a a
b b b

= = =
= = = ( )

The numerical values for ,1 1a b agree in each case with those
listed in the penultimate row of table 1 of Berry [9], with the
parameter L corresponding to our kb .

Figure 4 shows the zeros of the Carter wavefunction in
the focal plane. As kb increases from zero the null curves
initially move further away from the beam axis 0,r = but not
as rapidly as for by in figure 2. However, they eventually

Figure 2. Zeros of , 0by r( ) as a function of kb (white curves). Also
shown are the wavefunction focal plane values (negative: dark
shading; zero: white; positive: light shading). As kb 0 the
wavefunction zeros tend to those of the proto-beam. These are the
zeros of J k k ,1 r r( )/ at k 3.83, 7.02, 10.17, 13.32, .r » ¼
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curve towards each other, and meet in pairs. The topological
events identified by Berry are shown as points on this graph.
It is interesting that for kb 4.919 61< all the zeros lie on the
focal plane; it is only as we loosen the focus that the off-plane
zeros appear.

4. Polarisation properties of TM, TE and ‘LP’ beams

We shall work with complex vector fields A r B r E r, , ;( ) ( ) ( )
the real physical fields are obtained by taking, for example, the
real part of E r e ,tiw-( ) which is E r E rt tcos sin .r iw w+( ) ( ) A

Figure 3. Surfaces of Re 0Cy =( ) (black) and Im 0Cy =( ) (white) in the focal region, for six values of kb. Included are three transition values
kb 4.919 61, 5.152 79, 5.254 77,= discussed in the text. The three-dimensional picture is obtained by rotating the figures about the beam
(horizontal) axis. The shading is in proportion to the logarithm of .Cy∣ ∣
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measure of the degree of linear polarisation of the electric field
is given by [14]

r . 13E E E r
E r

E E

E E

4r i r i

r i

2 2 2 2 1
2

2 2

2

2L = =- + ⋅
+

( ) ( )[( ) ( ) ] ∣ ( ) ∣
∣ ( ) ∣

rL( ) is unity when the real and imaginary parts of
E r E r E rir i= +( ) ( ) ( ) are collinear (the linear polarisation
condition), and zero when the circular polarisation conditions
E E E E0,r i r i

2 2⋅ = ={ } are met. The complex electric field
E r( ) is orthogonal to itself on these C lines [11]:
E r E r. 0.=( ) ( ) Explicit expressions for rL( ) in terms of the
derivatives of y with respect to zandr when y is independent
of the azimuthal angle f are given in [14]. The function rL( ) is
related to the Stokes parameters ([15], sections 1.4.2 and

10.8.3) by S S1 ,3
2

0
2L = - / and to the Hurwitz [16]

polarisation parameter S by S 1.2 2+ L =
The simplest example of pure linear polarisation is the

TM (transverse magnetic) beam, for which the vector
potential is given by A A 0, 0, .0 y= [ ] (See for example [14];
square brackets denote Cartesian coordinates.) For this beam
the magnetic field B is everywhere transverse to the propa-
gation direction, here along the z axis:

B A A , , 0 . 14y x0 y=  ´ = ¶ -¶[ ] ( )

When y is independent of the azimuthal angle f the complex
magnetic field is

B r A sin , cos , 0 . 150 f f y= ¶ - ¶r r( ) [ ] ( )

If we take A0 real, and write the complex wavefunction
z,y r( ) as i ,r iy y+ the real and imaginary parts of B r( ) are

both proportional to sin , cos , 0 ,f f-[ ] and are thus

collinear. The magnetic field is therefore everywhere linearly
polarised. The electric field is elliptically polarised, in general.

The dual of the TM beam under the transformation
E B B E,  - (one of a set of duality transformations
that leave the free space Maxwell equations unchanged) is the
TE beam, transverse and linearly polarised in its electric field.
The electric field lines are circles concentric with the beam
axis (see figure 1 of [14], for example). However, both the
TM and the TE beams disappear in the plane-wave limit: as

e kziy  the electric and magnetic fields in both the TM and
the TE beams tend to zero. Also, the fields are always zero on
the beam axis; on both counts the exactly linearly polarised
TE beam is not as interesting experimentally as the ‘linearly
polarised’ beam about to be considered.

