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Polarizabilities of intersecting conducting cylinders 
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A B S T R A C T   

The longitudinal and transverse polarizabilities of a pair of overlapping conducting parallel cylinders are 
determined for arbitrary degree of overlap. The polarizabilities of cylinders in contact (vanishing overlap) and 
those for complete overlap are obtained as special values. Cylinders intersecting at right angles have polariz-
abilities in accord with those of Palaniappan.   

1. Introduction 

The problem of the polarizability tensor of a conducting object 
formed by the intersection of two cylinders has been examined by 
Radchik et al. [1] for materials characterized by a complex dielectric 
constant, and by Palaniappan [2,3] for conductors, the latter by the 
method of images. The image method gives tractable results when the 
angle of intersection between the cylinders is one of π/ n, n = 2, 3, …; 
for example, three images suffice for n = 2, cylinders intersecting at 
right angles. Here we shall remove the restriction on the angle of 
intersection: the longitudinal and transverse polarizabilities are ob-
tained at all angles of intersection. The results are restricted to over-
lapping cylinders of equal radius a. Their axes are parallel to the z axis. 
The methods are similar to those used by the author in obtaining the 
electrostatic properties of cylinders in an external field [4–7]. 

We shall use a form of bicylindrical coordinates u, v related to the x, y 
coordinates by the conformal transformation 

v+ iu = ln
x + iℓ − iy
x − iℓ − iy

or x + iy = iℓ coth
v + iu

2
(1)  

Equating the real and imaginary parts of (1) gives 

x
ℓ=

sin u
cosh v − cos u

,
y
ℓ =

sinh v
cosh v − cos u

(2)  

The ranges of u, v are − π ≤ u ≤ π, − ∞ < v < ∞. The origin on the xy 
plane corresponds to u = ±π,v = 0. The distance from the origin is ρ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
= ℓ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cosh v+cos u
cosh v− cos u

√

. Thus large ρ/ℓ obtains when u, v both tend to 

zero; then ρ→2ℓ/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√
. 

Elimination of v from equation (2) gives circles with centers on the x 
axis: 

(x − ℓ cot u)2
+ y2 =

ℓ2

sin 2 u
(3)  

These circles all meet at the points [0,±ℓ]. The value u = ua corresponds 
to a circular cylinder parallel to the z axis, centered on [0,ℓ cot ua], with 
radius a = ℓ/sin ua. Likewise the circular cylinder u = − ub (ub > 0) is 
centered on [0, − ℓ cot ub], and has radius b = ℓ/sin ub. In the following 
we specialize to b = a, ub = ua. 

Elimination of u from equation (2) gives circles with centers on the y 
axis: 

x2 +(y − ℓ coth v)2
=

ℓ2

sinh 2 v
(4)  

Thus constant v corresponds to circular cylinders parallel to the z axis, 
centered on [0, ℓ coth v], with radius a = ℓ/sinh v. These cylinders are 
orthogonal to those represented by (3). 

The scale length ℓ is determined once we specify the distance be-
tween the u = ua and u = − ua cylinder axes, which we will call c. We 
have 

c= 2ℓ cot ua = 2a cos ua = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 − ℓ2

√
, ℓ2

= a2 − (c/2)2 (5)  

Also from (5) and a = ℓ
sin ua

, ua and U = 2ua may be explicitly expressed 
in terms of the cylinder radii a, a and center to center distance c: 

cos ua =
c

2a
, cos U =

c2 − 2a2

2a2 , ℓ =
a2

c
sin U (6)  

The triangle with sides a, a, c containing the point of intersection of the 
two cylinders (see Fig. 1) has angles ua at the axes of the cylinders, and 
angle π − 2ua = π − U at the line of intersection. The height of the tri-
angle is ℓ: the cylinders intersect on lines parallel to the z axis passing 
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through [0, ±ℓ]. The angle of intersection of the cylinder surfaces 
is U = 2ua. The scale length ℓ = [a2 − (c/2)2]1/2 is the distance from the 
z axiz to the apex of the triangle, and thus ℓ is the radius of the circle of 
intersection of the two cylinders. The limit of touching cylinders is c→ 
2a, ℓ→0, ua→0. The opposite limit is that of completely overlapping 
cylinders, c→0,ℓ→a,ua→π/2.

2. Intersecting cylinders in longitudinal external field 

The Laplace equation (∂2
x +∂2

y)V = 0 is satisfied by any differentiable 
function of v+ iu; the choice e− κ(v+iu) gives, for example, the functional 
form cosh κv sin κu, which may be integrated over the separation con-
stant κ after multiplication by an amplitude A(κ). The method used here 
follows that of Radchik et al. [1]. We need to satisfy the boundary 
conditions that V(±ua, v) = 0 (we may choose the potential on the cyl-
inders to be zero), and that V→ − E0x far from the cylinders, that is to 
the potential of the external field directed along the x direction. 

