# DO SURVEY INCOME REPORTS MIMIC TAX RETURN RECORDS?

#### THE ROLE OF MEASUREMENT ERROR IN SURVEY VS REGISTER DATA

### We're closing in on undeclared income



#### ANA CABRAL & NORMAN GEMMELL

Formerly, Inland Revenue

Chair in Public Finance, VBS

#### Introduction

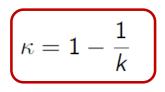
Research questions:

I.

2.

- t. By how much do the self-employed under-report their incomes to the tax authority? (Cabral & Gemmell, 2017)
- 2. Does reliance of household surveys (containing measurement error) bias results from these exercises?
- Established Pissarides and Weber (PW, 1989) methods regularly used to estimate income underreporting by the self-employed.
- Relies on estimating Engle curves (relating consumption expenditure to incomes for the each group) and identifying 'shifts' between employees and self-employed
- ► Measurement error 'validation studies' (e.g. in labour market literature) test for regression impact of using reported versus true records of employee incomes ⇒ 'attenuation biases' in regression parameters.
- Can tax return data be used to 'validate' survey-based underreporting estimates for the selfemployed?




#### The PW Model

- We have two types of households: self-employed and employed households.
- All households, i, are assumed to report their expenditure on items, j, this is, C<sub>ij</sub>, correctly.
- ▶ Income, however, is assumed to be reported correctly by employed households, hence their true income  $Y_i^T$  equals their reported income  $Y_i^R$ ,  $Y_i^R = Y_i^T$
- But self-employment income may be misreported. Thus for self-employed households

$$Y_i^T = k Y_i^R \qquad k > 1 \qquad (1)$$

where k is a random variable that captures the factor by which self-employed income has to be scaled to arrive to their true income. Note that for the employed it follows that k = 1.

From (1), the under-reporting 'income gap', κ, is:





#### The PW Model

The expenditure function for household i for each item of expenditure j can be written as

$$\ln C_{ij} = \beta_j \ln Y_i^p + A' X_i + \varepsilon_{ij},$$

where  $\beta_j$  is the elasticity of consumption for good j,  $Y_i^p$  represents permanent income,  $X_i$  is a vector of household characteristics, and  $\varepsilon_{ij}$  is a white noise error.

Empirically, ...

$$\ln C_{ij} = \beta_j \ln Y_i^R + \gamma_j S E_i + \Theta_i' X_i + \Xi_{ij},$$

An estimation of the scaling factor k can be obtained from the parameters  $\beta$  and  $\gamma$  as,

$$k = exp\left(rac{\gamma_j}{eta_j}
ight)$$

and the corresponding income-gap  $\kappa$ ,

$$\kappa = 1 - \frac{1}{k}.$$



#### Engle Curves





### Survey versus Register Data

- Most PW studies: rely on survey sources for reported income and expenditure data ... and difference between employees and self-employed
- Slemrod and Weber (2011): Income-gaps obtained from the survey provide a valid estimation *if reports to the survey = reports to tax administration*.
- But survey data subject to measurement error
- Previous "validation studies" of labour market variables (wages, hours worked) compare survey reports to employer (PAYE) or tax records:
  - Applied to *employees only*
  - ▶ Confirm attenuation biases when, e.g. wages used as explanatory variable
- We compare under-reporting results using survey based versus register-based income data (all expenditures are survey-only)
- $\Rightarrow$  We find:
  - > Income under-reporting estimates *much lower* using survey (HES) income data
  - This substantively due to attenuation biases; but especially to lower income reports on average to the register by the selfemployed
  - > i.e. "survey answers are noisy and mean biased" (Kreiner et al. 2015, for Denmark)





### Data and Self-Employment Definitions

- ► Full Expenditure HES questionnaire: 2006/07; 09/10; 12/13.
- Everyone in the household has been successfully matched to their tax records (if applicable).
- HRP is in employment and less than 60 years of age (Aguiar and Hurst, 2005)
- ► 2500 households.

#### **Definition of Self-Employment**

- Deportunity Definition√: A household is defined as self-employed if it draws any income from self-employment sources (net profit, shareholder salary, income from partnership); and employed otherwise. Register data allows us to identify the legal form (not rely on self-reports from survey).
- 25% rule: Self-Employed if more than 25% of household labour income (employees and business income) comes from self-employment sources.