A beam which does have a plane-wave limit is the linearly
polarised ‘LP’ beam, with vector potential A A , 0, 0 .0 y= [ ]
The reason for the quotes around ‘LP’ is that the electric
polarisation is everywhere linear only in the plane wave limit.
As we shall see, the deviation from linear polarisation in finite
beams is substantial, especially in the focal region. The
magnetic and electric fields are

B A

E A A

A

k k

0, , ,

i , , .

16

z y

k

A

k x x y x z

0

i i 2 20

y

y

=  ´ = ¶ -¶

=   ⋅ + = ¶ + ¶ ¶ ¶ ¶
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In the plane wave limit B kAe , i 0, 1, 0 e ,kz kzi
0

iy   [ ]
E kAi 1, 0, 0 e ,kz

0
i [ ] which is the textbook linearly polar-

ised plane wave with E and B transverse and mutually
perpendicular. We again consider beams defined by wave-
functions y independent of the azimuthal angle f with the
intention to use the wavefunctions , b0y y and Cy as examples.
Then

B kAi 0, , sin , 17z0 f y= ¶ - ¶r[ ] ( )

E kcos sin ,

sin cos , cos . 18

A

k

z

i 2 2 2 1 2

2 1

0 f fr

f f r f y

= ¶ + ¶ +

¶ - ¶ ¶ ¶

r r

r r r

-

-

[

[ ] ] ( )

Neither E nor B have real and imaginary parts collinear in
general, but in the focal plane if 0zy¶ ¶ =r the longitudinal
component of E will be zero and the transverse components
will both be real, so only Er is non-zero. Hence there can be
circles of exact linear polarisation in the focal plane. The
electric field is also linearly polarised (along the x direction) in
the x 0= plane cos 0 ,f =( ) as can be seen from (18). By
symmetry the beam wavefunction is plane wave like (and thus
has linear polarisation) at the centre of the focal plane.

5. Polarisation properties of ‘LP’ beams based on
ψ0;ψb and ψC

We shall look at the consequences of the phase singularities
for the polarisation properties of an electromagnetic ‘LP’
beam built up from the scalar beam wavefunctions (3), (4)
and (5). From (18) the electric polarisation depends on the
wavefunction and on its derivatives , , .z

2y y y¶ ¶ ¶ ¶r r r For
the proto-beam 0y all these derivatives are known analytically

Figure 4. Variation with kb of the focal plane zeros of the Carter
wavefunction (3) (white curves). Also shown are the wavefunction
focal plane values (shading, as in figure 2). At kb 0= the
wavefunction zeros are again those of J k k ,1 r r( )/ as in figure 2. The
transition points a, b, c discussed in the text are indicated by crosses,
squares and triangles, respectively.
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in the focal plane (equations (5.16)–(5.20) of [12]). Figure 5
shows the degree of linear polarisation for an ‘LP’ beam
derived from .0y We see that there is perfect linear polarisa-
tion at the centre of the focal plane, on the x 0= plane
(cos 0,f = so only Ex is non-zero, from (18)), and also on
circles where the spherical Bessel function j k2 r( ) is zero,
since z 0y¶ ¶r at z 0= is proportional to i times j k .2 r( ) The
other derivatives entering into the expression (17) for the
electric field are real in the focal plane, so when j k 02 r =( )
the electric vector is real, and 1.L =

More surprising is the fact that perfect circular polar-
isation exists, not far from the centre of the focal region. On
the x axis, when sin 0, cos 1,f f= =  the electric field of
(17) is proportional to k , 0, .z

2 2 y¶ + ¶ ¶r r[ ] For the proto-
beam we have from [12], equations (51.5), (5.17) and (5.19)
that

k k J k k J k6 2 , 192 2
0

3
1 0y r r r r¶ + = -r

-( ) ( ) [ ( ) ( )] ( )

k j k2i . 20z 0
1

2y r r¶ ¶ = -r
-( ) ( ) ( )

Hence when the expressions (19) and (20) are equal in
magnitude the electric field will be proportional to 1, 0, i ,[ ]
corresponding to perfect circular polarisation in the xz plane.
The C lines intersect the focal plane at k x 3.98, 5.44,»∣ ∣
6.94, 8.79, .¼ The points nearest to the focal centre, at
kx y z3.98, 0, 0,»  = = have electric field magnitude
equal to 18.6% of the field at the centre, a significant fraction.