To find the longitudinal polarizability of the composite body, we 
construct a potential which tends to − E0x far from the body, and which 
is constant on the body. The electric potential in a longitudinal field is 
odd in x, and even in y if it is zero on y = 0; we write it as 

V(u, v)= − E0x + E0ℓ
∫∞

0

dκA(κ, ua)sinh κu cos κv (7)  

The values of x/ℓ on u = ±ua are ±sin ua/(cosh v − cos ua). Since the 
potential on the body composed of the intersecting cylinders is chosen to 
be zero, we need the following equality to hold at all v: 

∫∞

0

dκA(κ, ua)sinh κua cos κv=
xa

ℓ =
sin ua

(cosh v − cos ua)
(8)  

Expansion of the defining relation (1) in powers of e− v when v > 0 gives 
us 

x
ℓ= 2

∑∞

1
e− nv sin nu,

y
ℓ = 1 + 2

∑∞

1
e− nv cos nu (v> 0) (9)  

The amplitude function A(κ, ua) is given by the inverse cosine transform 
of (8): 

A(κ, ua)sinh κua =
2
π

∫ ∞

0
dv cos κv

xa

ℓ =
4
π

∫ ∞

0
dv cos κv

∑∞

1
e− nv sin nua

=
4
π
∑∞

1
n

sin nua

n2 + κ2 = 2
sinh κ(π − ua)

sinh κπ
(10)  

(For the sum, see the methods of Section 125 of Bromwich [8].) The 
potential (7) is thus explicitly 

V(u, v)= − E0x + 2E0ℓ
∫∞

0

dκ
sinh κ(π − ua)sinh κu

sinh κπ sinh κua
cos κv (11)  

From (1) we see ρ2 = x2 + y2 = ℓ2cosh v+cos u
cosh v− cos u→ 4ℓ2

u2+v2 for small u2 + v2. 
Large distance from the origin corresponds to small u, v. Hence the 
asymptotic form of (11) is 

V(u, v)→ − E0x + 2E0ℓ u
∫ ∞

0
dκ κ

sinh κ(π − ua)

cosh κπ sinh κua
(12)  

When ρ is very large compared to the radius of the two intersecting 
cylinders, the potential of the polarized body tends to 2xpL/ρ2. Here pL is 
the dipole moment per unit length of the composite body, in this case 
directed longitudinally (along the x direction). The factor 2 comes from 
the definition of a two-dimensional dipole moment as the limit of two 
parallel line charges of opposite sign approaching each other [4]. From 
(1), 2x/ρ2→u/ℓ when ρ is large and both u and v are small. The leading 
term at large ρ due to the polarization of the body is thus, with 
pL = αLE0, 

2E0ℓ u
∫ ∞

0
dκ κ

sinh κ(π − ua)

cosh κπ sinh κua
=

E0αL u
ℓ (13)  

The longitudinal polarizability per unit length of the body composed of 
two intersecting cylinders of equal radii is therefore 

αL = 2ℓ2
∫ ∞

0
dκ κ

sinh κ(π − ua)

cosh κπ sinh κua
= 2ℓ2

∫ ∞

0
dκ κ{coth κua − coth κπ}

=
2ℓ2

π2

∫ ∞

0
dt t

{
coth

ua

π t − coth t
}
=

ℓ2

6

[(
π
ua

)2

− 1
]

(14)  

To obtain the final result we have expanded the hyperbolic cotangents, 

for example coth t = 1+ 2
∑∞

1
e− 2nt , integrated over t, and used the sum 

∑∞

1
n− 2 = π2/6. 

Limiting polarizability values are at c→2a, ua→0 (cylinders in con-
tact), and c→0, ua→π/2 (complete overlap). Since ℓ = a sin ua, the 
contact value is αL = (π2 /6)a2, in agreement with the result previously 
obtained [4]. For complete overlap, ua→π/2, ℓ→a, αL→a2/2, the ex-
pected polarizability of a solitary cylinder [4]. When ua = π/3 we find 
αL = a2. Rational multiples of a2 are obtained when ua = π/n and 
sin 2 π/n is rational. 

For equal cylinders intersecting at right angles, c =
̅̅̅
2

√
a,ℓ = a/

̅̅̅
2

√
,

ua = π/4, and the expression (14) agrees with the value obtained by 
setting a = b, c =

̅̅̅
2

√
a in the n = 2 form of equation (4.4) of Pala-

niappan [3], namely αL = 5
4a

2. Note that the Palaniappan expression is 
for DL = 2αL; the factor 2 was discussed above equation (13). 

3. The transverse polarizability 

For the intersecting cylinders in a transverse field the external field 
points along the y axis, tending to − E0y. The solution of Laplace’s 
equation representing the potential is now to be odd in y and even in x: 