#### Measuring Expenditure and Income

#### Measuring Expenditure

- ► Food
- ► Non-Durables Basket: Clothing, Food, Utilities.

**Measuring Income** Two measures of income that are comparable across survey and the register:

- Labour Income: WAS, income from self-employment: net profit, self-employment income for partnerships, shareholder salary, withholding payments.
- Total Comparable Income: Labour Income, Rental Income, Pensions, Other income (ACC, taxable benefits, student allowance and Paid Parental Leave). IDI Tax Data: Do not observe most investment income.



#### The Method

Empirically, ...

$$\ln C_{ij} = \beta_j \ln Y_i^R + \gamma_j S E_i + \Theta_i' X_i + \Xi_{ij}, \qquad (8)$$

- Expanding on the covariates X<sub>i</sub>: Demographics of the household (number of children, marital status, region, age and sex of HRP); Wealth (Survey: type of tenure, type of dwelling, number of rooms and of stories, area of the household as parted in the AS; Register: Variability of the income flow (measure of income risk and its growth.)
- Two-stages least squares to correct for the use of reported vs. permanent income in (8).



#### Income-Gap Estimates

#### Table: Estimation of the Income-Gap.

|                   |                       | (1): Register       | (2): Survey         |  |
|-------------------|-----------------------|---------------------|---------------------|--|
| Panel A: Self-Emp | oloyment: Opportunity |                     |                     |  |
| Expenditure       | Income                | Incom               | ie-gap              |  |
| Food              | Labour                | 0.200***<br>(0.057) | → 0.114*<br>(0.063) |  |
| Food              | Comparable            | 0.193***<br>(0.048) | 0.120*<br>(0.062)   |  |
| Non-Durables      | Labour                | 0.204***<br>(0.047) | 0.119**<br>(0.051)  |  |
| Non-Durables      | Comparable            | 0.196***<br>(0.040) | 0.124**<br>(0.050)  |  |
| Panel B: Self-Emp | loyment: 25% Rule     |                     | •                   |  |
| Expenditure       | Income                | Income-gap          |                     |  |
| Food              | Labour                | 0.216***<br>(0.066) | 0.107<br>(0.075)    |  |
| Food              | Comparable            | 0.206***<br>(0.055) | 0.111<br>(0.073)    |  |
| Non-Durables      | Labour                | 0.254***<br>(0.053) | 0.153***<br>(0.059) |  |
| Non-Durables      | Comparable            | 0.239***<br>(0.045) | 0.158***<br>(0.057) |  |

Survey estimates around 50-66% of register estimates ...

- Validation studies of income are scarce and focus mainly on employees' income. Self-employed are usually excluded from analysis. (Bound and Krueger, 1999; Bound *et al.*, 1994; Kreiner *et al.*, 2015).
  - Previous validation studies seek a 'true' income measure for validation
- But we are interested in how well *underreported income* (in the tax register) is captured by the survey
- Therefore, in our case, register data is validated data (the 'gold standard') and survey reports measure this with error
- Measurement error can then be defined as:  $u_i = Y_i^{Survey} Y_i^{Register}$ .



In our context, consider the 'true' Engle curve relationship in (1):

$$E_i^S = \beta Y_i^R + \varepsilon_i \tag{1}$$

where  $E_i$  = reported expenditure by individual *i*,  $Y_i$  = *i*'s income; '*S*' and '*R*' superscripts refer to Survey and Register sources respectively, and  $\varepsilon_i$  is a random error term. Both incomes and expenditures are measured in natural logarithms.

However, where there is measurement error in observed survey incomes, then:

$$Y_i^S = Y_i^R + u_i \tag{2}$$

Estimating (1) using only survey data gives:

$$E_i^S = \beta (Y_i^S - u_i) + \varepsilon_i$$
  
=  $\beta Y_i^S + (\varepsilon_i - \beta u_i)$  (3)

 $[E_i^S]$  also measured with error but this 'only' reduces efficiency of estimate]



In our context, consider the 'true' Engle curve relationship in (1):

$$E_i^S = \beta Y_i^R + \varepsilon_i \tag{1}$$

where  $E_i$  = reported expenditure by individual *i*,  $Y_i$  = *i*'s income; 'S' and 'R' superscripts refer to survey and register sources respectively, and  $\varepsilon_i$  is a random error term. Both incomes and expenditures are measured in natural logarithms.