Figure 6 shows how the polarisation of the ‘LP’ Carter
beam varies with position, when the tightness of focus para-
meter kb 5.= Note that there is a very strong deviation from

linear polarisation between the inner two zeros of ,Cy which
are about to coalesce (event c, at kb 5.255,» as discussed in
section 3). The beam is linearly polarised at the centre of the
focal region, by design, and there are also circles of linear
polarisation in the focal plane at distances from the beam axis
where 0.zy¶ ¶ =r An animation of the changes that occur as
kb increases through the transition values discussed in
section 3 is available online. Figure 7 shows the polarization
of a ’linearly polarized’ beam based on the wavefunction by
defined in (4).

6. Discussion

We have compared two families of beams Cy and ,by and of
their common tight focusing limit .0y The beam wavefunction

Cy given in (3) was proposed in 1973 by Carter [8] and the
topology of its phase singularities was analysed by Berry [9].
This cylindrically symmetric wavefunction is parametrised by
kb, where k cw= / is the wavenumber, and b is a length. The
Carter wavefunction isophase surfaces meet on the wave-
function zeros which, for values of the dimensionless para-
meter kb smaller than the critical value 4.91961, all lie on
circles in the focal plane. However, at larger kb values the
interplay of the evolution of the surfaces on which

Figure 5. Degree of electric field linear polarisation L for a ‘linearly
polarised’ 0y beam, in the focal plane. Light shading denotes linear
and dark shading circular polarisations. The white circles are the
zeros of ,0y namely those of J k k .1 r r( )/ The dashed circles are loci
of perfect linear polarisation, 1,L = as discussed in the text. On the
horizontal axis y 0=( ) there are points of perfect circular
polarisation, also discussed in the text.

Figure 6. The measure L of linear polarisation of the electric field of
an ‘LP’ beam based on ,Cy shown in the focal plane for kb=5
Light colour denotes linear and dark colour circular polarisations.
There are circles of perfect linear polarisation when 0,zy¶ ¶ =r at
k 7.9, 9.9 .r » ¼ Note the correlation of the deviation from linear
polarisation with the circles of zero y (white), especially between the
innermost pair of zeros which occur at k 6.4r » and 7.4 when
kb 5.= An animation for variable kb is available in the
supplementary material online (stacks.iop.org/JOPT/19/105609/
mmedia).
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Re 0Cy =( ) and Im 0Cy =( ) and of their intersections (on
the complex zeros of Cy ) produces zeros which lie off the
focal plane. This behaviour was shown numerically by Carter,
and classified by Berry. The wavefunction by defined in (4)
forms a family also characterised by the parameter kb which
determines the tightness of focus.

The wavefunctions Cy and by coalesce into the proto-
beam 0y as kb 0, but become topologically different at
intermediate and large values of the parameter kb. It is
interesting that the loosening of the focus leads to the dif-
ferentiation. To see the reason for the differences we shall
compare the weight functions of Cy and .by In terms of the
dimensionless variables k kb q k kz, , ,a r b h z= = = =/

we can write the beam wavefunctions (normalised to unity at
the origin) as

J

W J
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The weight functions of these generalised Bessel beams are
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The weight function WC is always larger at small h (small
longitudinal wavevector component q), exponentially so at
large kb.b = Wb is always larger as q k1 .h  ( ) The
weight functions are equal at
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This cross over value of q k/ is always greater than
1 6 0.59

1
2- »-( ) (its limiting value at 0b  ), and tends to

unity for large b as 1 2 .1b- - Thus the Carter beam
emphasises the transverse component k of the wavevector,
while by emphasises the longitudinal wavevector component
q. The function by is the more ‘paraxial’ beam wavefunction
at large kb, as is seen in the comparison of exact and paraxial
beam wavefunctions in [13].

Section 5 explored the polarisation properties of ‘LP’
beams based on these three wavefunctions. Of importance in
experiments where the polarisation of an electromagnetic
beam is involved, is the very strong effect that the wave-
function zeros (on and off the focal plane) have on the
polarisation of the light beam. We showed examples of beams
linearly polarised in the plane wave limit, yet with regions of
circular polarisation surrounding the central focal region,
located near the wavefunction zeros. In the most tightly
focused case, the perfect circular polarisation points nearest to
the focal centre have electric field magnitude equal to a sig-
nificant fraction of the field at the (linearly polarised) centre of
the beam.

Berry [17] considered the connection between optical
vortices and angular momentum, and between circular
polarisation singularities and angular momentum, concluding
that there is usually no connection. Here we saw that the zeros
of the beam wavefunction are strongly correlated with
polarisation anomalies.
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