Fig. 1. Intersecting cylinders of radii a, a (blue) with distance between their 
axes c. Also shown is one of the family of cylinders orthogonal to the inter-
secting pair, in green. The blue cylinder surfaces correspond to u = ± ua, the 
green cylinder to a particular value of v. The figure is drawn for a : c

2 : ℓ =

5 : 4 : 3; the cylinders intersect at angle 2ua = 2 arcsin 3/5 ≈ 73.74◦. The 
external field will be referred to as longitudinal when it is horizontal in the 
Figure, and transverse when vertical. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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V(u, v)= − E0y + E0ℓ
∫∞

0

dκB(κ, ua)cosh κu sin κv (15)  

The potential is again chosen to be zero on the overlapping cylinders, to 
be satisfied by 

∫∞

0

dκB(κ, ua)cosh κua sin κv=
ya

ℓ =
sinh v

(cosh v − cos ua)
(16)  

The amplitude function B(κ, ua) is given by the inverse sine transform of 
(16): 

B(κ, ua)cosh κua =
2
π

∫∞

0

dv sin κv
ya

ℓ =
2
π

∫∞

0

dv sin κv

{

1+ 2
∑∞

1
e− nv cos nua

}

=
2
π

{
1
κ
+ 2κ

∑∞

1

cos nua

n2 + κ2

}

= 2
cosh κ(π − ua)

sinh κπ (17)  

We have used the representation (9) for y/ℓ. The potential (15) is thus 
explicitly 

V(u, v)= − E0y + 2E0ℓ
∫∞

0

dκ
cosh κ(π − ua)cosh κu

sinh κπ cosh κua
sin κv (18)  

Far from the two intersecting cylinders, the potential of the polarized 
body tends to 2ypT/ρ2, where pT = αTE0 is the dipole moment of the 
body, now directed transversely (along the y direction). From (2), 2y/
ρ2→v/ℓ when ρ is large and both u and v are small. The leading term due 
to the polarization of the body is thus, 

2E0ℓv
∫∞

0

dκκ
cosh κ(π − ua)

sinh κπ cosh κua
=

E0αT v
ℓ (19)  

The transverse polarizability of the body composed of two intersecting 
cylinders of equal radii is thus 

αT = 2ℓ2
∫∞

0

dκ κ
cosh κ(π − ua)

sinh κπ cosh κua
= 2ℓ2

∫∞

0

dκ κ{coth κπ − tanh κua}

=
2ℓ2

π2

∫∞

0

dt t
{

coth t − tanh
ua

π t
}
=

ℓ2

12

[(
π
ua

)2

+ 2
]

(20)  

Since ℓ = a sin ua, the contact value ua→0 is αT = (π2 /12)a2, in 
agreement with the result previously obtained [4]. For complete over-
lap, ua→π/2, ℓ→a, αT→a2/2, the expected polarizability of a solitary 
cylinder [4]. Rational values are obtained when ua = π/n and sin 2 π/ n 
is rational, as in the longitudinal case. For cylinders intersecting at right 
angles we have ℓ = a/

̅̅̅
2

√
,ua = π/4, and the expression (20) agrees with 

the value obtained by setting a = b, c =
̅̅̅
2

√
a in equation (4.2) of Pala-

niappan, namely αT = 3
4a

2. 
Fig. 2 shows the variation of the polarizabilities with the amount of 

overlap of the two cylinders, from contact (no overlap) at U = 0 to 
complete overlap at U = π. 

4. Summary and discussion 

Palaniappan [2,3] has obtained the polarizability tensor components 
for overlapping cylinders by the method of images, when the angle of 
intersection of the cylinders is π/n, for integer n, at which the method of 

images gives algebraic values for the polarizabilities. We obtain alge-
braic expressions at any angle of intersection, which we may rewrite 
explicitly in terms of the lengths in the problem as 

αL =
a2 − c2/4

6

⎡

⎢
⎣

⎛

⎜
⎝

π
arccos c

2a

⎞

⎟
⎠

2

− 1

⎤

⎥
⎦, αT =

a2 − c2/4
12

⎡

⎢
⎣

⎛

⎜
⎝

π
arccos c

2a

⎞

⎟
⎠

2

+ 2

⎤

⎥
⎦

(21)  

There is smooth decrease in both αL and αT from their contact values as 
the degree of overlap increases. At complete overlap both polarizabil-
ities correctly reach the polarizability of a single cylinder. When the 
cylinders intersect at right angles, the general formulae agree with the 
Palaniappan expressions. 
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Fig. 2. Two-cylinder longitudinal and transverse polarizability per unit length. 
The figure shows variation with overlap, as determined by the angle of inter-
section U = 2ua of the two cylinders. U is zero at contact (no overlap), U = π at 
complete overlap. The diamonds at left are at the contact values π2/6 ≈ 1.645 
of αL/a2 and π2/12 ≈ 0.822 of αT/a2. The circle at right is the single-cylinder 
value α = a2/2 for complete overlap. 
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