However, where there is measurement error (and mean error  $\neq 0$ ) in observed survey incomes (e.g. for self-employed), let:

$$Y_i^S = Y_i^R + u_i = Y_i^R + \bar{u} + \nu_i$$
(2)

where  $v_i = (u_i - \bar{u}), \ E(v_i) = 0 \ ; \ \bar{u} \neq 0$ 

Estimating (1) using only survey data gives:

$$E_i^S = \beta (Y_i^S - \bar{u} - \nu_i) + = \beta Y_i^S - \beta \bar{u} + (\varepsilon_i - \beta \nu_i)$$
(3)

Therefore: (i) attenuation bias due to error term  $(\varepsilon_i - \beta v_i)$ ; and (ii) systematic downward bias of expenditures,  $E_i^S$ , by  $\beta \overline{u}$ , if  $\overline{u} > 0$ .

Note: 'R' = Register, not 'Reported'



For classical measurement error, where  $Y_i^R$  and  $u_i$  are uncorrelated, the bias can be summarised by:

plim 
$$\hat{\beta} = \gamma \beta$$
 (4)

where:  $\gamma = \frac{\sigma_{Y^R}^2}{\sigma_{Y^R}^2 + \sigma_u^2}$  is the variance ratio or 'attenuation factor'.

Hence the bias can be given by:

$$-(1-\gamma)\beta = \frac{\sigma_u^2}{\sigma_{YR}^2 + \sigma_u^2}\beta$$
(5)

However, if  $Y_i^R$  and  $u_i$  are correlated – as might be expected if survey income reports for higher (register) income taxpayers are subject to more, or less, reporting error – then it can be shown that (4) becomes:

$$p\lim\hat{\beta} = (1 - b_{uY}s)\beta \tag{6}$$

where  $b_{uY^S}$  is the estimated coefficient of a regression of  $u_i$  on  $Y_i^S$ 



### Errors in Register vs. Survey Incomes

#### Table: Moments of the distribution of the error by household

|       | I            | Employees  |        | Se       | lf-Employe | d      |
|-------|--------------|------------|--------|----------|------------|--------|
|       | Register     | Survey     | Error  | Register | Survey     | Error  |
| Panel | A: Labour In |            |        |          | ,          |        |
| Ν     | 1914         | 1914       | 1914   | 663      | 663        | 663    |
| Mean  | 10.984       | 10.973     | -0.011 | 11.136   | 11.215     | 0.079  |
| SD    | 0.814        | 0.811      | 0.453  | 0.867    | 0.769      | 0.507  |
| P25   | 10.682       | 10.671     | -0.086 | 10.813   | 10.881     | -0.11  |
| P50   | 11.104       | 11.095     | -0.005 | 11.249   | 11.303     | 0.023  |
| P75   | 11.467       | 11.47      | 0.06   | 11.627   | 11.655     | 0.247  |
| Panel | B: Comparal  | ole Income |        |          |            |        |
| Ν     | 1914         | 1914       | 1914   | 663      | 663        | 663    |
| Mean  | 11.064       | 11.025     | -0.04  | 11.168   | 11.252     | 0.085  |
| SD    | 0.627        | 0.736      | 0.426  | 0.799    | 0.745      | 0.542  |
| P25   | 10.714       | 10.709     | -0.096 | 10.828   | 10.922     | -0.114 |
| P50   | 11.127       | 11.123     | -0.006 | 11.261   | 11.32      | 0.032  |
| P75   | 11.472       | 11.478     | 0.074  | 11.639   | 11.681     | 0.254  |

- Measurement error is more severe for the self-employed than for the employed
- Unconditional difference in mean errors  $ar{u} \sim 0.09$



#### Conditional Errors in Register vs. Survey Incomes

| Income Variable: Labour Income | (1)                  | (2)                  | (3)                  |
|--------------------------------|----------------------|----------------------|----------------------|
|                                | Register             | Survey               | Survey-Register      |
| Age                            | 0.079***             | 0.055***             | -0.025***            |
|                                | (0.011)              | (0.011)              | (0.008)              |
| Age (Sq)                       | -0.001***<br>(0)     | -0.001***<br>(0)     | 0.000*** (0)         |
| Female                         | -0.112***            | -0.134***            | -0.022               |
|                                | (0.026)              | (0.026)              | (0.019)              |
| Couple                         | 0.833***<br>(0.031)  | 0.764*** (0.03)      | -0.070***<br>(0.022) |
| Number Children                | -0.202***            | -0.156***            | 0.045***             |
|                                | (0.024)              | (0.024)              | (0.017)              |
| •                              | •                    | •                    | •                    |
|                                | •                    | •                    | •                    |
|                                | •                    | •                    | •                    |
| Growth (Income)                | 0.168***             | 0.084***             | -0.084***            |
|                                | (0.031)              | (0.031)              | (0.022)              |
| Volatility Income              | -0.380***<br>(0.045) | -0.236***<br>(0.045) | 0.144*** (0.032)     |
| Self-Employed                  | -0.090***            | 0.009                | 0.099***             |
| Constant                       | (0.031)              | (0.031)              | (0.022)              |
|                                | 8.961***             | 9.471***             | 0.510***             |
|                                | (0.253)              | (0.253)              | (0.181)              |
| Observations                   | 2,577                | 2,577                | 2,577                |
| R-squared                      | 0.400                | 0.366                | 0.039                |

SE effect on income, conditional on: age, sex, single/couple, children, house characteristics (7), Accom. Supp. area (4), region (5), year, (past) average income growth/volatility

Conditional mean error difference ~ 0.10 (log income higher in survey)

#### Measurement Error

| able: Summary Statistics of Re | Labour  | uation biases<br>0.14<br>0.28 | <u>Reliabilit</u><br>0.86<br>0.72 | 5       |                    | Aeasurement<br>error is<br>non-classical |            |
|--------------------------------|---------|-------------------------------|-----------------------------------|---------|--------------------|------------------------------------------|------------|
|                                | · · · · |                               | Means (SD)                        |         |                    | <b>_</b>                                 |            |
|                                | (1)     | (2)                           | (3)                               | (4)     | (5)                | (6)                                      | (7)        |
| Earnings Variables             | Ν       | Survey                        | Register                          | Error   | Variance Ratio (γ) | $b_{uY^S}$                               | $b_{vY^R}$ |
| Panel A                        |         |                               |                                   |         |                    |                                          |            |
| Labour Income                  | 2577    | 11.036                        | 11.024                            | 0.013   | 0.242              | 0.139***                                 | -0.187***  |
|                                |         | (0.806)                       | (0.830)                           | (0.469) | -                  | (0.011)                                  | (0.01)     |
| Comparable: Total Income       | 2577    | 11.084                        | 11.092                            | -0.008  | 0.318              | 0.280***                                 | -0.127***  |
|                                |         | (0.744)                       | (0.676)                           | (0.462) |                    | (0.011)                                  | (0.013)    |
| Panel B: Omit outliers         |         |                               |                                   |         |                    |                                          |            |
| Labour Income                  | 2532    | 11.041                        | 11.031                            | 0.010   | 0.152              | 0.063***                                 | -0.119 *** |
|                                |         | (0.729)                       | (0.753)                           | (0.318) |                    | (0.009)                                  | (0.008)    |
| Comparable: Total Income       | 2526    | 11.096                        | 11.095                            | 0.001   | 0.220              | 0.175***                                 | -0.093***  |
|                                |         | (0.647)                       | (0.616)                           | (0.327) |                    | (0.009)                                  | (0.008)    |

• Estimated biases (0.139, 0.280) are lower than the variance ratios (0.242, 0.318)

Due to the negative correlation of the error with true income value - see column (7).

 Coefficients show the expected magnitude of the attenuation bias on income parameters from a regression where survey income is used as an independent variable as opposed to the register measure.



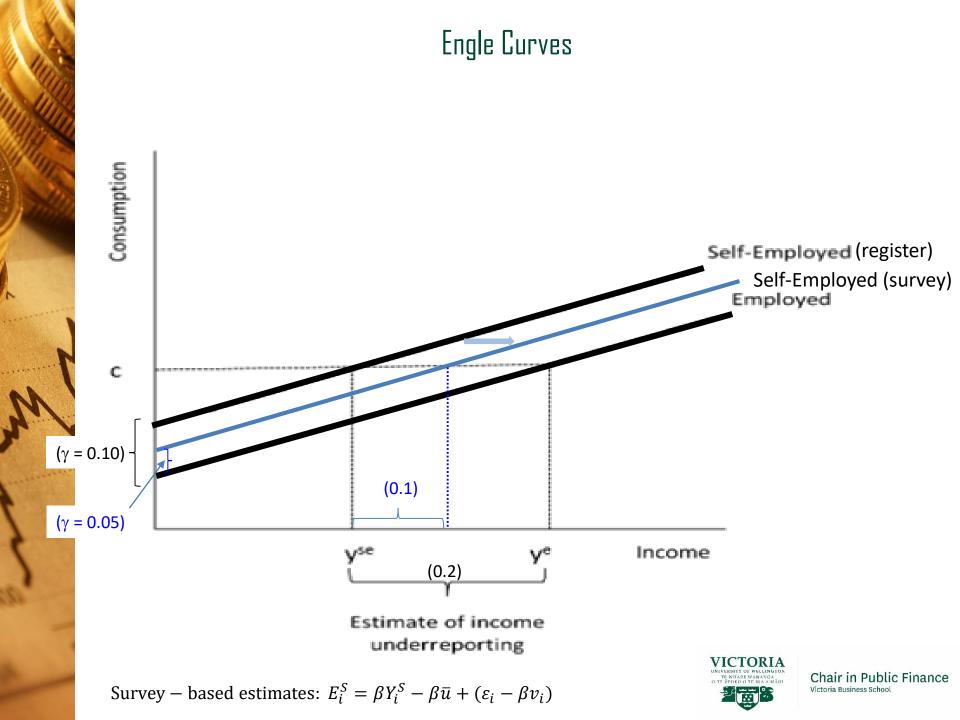
#### Measurement Error for Employed & Self-employed

#### Table: Summary Statistics of Reporting Errors

|                            |      |         | Means (SD)      |                                  |                         |            |            |
|----------------------------|------|---------|-----------------|----------------------------------|-------------------------|------------|------------|
|                            | (1)  | (2)     | (3)             | (4)                              | (5)                     | (6)        | (7)        |
|                            | Ν    | Survey  | Register        | Error                            | Var. Ratio ( $\gamma$ ) | $b_{uY^S}$ | $b_{vY^R}$ |
| Panel A: Type of household |      |         |                 |                                  |                         |            |            |
| Labour Income              |      |         |                 |                                  |                         |            |            |
| Self-Employment Income > 0 | 663  | 11.215  | 11.136          | 0.079                            | 0.255                   | 0.081***   | -0.278***  |
|                            |      | (0.769) | (0.867)         | (0.507)                          |                         | (0.025)    | (0.02)     |
| No Self-Employment Income  | 1914 | 10.974  | 10.984          | -0.010                           | 0.236                   | 0.152***   | -0.158***  |
|                            |      | (0.810) | (0.813)         | (0.453)                          |                         | (0.012)    | (0.012)    |
| Comparable: Total Income   |      |         |                 |                                  |                         |            |            |
| Self-Employment Income > 0 | 663  | 11.252  | 11.168          | 0.085                            | 0.315                   | 0.190***   | -0.295***  |
|                            |      | (0.745) | (0.799)         | (0.542)                          |                         | (0.027)    | (0.024)    |
| No Self-Employment Income  | 1914 | 11.026  | 11.065          | -0.040                           | 0.317                   | 0.305***   | -0.041***  |
|                            |      | (0.734) | (0.626)         | (0.426)                          |                         | (0.011)    | (0.016)    |
| Panel B: Omit Outliers     |      |         |                 |                                  |                         |            |            |
| Labour Income              |      |         |                 |                                  |                         |            |            |
| Self-Employment Income > 0 |      |         |                 |                                  |                         |            |            |
|                            | 645  | 11.192  | Reliability rat | $\frac{1}{1} - b_{\mu\gamma}s$ : | 0.235                   | 0.137***   | -0.214***  |
| No Self-Employment Income  |      | (0.707) | self-employed   |                                  |                         | (0.023)    | (0.021)    |
|                            | 1890 | 10.990  | employees       | = 0.97                           |                         | 0.034***   | -0.093***  |
| Comparable: Total Income   |      | (0.730) | (0.754)         | (0.266)                          |                         | (0.008)    | (0.008)    |
| Self-Employment Income > 0 | 645  | 11.232  |                 | 0.001                            | 0.276                   | 0.159***   | -0.238***  |
|                            |      | (0.670) | Reliability r   | atios ≈ 0.84                     |                         | (0.025)    | (0.023)    |
| No Self-Employment Income  | 1881 | 11.050  | 11.075          | -0.026                           | 0.184                   | 0.173***   | -0.019*    |
|                            |      | (0.633) | (0.582)         | (0.276)                          |                         | (0.009)    | (0.011)    |



#### Measurement Error & Attenuation Biases


|                                     | Dependent variable: |                 | Food Expenditure |        |          |        |
|-------------------------------------|---------------------|-----------------|------------------|--------|----------|--------|
|                                     | Data source:        |                 | Register         | Survey | Register | Survey |
|                                     | Income type:        |                 | Lab.             | Lab.   | Comp.    | Comp.  |
|                                     | A: Coefficients     |                 |                  | •      |          |        |
|                                     | Income              | $(\hat{\beta})$ | 0.460            | 0.443  | 0.545    | 0.443  |
| $\hat{\beta}_S / \hat{\beta}_R$     | <br>S/R ratio       |                 | 0.9              | 63     | 0        | .813   |
|                                     | SE Dummy            | (γ̂)            | 0.103            | 0.0537 | 0.117    | 0.0565 |
| $\hat{\gamma}_S/\hat{\gamma}_R$     | <br>S/R ratio       |                 | 0.5              | 21     | 0.4      | 183    |
|                                     | B: Estimates        | ofui            | ıderreportii     | ıg     |          |        |
| $k = exp(\hat{\gamma}/\hat{\beta})$ | <br>Multiplier      | ( <i>k</i> )    | 1.25             | 1.129  | 1.239    | 1.136  |
|                                     | S/R ratio 0.9       |                 | 03               | 0.9    | 017      |        |
| $\kappa = 1 - (1/k)$                | <br>Income-gap      | (κ)             | 0.200            | 0.114  | 0.193    | 0.120  |
|                                     | S/R ratio           | S/R ratio 0.5   |                  | 70     | 0.6      | 522    |

#### Survey-Register (S-R) Parameter Differences

Similar to: <u>Reliability ratios (1</u> -  $b_{uy}s$ ) labour = 0.86, 0.97 Comp. = 0.84

• How the two (income and SE dummy) attenuation biases interact to affect biases in income-gap estimates is not straightforward since the income-gap =  $\kappa = 1 - (1/k)$ , where the 'income scaling factor'  $k = exp(\hat{\gamma}/\hat{\beta})$ .





### Conclusions

- Estimates of self-employment income gaps vary substantially depending on whether tax register, or survey-reported, income data are used in an Engle curve approach (around 19-21% versus 10-12%)
- Survey reports of income can be expected to be inaccurate as measures of reported taxable income (e.g. due to recall errors and deliberate underreporting by the self-employed)
- Data confirm survey-reported incomes are higher (on average) than register incomes for the self-employed, but very similar for employees.
- These generate substantial attenuation biases in parameter estimates for income in Engle curve regressions ~ up to 20%
- Large effects for SE dummy variable. Due to large average positive error (8-10%) for SE (log) incomes in survey data. Equivalent to ~ 4-5% error in (log) expenditures (with  $\hat{\beta} \approx 0.5$ )
- ►  $\Rightarrow$  -0.05 (i.e. ≈ 50%) bias in SE parameter estimates,  $\hat{\gamma}$ , using survey data





## DO EXPENDITURE SURVEY INCOME REPORTS MIMIC TAX RETURN RECORDS? The role of measurement error in survey versus register data

ANA CABRAL & NORMAN GEMMELL

Formerly Inland Revenue

Chair in Public Finance, VBS

